Klinakis et al. 10.1073/pnas.0603371103.

Supporting Information

Files in this Data Supplement:

Supporting Figure 6
Supporting Table 3
Supporting Table 4
Supporting Figure 7
Supporting Materials and Methods





Supporting Figure 6

Fig. 6. Hierarchical clustering of genes (rows) and specimens (columns). The dendrogram shown (derived by unsupervised analysis using CYGWIN software) reveals that there is clear discrimination in gene-expression patterns between normal mammary glands of lactating females (L) or parous females after involution (P) and tumor specimens. The latter are carcinomas from MMTV-Myc transgenic mice (M) and regressing (N1) and nonregressing (NR) tumors induced by an MMTV-N1IC transgene. The pattern similarity between the Myc and Notch1IC tumors is striking. A color scale is shown at the bottom.





Supporting Figure 7

Fig. 7. Immunophenotyping of mammary glands and tumors for active Erk1/2 and Akt1. We used immunophenotyping to examine whether deregulation of proliferation and inhibition of apoptosis during the development of N1IC-induced nonregressing carcinomas could be correlated with differences between tumors and controls in the status of important markers for these processes, such as the mitogen-activated protein kinases p44 and p42 (Mapk3 and Mapk1, or Erk1/2) and Akt1, respectively. For this analysis, we used antibodies specifically recognizing the active (phosphorylated) forms of Erk1/2 and Akt1 (p-Erk1/2 and p-Akt1). In WT control lactating glands, the glandular epithelial cells are negative for both markers, whereas the myoepithelial cells exhibit nuclear labeling for p-Erk1/2. A strong positive nuclear signal for p-Erk1/2 and p-Akt1 (more widespread for the latter marker) is observed in both regressing and nonregressing tumors from mice with an MMTV-N1IC/Mycfl/fl/Wapcre genotype.





Table 3. Activated Myc-target genes found up-regulated in Myc- and N1IC-induced mouse mammary tumorsa

Symbol

Gene name

Function

Myc/WT

N1IC/WT

Cdk4b

Cyclin-dependent kinase 4

Cell cycle

2.5

2.4

Ccnb1

Cyclin B1

Cell cycle

10.2

5.7

Cdc25cc

Cell division cycle 25 homolog C (Saccharomyces cerevisiae)

Cell cycle

3.6

3.0

Cks2d

CDC28 protein kinase regulatory subunit 2

Cell cycle

9.2

6.5

Rcc1e

Regulation of chromosome condensation 1

Cell cycle

6.6

2.5

Nme2f

Expressed in nonmetastatic cells 2, protein

Transcriptional regulator

2.6

2.2

Bax

Bcl2-associated X protein

Apoptosis

3.4

3.1

Ptmag

Prothymosin alpha

Antiapoptotic activity

2.3

3.2

Cbx3

Chromobox homolog 3 (Drosophila HP1 gamma)

Chromatin assembly/disassembly

4.5

2.7

Tk1

Thymidine kinase 1

DNA metabolism

5.3

3.9

Tymsh

Thymidylate synthase

DNA metabolism

2.1

3.8

Pold2

Polymerase (DNA-directed), delta 2, regulatory subunit

DNA replication

4.7

3.0

Apex1i

Apurinic/apyrimidinic endonuclease 1

DNA repair

3.3

2.1

Ddx18

DEAD (Asp-Glu-Ala-Asp) box polypeptide 18

RNA helicase activity

5.2

5.4

Akap1j

A kinase (PRKA) anchor protein 1

RNA binding

4.8

3.1

Sfrs1

Splicing factor, arginine/serine-rich 1 (ASF/SF2)

