Lin et al. 10.1073/pnas.0606006103.

Supporting Information

Files in this Data Supplement:

Supporting Figure 3
Supporting Figure 4
Supporting Figure 5
Supporting Table 1
Supporting Table 2
Supporting Text




Supporting Figure 3

Fig. 3. Schematic representation of the QM/MM partition in the reactive state structure. (a) The system selected for the QM/MM calculation. QM atoms are in ball-and-stick format, dsDNA (stick), complete DNA polymerase b (cartoon and lines, hydrogen atoms not shown), counter ions (Na+ and Cl-, spheres), and selected waters (up to 15 Å from QM atoms) are also included. Only MM atoms within 10 Å of the QM atoms are allowed to move during the optimization. (b) Optimized active-site initial state structure. Key distances are listed with reference to the experimental values (in parentheses) in the gapped DNA-2'-deoxy-uridine-5'-(a,b)-imido triphosphate-pol b complex.





Supporting Figure 4

Fig. 4. Schematic minimum energy path along the potential surface (arbitrary reaction coordinate). Reaction state (RS), local minimum state after the proton transfer to Asp-256 (LM), TS, and product state (PS) are connected with a 0.1-Å step along O3'-P1A and P1A-O3A distances. Both open and filled circles are calculated points.





Supporting Figure 5

Fig. 5. Schematic of the TS structure of the active site. Residues with significant contribution to the electrostatic stabilization of TS are also included.





Table 1. Residue TS stabilizations (kcal/mol) based on electrostatic calculations and mutagenesis data

(Sub) Domain

Residues

Reference to GS

Reference to LM

Mutant

Catalytic activity (WT/mutant)

X-family conservation

Lyase

Asp-17

1.41

1.08

 

 

 

 

Lys-27

-2.04

-1.13

 

 

 

 

Arg-40

-2.79

-1.78

 

 

 

 

Lys-48

-1.52

-1.08

 

 

 

 

Thr-79

0.00

0.00

T79S

0.9-10.6 (1)

 

 

 

 

 

 

 

 

D

Glu-147

1.47

1.20

 

 

 

 

Arg-149

-5.03

-4.64

R149A

6.0-22.3 (2)

Yes*

 

 

 

 

 

 

 

C

Ser-180

-1.40

-1.39

S180A

287-439 (2)

 

 

Arg-182

-1.63

-1.27

R182Q

28.5 (3)

Yes

 

Arg-183

-8.01

-7.06

R183A

15-450 (2)

Yes

     

43000 (3)

 

 

 

 

 

R183Q

54.7 (3)

 

 

Ser-188

-0.80

-0.82

S188A

1.7-8.5 (2)

 

 

Lys-234

-0.44

1.00

 

 

 

 

Asp-246

0.33

0.30

D246V

0.5-6.5 (4)

 

 

Glu-249

0.35

0.36

E249K

0.4-2.4 (5)

 

 

Arg-253

-1.10

-1.15

R253M

2 (6)

Yes

 

Arg-254

7.67

3.62

R254A

27.1 (7)

Yes

 

 

 

 

R254K

3.2 (7)

 

 

Arg-258

-0.74

0.35

R258A

7.0 (7)

 

 

Ile-260

-0.05

-0.02

I260D,E,K,N, or R

No activity (8)

 
    

I260M

2.9-45.0 (9)

 

 

 

 

 

I260Q

4.7-8.0 (10)

 

N

Tyr-265

0.05

0.02

Y265F

0.5-2.0 (11, 12)

 
    

Y265H

0.02-12.2 (13)

 
    

Y265L

1.1 (12)

 
    

Y265S

5.5 (12)

 

 

 

 

 

Y265W

0.5-0.9 (11, 12)

 

 

Tyr-271

0.04

0.08

Y271A

0.6-1.4 (14)

 
     

1.0 (15)

 
    

Y271H

0.6-6.0 (14)

 
    

Y271F

2 (15)

 

 

 

 

 

Y271S

2.4-10.9 (14)

 

 

Phe-272

1.24

1.32

F272L

1.1-2.3 (16)

 

 

Gly-274

-0.38

-0.25

G274P

10000 (17)

 

 

Asp-276

4.06

2.77

D276E

0.04 (18)

 
    

D276R

8.5 (19)

 

 

 

 

 

D276V

0.2-0.4 (20)

 

 

Asn-279

-0.43

-0.17

N279A

13.5-16.4 (14)

 
     

5 (15)

 
    

N279L

14.0 (15)

 

 

 

 

 

N279Q

12-18.2 (14)

 

 

Lys-280

-2.26

-1.29

K280A

2.1-3.3 (2)

Yes*

     

30 (21)

 
    

K280R,K,M,I

~1 (21)

 
    

K280L

2 (21)

 
    

K280Q

3 (21)

 

 

