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The plasma membrane (PM) of higher plants contains numerous 
proteins; however, due to their low abundance, only a few have 
been identified and characterized by direct biochemical ap- 
proaches. The major intrinsic protein (MIP) family is  a class of 
highly hydrophobic integral membrane proteins thought to function 
as channels that facilitate the passage of water, small solutes, and 
possibly other moieties through the membrane. A family of P M  
intrinsic proteins was purified and characterized from P M  vesicles 
derived from storage tissue of Befa vulgaris L. using the deter- 
gent 3-[(3-~holamidopropyI)dimethylammonio]-l -propane sulfon- 
ate. This P M  intrinsic protein-enriched fraction also contains high 
levels of UDP-glucose:(l,3)-P-glucan (callose) synthase activity. Di- 
thiothreitol is  required to visualize the monomeric species of these 
highly hydrophobic integral membrane proteins. Sequence analysis 
of tryptic fragments derived from polypeptides of 31 and 27 kD 
revealed significant homologies to plant MIPs identified from 
cloned sequences. These MIPs include clone 7a from pea and RD28 
from Arabidopsis, both of which are water-stress proteins, a tomato 
ripening-associated membrane protein, and PIP 2b, a PM-bound 
water channel protein from Arabidopsis. MIPs, therefore, represent 
abundantly occurring components of PMs derived from beet storage 
tissue. 

The PM is one of the most important but least under- 
stood membrane systems in higher plants and possesses 
numerous functions that include containment, transport, 
recognition, and biosynthesis. In higher plants, the PM 
serves as the site of synthesis of cellulose microfibrils, 
which are a virtually ubiquitous component of plant cell 
walls, and wound-induced callose, which is an essential 
part of plant defense responses. Despite a long history of 
efforts by plant biochemists to isolate and characterize 
PM-bound enzymes, the low abundance of these proteins 
has complicated purification attempts. To date, the only 
integral PM protein from plant sources for which sequence 
information has been obtained via direct purification of a 
polypeptide from isolated membranes is the 100-kD Ht- 
ATPase, which is responsible for generation of proton gra- 
dients across the membrane (Sussman, 1994). 

There has been a great deal of interest recently in mem- 
brane proteins that function as channels for the passage of 
water, ions, and solutes such as glycerol and urea (Ishi- 
bashi et al., 1994; Weaver et al., 1994). One such class, 
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collectively known as the MIP or aquaporin family, has 
attracted a great deal of attention because it is highly 
conserved and found in species ranging from bacteria to 
mammals (Pao et al., 1991; Agre et al., 1993; Chrispeels and 
Maurel, 1994; Knepper, 1994). MIPs generally range in size 
from 25 to 30 kD, and reconstitution experiments have now 
shown that the erythrocyte MIP, CHIP28, aggregates as a 
tetramer to form water-permeable channels within the PM 
(Agre et al., 1993). Other MIP systems that have been 
extensively characterized include GlpF, a bacterial glycerol 
facilitator (Johnson et al., 1990b; Maurel et al., 1994), 
NOD26, a peribacteroid membrane protein in the nitrogen- 
fixing root nodules of soybean (Sandal and Marcker, 1988; 
Weaver and Roberts, 1992; Weaver et al., 1994), and TIP, 
the tonoplast intrinsic protein, which has been documented 
in a wide variety of plants (Johnson et al., 1990a, 1990b; Pao 
et al., 1991; Hofte et al., 1992; Johnson and Chrispeels, 1992; 
Ludevid et al., 1992). Other MIPs have now been identified 
in plant tissue. These include RD28 (Yamaguchi-Shinozaka 
et al., 1992), a water-stress protein from Arubidopsis, 
TRAMP (or pTOM75) (Fray et al., 19941, a group of perox- 
isomal membrane proteins (Corpas et al., 1994; Jiang et al., 
1994), and two families of integral proteins (PIP 1 and 2) 
derived from the PM of Arubidopsis (Kammerloher et al., 
1994). These latter proteins were cloned by immunoselec- 
tion using a mammalian expression system and were 
shown to be water channels by osmotic water permeability 
studies in a Xenopus oocyte system (Kammerloher et al., 
1994). 

