1 Electronic appendix: Modelling of intensity distributions

The characterization of the GFP-LamA pixel intensity (density) distribution on a mesoscopic scale was carried out by assuming random lateral distributions of GFP-LamA. We assume that the lamin density variations are characterized by a single length scale, ξ . The area of the pixel can then be partitioned into $(l_{pix}/\xi)^2$ square cells each with area ξ^2 . The total intensity for a pixel is the contributions from the squares which are are not devoid of GFP-LamA: $I = \rho(l_{pix}^2 - \xi^2 n)$ where n is the number of cells devoid of GFP-LamA and ρ is proportional to the density of GFP-LamA in the squares with flourescence contribution¹. Within the simplified description the configurations of the regions are completely random and the probability distribution for n can be described by a simple binomial distribution:

$$p(n) = {\binom{\left(\frac{l_{pix}}{\xi}\right)^2}{n}} \phi^n \left(1 - \phi\right)^{\left(\frac{l_{pix}}{\xi}\right)^2 - n}$$
(1)

where ϕ is the area fraction of GFP-LamA devoid regions. The mean and variance in the intensity are $\langle I \rangle = \rho l_{pix}^2 (1-\phi)$ and $\sigma(I) = \rho l_{pix}^2 \left(\frac{l_{pix}}{\xi}\right) \sqrt{\phi(1-\phi)}$. On this basis, we predict the density distributions of three models for the lateral organization of the lamina under lateral expansion.

1.1 Network lateral expansion model

For expansion of a regular lamina network by a factor $\lambda \sim \sqrt{A_{LamA}^i/A_{LamA}^o}$ where A_{LamA}^o is the initial GFP-LamA area, the density of GFP-LamA is reduced by a factor A_{LamA}^o/A_{LamA}^i . It follows that with area dilation, $\langle I \rangle$ is reduced by $\sim \frac{A_{LamA}^o}{A_{LamA}^i}$ while $\sigma(I)$ is reduced by $\sim (\frac{A_{LamA}^o}{A_{LamA}^i})^{1.5}$.

Note that GFP-LamA is much smaller (~ 50 nm) than both the optical resolution (~ 250 nm) and l_{pix} , so the intensity of a pixel is the added contribution of fluorophores within a pixel.

1.2 Variable pore size model

Here the important length scale is the NPC diameter, ξ_p . For the unperturbed NE, A_p^o is the area initially occupied by NPCs and $\xi_p^o \sim 40-120$ nm varies under lateral stretching of NE. Here, NPCs are considered as regions devoid of GFP-LamA and the area of the surrounding lamina, A_{LamA} , is a constant. The area fraction occupied by NPCs changes during expansion and it follows that an expansion of NPC area gives rise to a small decrease in $\langle I \rangle$ while the relative width of the distribution remains constant: $\frac{\sigma(I)}{\langle I \rangle} = \frac{l_{pix}}{\xi_p^o} \sqrt{\frac{A_p^o}{A_{LamA}}}$.

1.3 Lamin vacancy model

For simplicity we assume that the characteristic length scale, ξ , for the vacancies or voids that appear upon expansion is the same as for the NPCs. The area of such vacancies/voids is denoted by A_{vac} . In this case $\langle I \rangle$ decreases like $\frac{A_{LamA}}{A_{LamA} + A_p^o + A_{vac}}$, and $\frac{\sigma(I)}{\langle I \rangle} = \frac{l_{pix}}{\xi_p^o} \sqrt{\frac{A_p^o + A_{vac}}{A_{LamA}}}$. Thus while the intensity monotonously declines, $\sigma(I)$ changes only modestly over a wide range of $\frac{A_p^o + A_{vac}}{A_{LamA}}$.