 

 

 

K280G

40 (21)

 

 

Met282

-0.05

-0.03

M282L

2 (22)

 

 

Arg-283

-2.06

-0.89

R283A

5000 (15)

Yes

     

224-461 (23)

 
    

R283K

125 (15)

 

 

 

 

 

R283L

2500 (15)

 

 

Lys-289

-0.83

-0.53

K289M

5.8-130 (24)

 

 

Asn-294

-0.03

0.02

N294A

11-190 (2)

 

 

 

 

 

N294Q

4.1-15.8 (2)

 

 

Glu-295

1.42

0.27

E295A

33-1300 (2)

 

 

Tyr-296

-0.03

-0.02

 

 

 

 

Glu-316

1.34

0.93

 

 

 

 

Arg-328

-1.63

-1.17

 

 

Yes*

 

Lys-331

-1.19

-0.93

 

 

 

 

Asp-332

1.39

1.06

 

 

 

 

Arg-333

-1.75

-1.26

 

 

Yes

 

Glu-335

1.85

1.31

 

 

 

 

 

 

 

 

 

 

Solvent

WAT#475

-1.86

-1.87

 

 

 

 

WAT#402

-1.61

-1.54

 

 

 

Domain/subdomain nomenclature is according to Beard et al. (21): Lyase,domain (L) and the DNA binding (D), DNA synthesis (C), and dNTP selection (N) subdomains of the polymerase domain. * denotes that the residue is preserved in at least two X-family members (pol b, pol l, pol m, TdT).

Energy relative to the energy of ground state (GS).

Energy relative to the proton-transferred local minimum state (LM).

References

1. Maitra, M., Gudzelak, A., Li, S. X., Matsumoto, Y., Eckert, K. A., Jager, J. & Sweasy, J. B. (2002) J. Biol. Chem. 277, 35550-35560.

2. Kraynov, V. S., Showalter, A. K., Liu, J., Zhong, X. J. & Tsai, M. D. (2000) Biochemistry 39, 16008-16015.

3. Date, T., Yamamoto, S., Tanihara, K., Nishimoto, Y., Liu, N. & Matsukage, A. (1990) Biochemistry 29, 5027-5034.

4. Dalal, S., Kosa, J. L. & Sweasy, J. B. (2004) J. Biol. Chem. 279, 577-584.

5. Kosa, J. L. & Sweasy, J. B. (1999) J. Biol. Chem. 274, 35866-35872.

6. Kosa, J. L. & Sweasy, J. B. (1999) J. Biol. Chem. 274, 3851-3858.

7. Menge, K. L., Hostomsky, Z., Nodes, B. R., Hudson, G. O., Rahmati, S., Moomaw, E. W., Almassy, R. J. & Hostomska, Z. (1995) Biochemistry 34, 15934-15942.

8. Starcevic, D., Dalal, S. & Sweasy, J. (2005) Biochemistry 44, 3775-3784.

9. Dalal, S., Hile, S., Eckert, K. A., Sun, K., Starcevic, D. & Sweasy, J. B. (2005) Biochemistry 44, 15664-15673.

10. Starcevic, D., Dalal, S., Jaeger, J. &, Sweasy, J. B. (2005) J. Biol. Chem. 280, 28388-28393.

11. Shah, A.M., Maitra, M. & Sweasy, J. B. (2003) Biochemistry 42, 10709-10717.

12. Opresko, P. L., Shiman, R. & Eckert, K. A. (2000) Biochemistry 39, 11399-11407.

13. Shah, A. M., Li, S. X., Anderson, K. S. & Sweasy, J. B. (2001) J. Biol. Chem. 276, 10824-10831.

14. Kraynov, V. S., Werneburg, B. G., Zhong, X. J., Lee, H., Ahn, J. W. & Tsai, M. D. (1997) Biochem. J. 323, 103-111.

15. Beard, W. A., Osheroff, W. P., Prasad, R., Sawaya, M. R., Jaju, M., Wood, T. G., Kraut, J., Kunkel, T. A. & Wilson, S. H. (1996) J. Biol. Chem. 271, 12141-12144.