RNA binding

4.6

4.5

Hnrpa1

Heterogeneous nuclear ribonucleoprotein A1

RNA binding

2.8

3.0

Snrpd3

Small nuclear ribonucleoprotein D3

Ribonucleoprotein complex

4.4

2.6

Eif2s1k

Eukaryotic translation initiation factor 2, subunit 1 alpha

Protein biosynthesis

2.6

2.3

Jtv1

JTV1 gene

Protein biosynthesis

3.4

2.3

Shmt1l

Serine hydroxymethyl transferase 1 (soluble)

Metabolism

3.5

2.1

Srm

Spermidine synthase

Metabolism

9.9

2.8

Tfrcm

Transferrin receptor

Endocytosis

3.5

5.8

a, Of 1,697 genes currently listed in the "Myc target gene database" (http://www.myc-cancer-gene.org), 501 are considered activated and 1,196 as repressed by Myc (based on microarray analysis or some other criterion using a variety of samples). From these lists, we selected two subsets of 130 activated and 929 repressed genes, which are presumably direct transcriptional targets (assigned, for example, by ChIP analysis). Genes shown by our expression profiling analysis to be commonly up-regulated (656) or down-regualted (790) in MMTV-Myc-induced mouse breast tumors and MMTV-N1IC-induced nonregressing carcinomas and, in addition, were present in the corresponding subsets of Myc direct targets (23/130 and 37/929) are listed in Supplemental Tables 3 and 4. The numbers indicate fold increases or decreases in expression in comparison with WT control values (mRNA levels in normal mammary glands of parous females isolated after involution).

b, Functions downstream of Myc in transformation and its loss inhibits Myc tumorigenic action in epithelial tissues (1).

c, Overexpressed in various carcinomas, including breast cancer (2).

d, Overexpressed in colon (3) and cervical (4) cancer.

e, Overexpressed in lobular breast cancer (5).

f, Associated with various malignancies (for an example, see ref. 6).

g, Nuclear transforming protein (7). Expression is higher in tumors than in normal tissue (8). This gene exerts antiapoptotic action by preventing apoptosome formation, which is consistent with its oncogenic activity (9).

h, Overexpressed in various cancers (10-12). Its upregulation has been associated with drug resistance in colon cancer (13). It has prognostic significance for breast carcinomas (14).

i, Associated with poor breast cancer prognosis (15).

j, Overexpressed in inflammatory breast cancer (16).

k, Overexpressed in various cancers (17,18) and in breast cancer cells (19).

l, Overexpressed in breast cancer (20).

m, Promising drug target because of overexpression in various malignancies (21).

1. Miliani de Marval, P. L., Marcias, E., Rounbehler, R., Sicinski, P., Kiyokawa, H., Johnson, D. G., Conti, C. J. & Rodriquez-Puebla, R. L. (2004) Mol. Cell. Biol. 24, 7538–7547.

2. Kristjansdottir, K. & Rudolph, J. (2004) Chem. Biol. 11, 1043–1051.

3. Li, M., Lin, Y. M., Hasegawa, S., Shimokawa, T., Murata, K, Kameyama, M., Ishikawa, O., Katagiri, T., Tsunoda, T, Nakamura, Y. & Furukawa, Y. (2004) Int. J. Oncol. 24, 305–312.

4. Wong, Y. F., Cheung, T. H., Tsao, G. S., Lo, K. W., Yim, S. F., Wang, V. W., Heung, M. M., Chan, S. C., Chan, L. K., Ho, T. W., et al. (2006) Int. J. Cancer 118, 2461–2469.

5. Korkola, J. E., DeVries, S., Fridlyand, J., Hwang, E. S. Estep, A. L., Chen, Y. Y., Chew, K. L, Dairkee, S. H., Jensen, R. M & Waldman, F. M. (2003) Cancer Res. 63, 7167–7175.

6. Godfried, M. B. et al. (2002) Oncogene 21, 2097–2101.

7. Orre, R. S., Cotter, M. A., Subramanian, C. & Robertson, E. S. (2001) J. Biol. Chem. 276, 1794–1799.

8. Tsitsiloni, O. E., Stiakakis, J., Koutselinis, A., Gogas, J., Markopoulos, C., Yialouris, P., Bekris, S., Panoussopoulos, D., Kiortsis, V., Voelter, W., et al. (1993) Proc. Natl. Acad. Sci. USA 90, 9504–9507.