This paper documents the existence and properties of a 
family of MIPs derived from storage tissue of Beta vulgaris 
L. We first observed these polypeptides in fractions that 
were highly purified in callose synthase activity (Wu and 
Wasserman, 1993). These fractions were obtained using an 
approach involving direct purification from tonoplast-free 
PM vesicles in the detergent CHAPS. Here we show that 
tryptic fragments derived from the abundant 31- and 27-kD 
integral PM polypeptides from Betu are homologous to 
severa1 recently cloned plant MIPs, including RD28 
(Yamaguchi-Shinozaka et al., 1992), TRAMP (Fray et al., 

Abbreviations: CHAPS, 3-[(3-~holamidopropyl)dimethylammo- 
niol-1-propane sulfonate; CHIP28, channel-forming integral mem- 
brane protein of 28 kD; GlpF, glycerol facilitator; MIP, major 
intrinsic protein; NOD26, soybean nodulin 26; PIP 2b, plasma 
membrane intrinsic protein 2b of Auabidopsis; PM, plasma mem- 
brane; PMIP, plasma membrane intrinsic protein; RD28, respon- 
sive to desiccation membrane protein of Arubidopsis; TIP, tonoplast 
intrinsic protein; TRAME', tomato ripening-associated membrane 
protein. 
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1994), PIP 1 and 2b (Kammerloher et al., 1994), and pea 
clone 7a (Guerrero et al., 1990). The tendency of these 
hydrophobic proteins to form disulfide-linked aggregates 
is also described. These findings provide direct biochemi- 
cal evidence for a family of MIPs localized at the PM of 
B. vulgaris L. 

MATERIALS A N D  METHODS 

Membrane Preparation and PMlP Purification 

PMIPs were isolated using a modified protocol previ- 
ously developed for purification of callose synthase (Wu 
and Wasserman, 1993). Microsomal membranes were iso- 
lated from red beet (Beta vulgaris L.) storage tissue by 
differential centrifugation (Wasserman et al., 1989). PM 
vesicles were prepared by aqueous two-phase partitioning 
(Wu et al., 1991). PMIPs were solubilized in 1 mM EDTA, 1 
mM EGTA, 0.6% CHAPS, and 7.5% glycerol in 50 mM 
Tris-HC1, pH 7.5, by a two-step solubilization procedure 
(Sloan et al., 1987; Wasserman et al., 1989), and were sub- 
sequently purified by glycerol gradient centrifugation fol- 
lowed by product entrapment (Wu and Wasserman, 1993). 
Alternatively, PMIPs were partially purified by glycerol 
gradient centrifugation alone, as indicated. Product entrap- 
ment was conducted as described (Wu et al., 1991). Glyc- 
erol gradient centrifugation was conducted using 4.2-mL 
linear glycerol (2540%, v/v) gradients containing 0.5% 
CHAPS, 3 mM EDTA, and 3 mM EGTA in 50 mM Tris-HC1, 
pH 7.5. Solubilized proteins (0.75 mL) were applied to each 
tube, and the gradients were centrifuged at 200,OOOg for 4 h 
in an SW 50.1 rotor and fractionated into 14 fractions of 0.34 
mL each. PMIP-enriched fractions were identified by SDS- 
PAGE and fractions were also assayed for callose synthase 
(Wu and Wasserman, 1993). Protein was determined by 
Coomassie blue dye-binding with BSA as standard (Brad- 
ford, 1976). 

Electrophoresis and lmmunoblotting 

SDS-PAGE (Laemmli, 1970) was performed on 9 to 18% 
polyacrylamide gradient gels containing 5% glycerol (Por- 
zio and Pearson, 1976). Sample loading buffers consisted of 
8 M urea, 4% SDS, 20% glycerol, and 100 mM Tris-HC1, pH 
8.0, in the presence or absence of DTT or p-mercaptoetha- 
nol, as indicated. Polypeptides were visualized by silver 
staining after enhancement by Coomassie blue (Daiichi 
double-staining protocol; Integrated Separation Systems, 
Enprotech, Hyde Park, MA). Band intensities were moni- 
tored by densitometry at 630 nm using a scanning densi- 
tometer (LKB Ultroscan XL enhanced laser densitometer). 

For immunoblotting, proteins were electrophoretically 
transferred to nitrocellulose membranes in 0.1% SDS, 100 
mM Gly, and 10 mM Tris-HC1, pH 8.0 (Towbin et al., 1979). 
The blots were soaked for 3 h in 1% BSA, 0.15 M NaC1, and 
10 mM Tris-HC1, pH 7.4, incubated with antiserum (1:lOOO 
dilution) for 2 h, and washed three times with 0.15 M NaCl 
and 10 mM Tris-HC1, pH 7.4. Blots were incubated with 
secondary antibody (horseradish peroxidase-conjugated 
with goat anti-rabbit IgG) and visualized using the en- 

hanced chemiluminescence kit (Amersham) according to 
the manufacturer’s protocol. 