16. Li, S. X., Vaccaro, J. A. & Sweasy, J. B. (1999) Biochemistry 38, 4800-4808

17. Beard, W. A., Shock, D. D., Vande Berg, B. J. & Wilson, S. H. (2002) J. Biol. Chem. 277, 47393-47398.

18. Skandalis, A. & Loeb, L. A. (2001) Nucleic Acids Res. 29, 2418-2426.

19. Liu, J. & Tsai, M. D. (2001) Biochemistry 40, 9014-9022.

20. Vande Berg, B. J., Beard, W. A. & Wilson, S.H. (2001) J. Biol. Chem. 276, 3408-3416.

21. Beard, W. A., Shock, D. D., Yang, X. P., DeLauder, S. F. & Wilson, S. H. (2002) J. Biol. Chem. 277, 8235-8242.

22. Shah, A. M., Conn, D. A., Li, S. X., Capaldi, A., Jager, J. & Sweasy, J. B. (2001) Biochemistry 40, 11372-11381.

23. Ahn, J., Werneburg, B. G. & Tsai, M. D. (1997) Biochemistry 36, 1100-1107.

24. Lang, T. M., Maitra, M., Starcevic, D., Li, S. X. & Sweasy, J. B. (2004) Proc. Natl. Acad. Sci. USA 101, 6074-6079.





Table 2. The atomic charges of the dTTP molecule generated by using the restrained electrostatic potential (RESP) method

Atom number

Atom name

Atom type

RESP charges

1

O1G

O2

-0.9400

2

PG

P

1.5440

3

O2G

OH

-0.7010

4

H2G

HO

0.3930

5

O3G

O2

-0.9400

6

O3B

OS

-0.7410

7

PB

P

1.5510

8

O1B

O2

-0.9290

9

O2B

O2

-0.9290

10

O3A

OS

-0.4940

11

PA

P

1.0150

12

O1A

O2

-0.6870

13

O2A

O2

-0.6870

14

O5'

OS

-0.6446

15

C5'

CT

-0.0069

16

H5'1

H1

0.0754

17

H5'2

H1

0.0754

18

C4'

CT

0.1629

19

H4'

H1

0.1176

20

O4'

OS

-0.3691

21

C1'

CT

0.0680

22

H1'

H2

0.1804

23

N1

N*

-0.0239

24

C6

CM

-0.2209

25

H6

H4

0.2607

26

C5

CM

0.0025

27

C7

CT

-0.2269

28

H71

HC

0.0770

29

H72

HC

0.0770

30

H73

HC

0.0770

31

C4

C

0.5194

32

O4

O

-0.5563

33

N3

NA

-0.4340

34

H3

H

0.3420

35

C2

C

0.5677

36

O2

O

-0.5881

37

C3'

CT

0.0713

38

H3'

H1

0.0985

39

C2'

CT

-0.0854

40

H2'1

HC

0.0718

41

H2'2

HC

0.0718

42

O3'

OH

-0.6549

43

H3T

HO

0.4396

The charges for atoms from C5' (atom number 15) to H3T (atom number 43) were taken from the D-thymine with a 5'-phosphate group and a 3'-OH group in Amber99 force field (1). The charges for atoms O1G (atom number 1) to O2A (atom number 14) were taken from RESP charges of a model methyl triphosphate, which is built based on the 2',3'-dideoxyribocytidine (ddCTP) structure in the high-resolution x-ray crystal structure of the ternary (gapped DNA-ddCTP analog-pol b) complex (2).

References

1. Wang, J. M., Wolf, R.M., Caldwell, J. W., Kollman, P. A. & Case, D. A. (2004) J. Comput. Chem. 25, 1157-1174.

2. Batra, V. K., Beard, W. A., Shock, D. D., Krahn, J. M., Pedersen, L. C. & Wilson, S. H. (2006) Structure (London) 14, 757-766.





Supporting Text

Computational Details

The dynamic simulations and minimizations were performed as follows. First, the water molecules (with all other molecules fixed) were subjected to a cooling procedure under constant temperature and pressure (50 K, 1 atm) until the density of the system reached »0.99 g/cm3. This was followed by a 50-ps equilibration step at constant volume and temperature (298 K). Second, the whole system was energy-minimized to remove high energy contacts created by hydrogenation while the heavy atoms from the crystal structure were subjected to harmonic constraints with a force constant of 20 kcal/mol per Å2. The system was then slowly heated to 298 K in 150 ps, after which it remained at 298 K for another 200 ps before cooling to 100 K in the next 50 ps at constant volume. During this process, all heavy atoms from the crystal structure were subjected to harmonic constraints with a force constant of 2.0 kcal/mol per Å2. Finally, the total system underwent a full unconstrained minimization. This procedure reproduced the crystal structure very well.

In the ONIOM(QM:MM) calculation using Gaussian 03 (1), the distance constraints were applied by freezing the corresponding redundant coordinates. A step size of 0.10 Å was used in the potential energy surface scan. The optimization convergence criteria was set to a maximum step size of 0.01 au (0.00529 Å) and an rms force of 0.0017 au (2.0158 kcal/mol per Å) during the optimization of the relaxed geometries on potential energy surface; these criteria were 0.0018 au (0.00095 Å) and 0.0003 au (0.3557 kcal/mol per Å), respectively, for the full geometry optimization of the reactant, local minimum, and product states.

1. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr., Vreven T, Kudin KN, Burant JC, et al. (2004) Gaussian 03 (Gaussian, Wallingford CT), Revision C.02.