9. Jiang, X., Kim, H. E., Shu, H., Zhao, Y., Zhang, H., Kofron, J., Donnelly, J., Burns, D., Ng, S. C., Rosenberg, S. & Wang, X. (2003) Science 299, 223–226.

10. Takaha, N., Hawkins, A. L., Griffin, C. A., Isaacs, W. B. & Coffey, D. S. (2002) Cancer Res. 62, 647–651.

11. Cromer A., Carles A., Millon R., Ganguli, G., Chalmel, F., Lemaire, F., Young, J., Dembele, D., Thibault, C., Muller, D., Poch, O., Abecassis, J. & Wasylyk, B. (2003) Oncogene 23, 2484–2498.

12. Ichikawa, W., Takahashi, T., Suto, K., Nihei, Z., Shirota, Y., Shimizu, M., Sasaki, Y. & Hirayama, R. (2004) Int. J. Cancer. 112, 967–973.

13. Wang, T. L., Diaz, L. A., Jr., Romans, K., Bardelli, A., Saha, S., Galizia, G., Choti, M., Donehower, R., Parmigiani, G., Shih Ie, M., et al. (2004) Proc. Natl. Acad. Sci. USA 101, 3089–3094.

14. Li, H., Suo, Z., Zhang, Y., Risberg, B., Karlsson, M. G., Villman, K. & Nesland, J. M. (2004) Histol. Histopathol. 19, 129–136.

15. Kakolyris, S., Kaklamanis, L., Engels, K., Fox, S. B., Taylor, M., Hickson, I. D., Gatter, K. C. & Harris, A. L. (1998) Br. J. Cancer 77, 1169–1173.

16. Bertucci, F., Finetti, P., Rougemont, J., Charafe-Jauffret, E., Nasser, V., Loriod, B., Camerlo, J., Tagett, R., Tarpin, C., Houvenaeghel, G., et al. (2004) Cancer Res. 64, 8558–8565.

17. Wang, S., Lloyd, R. V., Hutzler, M. J., Rosenwald, I. B., Safran, M. S., Patwardhan, N. A. & Khan, A. (2001) Thyroid 11, 1101–107.

18. Rosenwald, I. B., Wang, S., Savas, L., Woda, B. & Pullman, J. (2003) Cancer 98, 1080–1088.

19. Cicatiello, L., Scafoglio, C. Altucci, L., Cancemi, M., Natoli, G., Facchiano, A., Iazzetti, G., Calogero, R., Biglia, N., De Bortoli, M., et al. (2004) J. Mol. Endocrinol. 32, 719–775.

20. Lomnytska, M., Dubrovska, A., Hellman, U., Volodko, N. & Souchelnytskyi, S. (2006) Int. J. Cancer 118, 412–421.

21. Kemp, J. D. (1997) Histol. Histopathol. 12, 291–296.





Table 4. Repressed Myc-target genes found down-regulated in Myc- and N1IC-induced mouse mammary tumors*

Symbol

Gene name

Function

WT/Myc

WT/N1IC

Ppp6c

protein phosphatase 6, catalytic subunit

Cell cycle

2.7

3.3

Ptp4a1

Protein tyrosine phosphatase 4a1

Cell cycle

2.2

2.4

Cebpa

CCAAT/enhancer binding protein (C/EBP), alpha

Regulation of transcription

3.3

3.8

Nr1d1

Nuclear receptor subfamily 1, group D, member 1

Transcription factor activity

2.4

4.8

Spib

Spi-B transcription factor (Spi-1/PU.1 related)

