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1 The basic epidemic model

Our basic epidemic model is a slight extension of the standard SLIR model
allowing a fraction of infected members to go from the latent stage to an asymp-
tomatic infective stage in which they have some infectivity.

Specifically, we make the following assumptions.

1. Initially the total population size is K, of which a small number I0 are
infective and the remainder S0 are susceptible, with S0 + I0 = K.

2. We assume mass action incidence, that is, the number of effective contacts
in unit time per individual is a constant fraction β of total population size.

3. Latent members (L) are not infective.

4. A fraction p of latent members proceeds to the (symptomatic) infective
class (I) at rate κ, while the remainder goes directly to an asymptomatic
infective stage (A), also at rate κ.

5. Infectives leave the infective class at rate α, with a fraction f recovering
and going to the removed class (R) and the remainder dying of infection.

6. Asymptomatics have infectivity reduced by a factor δ, and go to the re-
moved stage at rate η.

These assumptions lead to the model

S′ = −Sβ[I + δA]
L′ = Sβ[I + δA]− κL

I ′ = pκL− αI (1)
A′ = (1− p)κL− ηA

N ′ = −(1− f)αI,
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with initial conditions

S(0) = S0, L(0) = 0, I(0) = I0, A(0) = 0, R(0) = 0.

Here, N = S+L+I+A+R is the total population size. It is convenient to use N
as one of the model variables rather than R, especially if a more general incidence
function depending on total population size is assumed. A flow diagram for the
model (1) is shown in Figure 1 of the main paper. The special case p = 1,
which gives A = 0, is the standard SLIR model [2], [3, Exercise 2.2]. The
variable N does not appear in the model except in the equation for N . Thus N
is determined when the other variables are known, and the equation for N may
be discarded from the model. In particular, this means that we do not need
to specify the recovery fraction f in the model (although, of course, f must be
specified in order to determine the number of disease deaths).

It is easy to see that the model (1) has disease-free equilibria with

L = I = A = R = 0

and S arbitrary, 0 ≤ S ≤ S0. We make the restriction 0 ≤ S ≤ S0 because
S(0) = S0 and S is a monotone decreasing function. We may use the approach
of [9] to calculate the basic reproduction number

R0 = S0β[
p

α
+

δ(1− p)
η

] =
S0βρ

α
, (2)

where

ρ = α
[ p

α
+

δ(1− p)
η

]
.

This calculation corresponds to the disease-free equilibrium S = S0, L = I =
A = R = 0.

There is also a final size relation

S0[lnS0 − lnS∞] = R0(S0 − S∞) +
R0I0

ρ
. (3)

It is common to assume that I0 is small enough to be neglected in this formula.
Then (3) with I0 = 0 is a standard result for simple epidemic models [3, Sec.
1.3]. The assumption that I0 = 0 implies S0 = K, and then S0 would be
replaced by K in the formulae for the analysis of the model (1).

To establish the final size relation, we proceed as follows. First, we adopt
the notations g∞ for limt→∞ g(t) and ĝ for

∫∞
0

g(t)ds if g is any non-negative
integrable function defined for 0 ≤ t < ∞. We add the first two equations of
(1) and integrate with respect to t from 0 to ∞, obtaining

S0 − S∞ = κL̂. (4)

Integration of the third and fourth equations of (1) gives

αÎ = pκL̂ + I0 (5)
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and
ηÂ = (1− p)κL̂. (6)

We now divide the first equation of (1) by S and integrate, obtaining

lnS0 − lnS∞ = β[Î + δÂ].

Then substitution of (2), (4), (5), and (6) gives the final size relation (3).
The attack rate is defined as the fraction of the susceptible population which

develops disease symptoms over the course of the epidemic. In our notation this
is

p(1− S∞
S0

).

The basic reproduction number R0 is related to the attack rate through the
final size relation.

We consider an example with mass action incidence and parameters used for
influenza in [7]

κ = 0.526, α = η = 0.244, p = 0.667,

S0 = 1988, I0 = 12, K = 2000, δ = 0.5.

In [7] an attack rate is assumed for each of four age groups, and the average
attack rate for the entire population is 0.326. If we use an attack rate of 0.326,
the final size relation gives S∞ = 1016, which corresponds to 677 cases of
influenza compared to the estimate 668 in [7, Table 2]. From the final size
relation (3) we obtain R0 = 1.37, and then (2) gives S0β = 0.40. This value
will be used for calculations with the treatment model.