Peptide Sequence Determination 

The 31- and 27-kD proteins were electroeluted, concen- 
trated in Centricon 10 microconcentrators (Amicon, Bev- 
erly, MA), subjected again to SDS-PAGE, and blotted onto 
polyvinylidene difluoride membranes (Bio-Rad) using 10 
mM (3-[cyclohexylamino]-l-propanesulfonic acid) buffer 
containing 30% methanol, pH 11. Sample buffer in the 
second electrophoresis contained 45 mM DTT to prevent 
aggregation to higher molecular mass species. Blots were 
stained with 0.5% Ponceau S (Sigma) in 1% acetic acid for 
10 s and destained with 1% acetic acid. The bands of 
interest were excised for interna1 peptide sequencing. Spe- 
cial care was taken to excise only the center of the 31-kD 
band to avoid contamination by the 29-kD polypeptide, 
which overlaps the leading edge of the 31-kD protein. The 
polyvinylidene difluoride slices were digested in situ by 
trypsin and products were separated by HPLC. Sequences 
were determined using a HP GlOOOA protein sequencer 
with a 1090 on-line liquid chromatograph or with an Ap- 
plied Biosystems 477A protein sequencer equipped with a 
120A on-line PTH-AA analyzer (Harvard MicroChem, 
Cambridge, MA). The sequence data base search was done 
using both MacDNASIS Pro (Hitachi Software Engineering 
America, Ltd., San Bruno, CA) and the blast network ser- 
vice (National Center for Biotechnology Information). 

RESULTS 

PMlP Purification and Disulfide-Linked Aggregation 

The PM fraction was prepared by aqueous two-phase 
partitioning and was shown immunologically to be free of 
the 54-kD subunit of the tonoplast H+-ATPase (Wu et al., 
1991). We report here that subsequent purification steps 
designed to enrich for callose synthase activity yielded 
fractions that were also highly enriched in a family of 
PMIPs. The purification consisted of solubilization with 
CHAPS, glycerol gradient centrifugation, and product en- 
trapment (Wu and Wasserman, 1993). Upon analysis by 
SDS-PAGE using a sample buffer containing p-mercapto- 
ethanol, the purified preparations (Fig. 1, lane 3) contained 
a minor band at 57 kD, a broad band that spanned the 
molecular mass range of 47 to 42 kD (referred to as the 
43-kD band), and polypeptides of 31 and 27 kD. A 29-kD 
polypeptide, which migrated slightly ahead of the 31-kD 
polypeptide, was observed in some preparations (Fig. 2). It 
should be noted that these PMIPs stained poorly with 
Coomassie blue or silver stain alone; a combined staining 
procedure utilizing Coomassie blue enhancement followed 
by silver staining was required for effective visualization. 

The relative distribution of these SDS-denatured 
polypeptides on gels was readily manipulated by addition 
of disulfide reducing agents such as DTT. In the absence of 
DTT and p-mercaptoethanol, the broad 43-kD band was 
the major component present, but addition of DTT resulted 
in almost complete conversion of this species to the 31-, 29-, 
and 27-kD proteins (Fig. 2A). Scanning densitometry fur- 



Plasma Membrane Intrinsic Proteins 389

1 2 3 4
kDa

Figure 1. SDS-PAGE of PMs and fractions enriched in PMIPs and
callose synthase activity. The PM fraction was prepared by aqueous
two-phase partitioning (lane 1) and proteins were solubilized using
CHAPS (CSE, lane 2). Further purification consisted of glycerol gra-
dient centrifugation (GC, lane 3) followed by product entrapment
(PE, lane 4). The SDS sample buffer contained 50 HIM /3-mercapto-
ethanol but no DTT. Polypeptide molecular masses are indicated to
the left of the gel.

ther illustrates that loss of the 43-kD band generally corre-
sponded with the combined appearance of the 31-, 29-, and
27-kD proteins (Fig. 2B). Similar results were obtained in a
PM fraction isolated from celery (not shown). The 97-kD
component was not always present (Fig. 1, lanes 3 and 4),
and its position was not affected by DTT (Fig. 2A).