Transcription factor

12.5

5.7

Casp9

Caspase 9

Apoptosis

2.3

2.2

Cradd

CASP2 and RIPK1 and death domain containing adaptor

Apoptosis

2.0

3.1

Birc3

Baculoviral IAP repeat-containing 3

Anti-apoptosis

4.2

3.7

Lsp1

Lymphocyte specific protein 1

Signal transduction

3.2

2.6

Rab11a

RAB11a, member RAS oncogene family

Signal transduction

2.4

3.7

Rac2

RAS-related C3 botulinum substrate 2

Signal transduction

6.0

2.1

Blk

B lymphoid kinase

Intracellular signaling

17.6

10.7

Mfng§

Manic fringe homolog (Drosophila)

Regulation of Notch signaling

3.2

3.3

Ier5

Immediate early response 5

Mitogenic signal transduction (?)

5.1

3.7

Cd79b

CD79B antigen

Transmembrane receptor activity

22.4

5.0

Hadhb

Hydroxyacyl dehydrogenase, subunit B

Metabolism

4.2

3.0

Acadm

Acetyl-coenzyme A dehydrogenase, medium chain

Metabolism

3.6

3.1

Acox1

Acyl-coenzyme A oxidase 1, palmitoyl

Metabolism

2.6

4.1

Acyp2

Acylphosphatase 2, muscle type

Metabolism

4.3

8.8

Crat

Carnitine acetyltransferase

Metabolism

4.9

3.7

Aldh2

Aldehyde dehydrogenase 2, mitochondrial

Metabolism

3.1

2.0

Ampd3

AMP deaminase 3

Metabolism

3.5

2.1

Fah

Fumarylacetoacetate hydrolase

Metabolism

5.2

2.2

Mocs2

Molybdenum cofactor synthesis 2

Metabolism

3.0

3.0

Bckdhb

Branched chain ketoacid dehydrogenase E1

β polypeptide

Amino acid catabolism

2.3

4.4

Dbi

Diazepam binding inhibitor

Transport

3.2

2.4

Slc2a4

Solute carrier family 2, member 4 (Glut4)

Transporter

23.5

16.7

Atp1a2

ATPase, Na+/K+ transporting, alpha 2 polypeptide

Transporting atpase activity

19.8

2.0

Psen2

Presenilin 2

Protein processing

3.2

3.8

Rnf141

Ring finger protein 141

Protein ubiquitination

2.5

2.3

Ltb

Lymphotoxin B

Immune response regulation

22.6

3.9

Pscdbp

Pleckstrin homology, Sec7 and coiled-coil domains, bp

Cell adhesion (?)

2.1

2.2

Dpm1

Dolichol-phosphate (beta-D) mannosyltransferase 1

Glycosylation

2.0

2.3

Ndufs1

NADH dehydrogenase (ubiquinone) Fe-S protein 1

Mitochondrial function

2.0

2.4

Ucp3

Uncoupling protein 3, mitochondrial

Mitochondrial function

2.9

2.7

Ndufb3

NADH dehydrogenase (ubiquinone) 1 beta subcomplex 3

Mitochondrial function

2.6

2.4

Ubl3

Ubiquitin-like 3

Function unknown

2.1

2.3

*For details, see Legend to Supplemental Table 3.

Reduced expression of C/EBPalpha may play a role in the development and/or progression of breast cancer (1).

Expressed in hematopoietic malignancies (2).

§

Expressed in ovarian carcinomas (3).

1. Gery, S., Tanosaki, S., Bose, S., Bose, N., Vadgamma, J. & Koeffler, H. P. (2005) Clin. Cancer Res. 11, 3184-3190.

2. Marafioti, T., Jabri, L., Pulford, K., Brousset, P., Mason, D. Y. & Delsol, G. (2003) Br. J. Haematol. 120, 671-678.

3. Hopfer, O., Zwahlen, D., Fey, M. F. & Aebi, S. (2005) Br. J. Cancer 93, 709-718.