2 The treatment model

We consider treatment before a disease outbreak, which we will describe as vacci-
nation and treatment once a disease outbreak has begun, which we will describe
as antiviral treatment. This terminology is chosen with influenza treatment
in mind, but for modeling purposes the nature of the treatments are irrele-
vant. Our assumptions require us to introduce additional compartments into
the model to follow treated members of the population through the stages of
infection. We use the classes S, L, I, A,R as before and introduce ST , the class
of treated susceptibles, LT , the class of treated latent members, IT , the class of
treated infectives, and AT , the class of treated asymptomatics.

We assume that a fraction γ of the population is vaccinated before the disease
outbreak. Thus, we assume an initial state

S(0) = (1− γ)S0, ST (0) = γS0, I(0) = I0,

L(0) = LT (0) = IT (0) = A(0) = AT (0) = 0,

N(0) = K = S0 + I0,

with 0 ≤ γ ≤ 1.
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We assume that treatment produces a reduction σS in susceptibility and
that σI and σA are the respective decreases in infectivity in IT and AT . There
is a treatment rate ϕL in L and a rate θL of relapse from LT to L, a treatment
rate ϕI in I and a rate θI of relapse from IT to I. The rates of departure from
LT , IT and AT are assumed to be κT , αT and ηT respectively, and τ is the
reduction in the fraction of latent members who will develop symptoms.

The resulting model is

S′ = −SβQ

S′T = −σSST βQ

L′ = SβQ− κL− ϕLL + θLLT

L′T = σSST βQ− κT LT + ϕLL− θLLT

I ′ = pκL− αI − ϕII + θIIT (7)
I ′T = pτκT LT − αT IT + ϕII − θIIT

A′ = (1− p)κL− ηA

A′T = (1− pτ)κT LT − ηT AT

N ′ = −(1− f)αI − (1− fT )αT IT ,

with
Q = I + δA + σIIT + δσAAT .

A flow diagram for the model (7) is shown in Figure 2 of the main paper.
The standard method of [9] may be used to calculate the control reproduction

number corresponding to any initial state, giving

Rc = (1− γ)Ru + γRv,

where

Ru =
S0β

[
(αT + θI + σIϕI)pκ(κT + θL) + (θI + σI(α + ϕI))pτκT ϕL

]
∆I∆L

+
δS0β

∆L

(
(1− p)κ(κT + θL)

η
+

σA(1− pτ)κT ϕL

ηT

)
and

Rv =
σSS0β

[
(αT + θI + σIϕI)pκθL + (θI + σI(α + ϕI))pτκT (κ + ϕL)

]
∆I∆L

+
δσSS0β

∆L

(
(1− p)κθL

η
+

σA(1− pτ)κT (κ + ϕL)
ηT

)
are the reproduction numbers in the case of no individuals and all individuals
vaccinated, respectively, where

∆L = (κ + ϕL)(κT + θL)− ϕLθL

∆I = (α + ϕI)(αT + θI)− ϕIθI .
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By integrating some of the individual equations in (7), specifically the first
plus third equation, the second plus fourth equation, the fifth equation, and the
sixth equation respectively, we obtain the relations

(κ + ϕL)L̂− θLL̂T = S(0)− S∞

(κT + θL)L̂T − ϕLL̂ = ST (0)− ST ∞ (8)
pκL̂ + θI ÎT = (α + ϕI)Î − I0

pτκT L̂T + ϕI Î = (αT + θI)ÎT .

We may derive final size relations for the treatment model (7) much as for
the untreated model (1), by integrating the equations for S and ST in (7),
integrating the other equations in (7) to express Q̂ in terms of the reproduction
number, and combining the results, obtaining

S0[ln(1− γ)S0 − lnS∞] = Ru [(1− γ)S0 − S∞]

+ Rv [γS0 − ST∞] +
R0I0

ρT
(9)

ln γS0 − lnST∞ = σS [ln(1− γ)S0 − lnS∞].

In (9) the quantity ρT is given by

ρT =
ρ

α

(
αT ϕI + α(αT + θI)

αT + θI + σIϕI

)
.

If ϕI = θI = 0, then ρT = ρ.
To apply the model (7) to treatment at rate ϕL of latent members and rate

ϕI of infectives, we observe that the number of people treated altogether is

ϕLL̂ + ϕI Î . (10)

A similar calculation gives the number of cases of disease

αÎ + αT ÎT = I0 + pκL̂ + pτκT L̂T . (11)

In the special case of no treatment during the latent stage ϕL = θL = 0, the
number of cases reduces to I0 + p[S(0)− S∞].