The 27-kD protein cross-reacted with an antibody di-
rected against the carboxy terminus of a TIP from Arabi-
dopsis (Fig. 3). In the absence of DTT, this antibody rec-
ognized only the 43-kD band, whereas with DTT, this
antibody recognized only the 27-kD protein (Fig. 3). This
not only confirms the origin of the 27-kD polypeptide,
but implicates it as a PM-localized member of the MIP
family.

The 31- and 27-kD proteins were highly hydrophobic
(approximately 60% uncharged nonpolar amino acids; Ta-
ble I). Each of these proteins was subject to formation of a
ladder of higher molecular mass bands upon electroelution
from gels (Fig. 4). The electroeluted 27- and 31-kD proteins
polymerized to species of 44 and 48 kD, respectively, when
they were electrophoresed in the absence of reducing
agent. In addition, higher molecular mass species of 59 and
63 kD were observed. The observation that the calculated
molecular masses are not exact multiples of the monomeric
molecular mass indicates anomalous migration of one or
more of these species (Griffith, 1972; Read and Northcote,
1983). This type of behavior is typical of hydrophobic pro-
teins after their extraction from membranes of plant origin
(Maeshima, 1992). Because of the tendency of the 31-, 29-,
and 27-kD proteins to form disulfide-linked aggregates,
this system bears some similarity to the mitochondrial
alternative oxidase, which forms a dimeric complex be-
tween two identical subunits (Umbach and Siedow, 1993).
However, because the PMIP system from Beta contains at

least three separate moieties, the nature of possible inter-
actions between these three polypeptides within the PM
cannot be readily determined based on the current data.

Sequence Analysis of Peptide Fragments

The 31- and 27-kD polypeptides were each purified by
electroelution from SDS gels and subjected to composi-
tional (Table I) and sequence analysis (Fig. 5). Each
polypeptide was digested in situ with trypsin and sepa-
rated by HPLC, and the longest fragments recovered from
each were sequenced. Strong homology of both the 31- and
27-kD polypeptides with five recently identified members
of the MIP family was found. In the 19-amino acid peptide
obtained from the 31-kD protein (Fig. 5A), 11 amino acids
were identical to the N-terminal portion of TRAMP from
tomato, clone 7a from pea, and the PIP1 family from Ara-
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Figure 2. Concentration-dependent conversion of the 43-kD species
by DTT. A, The PMIP-enriched fraction was isolated from the CHAPS
extract by glycerol gradient centrifugation. Aliquots (5 p.g of protein)
were combined with various levels of DTT and were incubated at
30°C for 15 min; SDS-PAGE sample buffer prepared without (J-mer-
captoethanol was added. B, Quantification of polypeptide levels by
laser densitometry with relative band intensities determined by inte-
gration of peak areas.
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Figure 3. Immunoblot probed with antibodies to TIP of Arabidopsis.
PM prepared by aqueous two-phase partitioning was electropho-
resed (5 /u.g of protein) in the absence or presence of DTT, transferred
to a nitrocellulose membrane, and probed with TIP antibody from
Arabidopsis. The bands were visualized by enhanced chemilumines-
cence (see "Materials and Methods").

bidopsis. At least five additional amino acids were noniden-
tical but related. The segments LGA and QPLG are identi-
cal in TRAMP and clone 7a. The RD28 deduced protein
sequence lacks this region completely.

The 23-amino acid tryptic fragment derived from the
27-kD protein (Fig. 5B) revealed similar homologies. Four-
teen amino acids were identical to an internal region of
TRAMP, and 10 aligned with a similarly located region of
RD28 and PIP 2b from Arabidopsis. Of note, the sequence
GGGAN was common to four of the five proteins. A
4-amino acid segment (GYTK) of the 27-kD polypeptide
from Beta was homologous to TRAMP and clone 7a. These
homologies confirm that the 31- and 27-kD polypeptides,
which occur abundantly in PMs of beet storage tissue, are
members of the MIP family.

Table I. Experimentally determined amino acid composition of the
31- and 27-kD polypeptides.

Each polypeptide was obtained by electroelution (see "Materials
and Methods"), hydrolyzed, and analyzed for amino acid content.

