In this section the complete set of differential equations and parameter values of the
two models of glycolysis in Trypanosoma brucei is given. The model with the glycosome has
been described previously (1, 2), and in these articles the references to the original kinetic

studies are given. The MLAB source code is available from the authors on request.

Abbreviations

AK adenylate kinase

ALD fructose-1,6-bisphosphate aldolase
1,3-BPGA  1,3-bisphosphoglycerate

c cytosolic

DHAP dihydroxyacetone phosphate

ENO enolase

Fru-1,6-BP  fructose 1,6-bisphosphate

Fru-6-P fructose 6-phosphate
g glycosomal
Glc glucose

GA-3-P glyceraldehyde 3-phosphate
GAPDH glyceraldehyde-3-phosphate dehydrogenase

GDH glycerol-3-phosphate dehydrogenase
GK glycerol kinase

Gly-3-P glycerol 3-phosphate
Glc-6-P glucose 6-phosphate

GPO glycerol-3-phosphate oxidase
HK hexokinase

Keq equilibrium constant

PEP phosphoenolpyruvate

2-PGA 2-phosphoglycerate

3-PGA 3-phosphoglycerate

PGI glucose-phosphate isomerase
PFK phosphofructokinase

PGK phosphoglycerate kinase
PGM phosphoglycerate mutase

PYK pyruvate kinase



TIM triosephosphate isomerase
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P,and P, denote the sums of high energy phosphates in the glycosome and the cytosol,
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respectively:
[P],= 2[ATP], + [ADP],
[P]. = 2[ATP]. + [ADP].

Model with the glycosome
The model with the glycome contains the following moiety conserved sums:
[ATP], + [ADP], + [AMP], = C,
[ATP], + [ADP]. + [AMP], = C,
[NADH], + [NAD], = G,
[Gly3P], + [DHAP],+ [Glc6P], + [Fru6P],+ 2[Fru-1,6BP],
+ [GA3P],+ [1,3BPGA],+ 2[ATP],+ [ADP],= C,

[Gly3P], + [DHAP], = C,



The kinetics of GPO and the transport of pyruvate across the plasma membrane were

described by irreversible Michaelis-Menten kinetics:
K
in which S is the substrate concentration.

The kinetics of HK were described by an irreversible Michaelis-Menten type equation

for two substrates:
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The kinetics of GAPDH, PGK, GDH and GK were described by a reversible

Michaelis-Menten equation for two non-competing product-substrate couples:
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The transport of glucose was described according to a 4-state model for a symmetrical

v = V.

facilitated diffusion carrier

. [Glc], —[Glc],
Vglucose transport V..
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in which [Glc]; is the intracellular and [Glc], is the extracellular glucose concentration. Kgi is
the Michaelis constant for glucose transport. ¢ is a symmetry index, equal to 1 in case of
complete symmetry of the carrier (2).

The rate of PFK exhibits a slightly cooperative dependence on the concentration of

fructose 6-phosphate:
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The rate of PYK depends cooperatively on the concentration of PEP:
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n is the cooperativity index (Hill coefficient).
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The rate equation for aldolase reads:
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The hydrolysis of ATP for free-energy-dissipating processes was described by:

[ATP]
Vatputization = K ﬁ

The differential equations used were the following:
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From the above variables the other variables were calculated:
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[2-PGA]. = Keqpom[3-PGA]
[PEP]. = Keqeno'[2-PGA]
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[ATP], = d 2, £
in which:

a, = 1-4Ky

b, = Cy—[P]y(1 — 4Keq ak)

¢, = —K [P

[ADP], = [P], — 2[ATP],

[AMP], = C, — [ATP], — [ADP],

To obtain the cytosolic concentrations [ATP],, [ADP] , and [AMP],, P, was substituted for P,,
and C, for C;.

[NAD'], = C; — [NADH],

Parameter values

Glucose transport 4 106.2 nmol- min-!(mg cell protein)-!
K 2 mM
o 0.75

HK 4 625 nmol-min-!-(mg cell protein)-!
Km, Glc 0.1 mM
K, Gicop 12 mM
Knarp 0.116 mM
Ko app 0.126 mM

PGI Keq 0.29

PFK 4 780 nmol-min-!-(mg cell protein)-!
K; 15.8 mM
Kiz 10.7 mM

Koy rep 0.82 mM
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pyruvate transport
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C4 45 mM

Model without glycosome

The differential equations have been given in Materials and Methods. Rate equations
and parameter values are the same as those of the model with the glycosome. The moiety
conserved sums are:
[ATP] + [ADP] + [AMP] = Cq
[NADH] + [NAD] = C;
in which Cg is 4 mM and C; is 4 mM. From the independent variables of the differential
equations the dependent variables were calculated as follows:

[hexose-P]

[Gle6P] = —— 4
1 + Keq,PGI

[Fru-6-P] = [hexose-P] — [Glc-6-P]
[DHAP] = [Triose-P]/(1 + Keq,tim)
[GA-3-P] = Keqrm [DHAP]

[N]

[3-PGA] =
I+ Keq,PGM + Keq,PGM‘Keq,ENo

[2-PGA] = Keqprom[3-PGA]

[PEP] = Keqeno'[2-PGA]

ATP, ADP and AMP were calculated from variable P as in the model with the glycosome, but
P is substituted for P, and Cs for C,

[NAD'] = C; — [NADH].

1. Bakker B.M., Michels P.A.M., Opperdoes, F.R. & Westerhoff, H.V. (1997) J. Biol.Chem. 272, 3207-3215.
2. Bakker B.M., Michels P.A.M., Opperdoes, F.R. & Westerhoff, H.V. (1999) J. Biol. Chem. 274, 14551-14559.