In Section 1 we have used the parameter values of [7] in the model to obtain
predictions consistent with those of [7] for an untreated influenza epidemic.
The next challenge is to obtain predictions consistent with those of [7] with
antiviral treatment. Thus we consider the special case γ = 0 of the antiviral
treatment model. In this special case, Rc = Ru,Ru = 0, ST (t) ≡ 0 and
only the first equation in (9) is meaningful. In [7] it is assumed that 80% of
index symptomatic infectives and latent members are treated within 1 day, and
accordingly we take ϕL = ϕI = 0.8. This overlooks the fact that some of the
members treated are not infected, and thus would tend to overestimate the
number of cases of influenza. It also overestimates the number of symptomatic
infectives treated since in [7] it is assumed that only index cases are treated, not
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secondary infections. A course of treatment of 8 weeks implies θI = θL = 1/56.
In addition we use the parameter values suggested in Section 1, and

κT = 0.526, αT = ηT = 0.323, τ = 0.4
σS = 0.7, σI = σA = 0.2.

We use these parameters to calculate Rc = 0.31, ρT = 2.33 and then use the
final size relation to estimate S∞ ≈ 1978. Then the number of cases of influenza
over the course of the epidemic given by (11) is 14, which we compare with the
value 46 obtained in [7, Table 2]. Since the number of cases is very sensitive to
changes in Rc these results are not very reliable. There is some correlation with
the results of [7] whose confidence interval is large enough to include our value.
It would be reasonable to use our model to estimate, for example, the effect of
some pre-epidemic antiviral treatment (γ > 0).

We apply the treatment model to estimate the effect of antiviral treatment
once an epidemic has begun as a complement to the approach of [4] and [8].
Our goal is to choose the treatment rates ϕL and ϕI to make Rc < 1, thus
achieving disease control. If there is no pre-epidemic treatment (γ = 0), the
final size relation takes the form

S0[lnS0 − lnS∞] = Rc(S0 − S∞) +
R0I0

ρT
. (12)

The main paper shows graphically the results of these calculations for R0 =
1.5. In planning for a pandemic, one would repeat these calculations for a range
of values of R0. Unfortunately, if Rc is close to 1, the value of (S0 − S∞) given
by the final size relation (12) is very sensitive to changes in the value of I0. If
2 infectives are introduced into a population of 998 susceptibles and R0 = 1.5,
the value of (S0 − S∞) is approximately 1.4 times its value if 1 infective is
introduced into a population of 999 susceptibles. This means that the number
of treatments required and the number of disease cases over the course of the
epidemic is very sensitive to the initial number of infectives. Since this number
can not be predicted in advance of an epidemic, estimates are very unreliable.
However, comparison of different control strategies is still feasible.

Another application of the treatment model is to the common annual vacci-
nation program to protect against the strain of influenza thought to be the most
likely to invade. The model we have described can be applied to this situation
as well, with the final size relation in the form (9). With disease parameters as
in [7] and vaccination which reduces susceptibility by 70 % of a fraction γ of
the population before an epidemic and introduction of 1 infective into a total
population of 1000 individuals, we obtain the results shown in Table 1 of the
paper. In this table, setting θL = θI = ϕL = ϕI = 0 in (11) gives the number
of disease cases as

I0 + p[(1− γ)S0 − S∞] + pτ(γS0 − ST ∞).

It has also been suggested [1] that a possible response to an outbreak of a
strain for which no specific vaccine has been developed as yet would be a program
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of treatment with a general antiviral as a stopgap until a specific vaccine can
be produced. The same calculations applied to the annual vaccination model
may be used to analyze this situation. Presumably an antiviral would have a
smaller value of σS than a vaccine, but the reduction in the number of disease
cases might well be large enough for this to be an effective way of preventing
an epidemic, at least if supplies of antiviral drugs are sufficient.

Another scenario considered in [6] is antiviral treatment of essentially all
symptomatic infectives. Thus the approaches to coping with pandemic influenza
that have been proposed very recently include pre-epidemic treatment of sus-
ceptibles, treatment during an epidemic of latent infectives identified by contact
tracing, and treatment during an epidemic of symptomatic infectives. We calcu-
late from our model with R0 = 1.5 that if antiviral treatment is applied only to
symptomatic infectives, a rate ϕI = 0.4 would be required to bring the control
reproduction number Rc down below 1 and avert an epidemic.
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