Amino Acid 31-kD 27-kD Ratio

Asx
Glx
Ser
Cly
His
Arg
Thr
Ala
Pro
Tyr
Val
Met
lie
Leu
Phe
Lys

1
7.5
6.0
6.5

12.0
2.4
3.7
6.1

12.2
5.2
2.8
7.3
1.5
6.2
9.6
6.2
4.8

>0

5.5
6.5
5.2

13.0
2.6
3.2
6.4

12.9
5.5
2.9
6.5
2.1
6.9
9.1
6.8
4.7

1.36
0.92
1.25
0.92
0.92
1.16
0.95
0.95
0.92
1.00
1.12
0.71
0.90
1.05
0.91
1.02

-«66

'45

'31

Figure 4. Electroelution-induced aggregation of the 27- and 31-kD
polypeptides. Each polypeptide (as indicated) was electroeluted as
described in "Materials and Methods" and was electrophoresed in
the absence of reducing agent.

DISCUSSION

Sequence analysis of cDNA clones obtained from a range
of species and tissue types has shown that members of the
MIP or aquaporin family occur widely in plants (Chrispeels
and Maurel, 1994). Here, a direct biochemical approach
consisting of detergent-based solubilization and subse-
quent fractionation, was taken to demonstrate that PM
vesicles from storage tissue of Beta possess at least two
members of the MIP family. Based on several independent
approaches, i.e. the purification-based strategy employed
here, immunoselection from a mammalian expression sys-
tem used to obtain PIP 1 and 2 from A. thaliana (Kammer-
loher et al., 1994), and immunodetection of RD28-PIP in A.
thaliana (Daniels et al., 1994), the occurrence of MIPs in the
PM of higher plants is now firmly established.

The precise physiological function of MIPs or aquaporins
in higher plants is not clear, but suggested functions in-
clude the transport of water and an increasing spectrum of
solutes (Chrispeels and Maurel, 1994; Ishibashi et al., 1994;
Knepper, 1994; Weaver et al., 1994). A mild nondenaturing
procedure for isolating PMIPs offers the potential for de-
veloping reconstituted systems to further probe physiolog-
ical functions mediated by members of the MIP family. We
note that the purified PMIP fraction contained callose syn-
thase activities in excess of 1500 nmol min'1 mg^1. The
co-purification of PMIPs with callose synthase raises ques-
tions of a speculative nature concerning a possible role in
the translocation of nascent biopolymers, such as the /3-glu-
cans callose and cellulose, across the PM. All available
models of PM callose or cellulose synthases, whether de-
rived by morphological (Mueller and Brown, 1980; Reiss et
al., 1984; Herth, 1985; Giddings and Staehelin, 1988) or
biochemical (Wu and Wasserman, 1993) means, generally
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Figure 5. Alignment of PMIP tryptic fragments with sequences of 
plant MIPs. Sequences obtained from beet tryptic fragments were 
compared to cDNA clones of TRAMP (Fray et al., 1994), RD28 
(Yamaguchi-Shinozaka et al., 1992), clone 7a (Guerrero et al., 1990), 
and members of the PIP family (Kammerloher et al., 1994). PIP 1 
refers to isoforms a, b, and c, which share identical sequences from 
amino acids 10 to 28. Double circles indicate complete identity with 
Beta; single circles indicate nonidentical but related amino acids. 

accept the notion that the  UDP-Glc-binding domain of 
these enzyme complexes are oriented toward the  cytoplas- 
mic surface of the PM, and that dur ing  catalysis, Glc units 
are translocated through the PM to elongating microfibrils 
or amorphous callose deposits. Thus, a PMIP closely asso- 
ciated with callose synthase could channel callose synthe- 
sized a t  the cytoplasmic face of the PM to the apoplastic 
space, a n d  it could perform a similar function for the 
(1,4)+-linked glucan chains that assemble into cellulose 
microfibrils outside the membrane. The latter possibility is 
consistent with the hypothesis that synthesis of wound 
callose or cellulose reflects differential regulation of the 
same enzyme complex (Jacob and Northcote, 1985; Delmer, 
1987). Polypeptides that form pores traversing the PM 
might be particularly good candidates for conservation 
between mechanisms for synthesis of callose and cellulose. 
The establishment of more definitive associations between 
specific PMIPs a n d  cell wall biopolymer translocation is the 
subject of ongoing research in our laboratory. 

In summary, direct biochemical evidence is presented 
demonstrating abundant  levels of MIPs localized within 
PM vesicles obtained from callose synthase-rich storage 
tissue of B. vulguris L. This purification procedure a n d  
enhanced understanding of the biochemical properties of 
plant-derived PMIPs will provide the necessary tools for 
probing their topology within the PM, genetic regulation, 
a n d  physiological function. 
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