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Fig. S1: Block diagram of the model used for simulation of the distributed feedback structure in the trp 
system.  Tryptophan concentration (T) is independently distributed to the three-processes-in-series 
structure.  In a conventional feedback structure, typically used in engineering systems, tryptophan 
concentration would have been used for genetic regulation alone (that is, controllers C2(T) and C3(T) would 
be absent).  k1, k2,  k3, and k4 represent kinetic rate constants for synthesis of free operator, mRNA 
transcription, translation and tryptophan synthesis, respectively.  Ki,1, Ki,2, and Ki,3 represent the half 
saturation constants of repression, attenuation, and inhibition, respectively.  Ot, µ, kd1 and kd2 refer to total 
operator site concentration, specific growth rate of E. coli, degradation of OR, and mRNA degradation 
constant respectively.  E represents the enzyme concentration.  Kg and g are the half saturation constant and 
kinetic constant for the uptake of tryptophan for protein synthesis in the cell.  Model parameter values are 
as follows (Santillan and Mackey, 2001; Bhartiya et al., 2003): k1 = 50 min-1; k2 = 15 min-1; k3 = 90 min-1; 
k4 = 59 min-1; Ot = 3.32 nM; kd1 = 0.5 min-1; kd2 = 15 min-1; µ = 0.01 min-1; g = 25 µM. min-1; Kg = 0.2 µM; 
Ki,1 = 3.53 µM;  Ki,2 = 0.04 µM; Ki,3 = 810 µM.   
 

 
Fig. S2: The absence of attenuation and inhibition results in a large overshoot in the tryptophan 
concentration (4 to 5 orders of magnitudes higher than the steady state value).  Tryptophan concentration 
for a severely detuned C1 regulator for the mutated system is shown as the dashed curve in Fig 3b.   
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Fig. S3: Block diagram of the experimental two-tanks-in-series process.  Regulators C1 and C2 represent 
PI controllers.   
 
 
Table S1: Parameter values of the two-tank experimental setup 
 
Nominal flow (F1) 2.35 lpm 
Area of cylindrical Tank 1 (A1) 98.17  2cm
Volume of cylindrical Tank 1  3.43 liters 
Level in Tank 1 at nominal flow (h1s) 17.56 cms 
Drain valve coefficient (k1) of D1 0.56 lpm/ cm  
Proportional gain of PI Controller C1 (Kc1) 0.7 (mA/mA) 
Integral time of PI Controler C1 (τi1) 3.6 min 
 
Nominal flow (F2) 0.35 lpm 
Area of cylindrical Tank 2 (A2) 78.54  2cm
Volume of cylindrical Tank 2  4.78 liters 
Level in Tank 2 at nominal flow (hs) 26.71 cms 
Drain valve coefficient (k2) of D2 0.52 lpm/ cm  
Proportional gain of PI Controller- C2 (Kc2) 2 (mA/mA) 
Integral time of PI Controler- C2 (τi2) 4.5 min 
 
 
 Model for the two-tank system 
An overall volume balance for each of the two tanks yields the following nonlinear dynamic model:  
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Linearization of the above equations around a steady-state nominal point (h1s, hs F1s F2s) followed by a 
Laplace transformation yields: 
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where 
_

1F and 
_

2F   represent the deviation from respective nominal values of the two flow rates and  
represents the deviation of the water level in Tank-2 from its nominal value. Transfer functions g

_

h

1(s) and 
g2(s) represent dynamics of Tank 1 and Tank 2, respectively,  
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Closed loop Transfer functions 
The transfer function representing the dynamic relationship between the desired target and the closed loop 
system output is the complementary sensitivity function given as follows, 

( ) ( ) ( )
_ _1h s I L L r s−⎡ ⎤= +⎣ ⎦     (S-5) 

where L represents the loop transfer function.  Similarly, the closed loop transfer function from the output 
disturbances to the closed loop system output is denoted as the sensitivity transfer function S(s) and defined 
as follows,  

( ) 1( )S s I L −= +      (S-6) 
Assuming that controllers C1 and C2 are proportional controllers with gains Kc1 and Kc2, the loop transfer 
function may be written as,    
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Pole-Zero Locations of the closed loop transfer function 
The zeros of the closed loop system using the multiple feedback loop design denote the roots of the 
numerator of the closed loop transfer function Equation S-5.  Similarly, the poles represent roots of the 
denominator of the closed loop transfer function.  The pole and zero locations for the nominally designed 
closed loop system (Kc1 = 0.7;  Kc2 = 2) are shown in Table S2.   
 
Table S2: Poles and zeros for the single and multiple feedback designs in case of two-tank system.  The 

system parameters are documented in Table S1.    
Configuration Controller 

Gain 
Pole Location Zero 

Location 
Single Loop Kc1 = 0.7 

Kc2 = 0 
-0.66± j0.075 ---- 

Multiple Loop  Kc1 = 0.7 
Kc2 = 2 

-0.67± j 0.078 -0.92 

 
Increasing the value of Kc2 results in the closed loop zero approaching one of the poles.  At very large 
values of Kc2, it can be shown that the system zero is located at, 
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while the two poles are situated at,  
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resulting in cancellation of the pole corresponding to the dynamics of Tank 1 with the system zero while 
the other pole tends towards a large negative value indicating an increasing margin of stability.  
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The pole-zero movement for the single and multiple feedback designs for various values of Kc1 and Kc2 is 
shown in Fig. S4.   
 

 

(a) 

(b) 

Figure S4:  Root loci for a two-tanks-in-series process.  (a) Single feedback loop design (Kc2 = 0): The 
dash-dotted line indicates the movement of the two poles with increasing values of Kc1.  The two poles 
move parallel to the imaginary axis and away from the real axis.  No system zeros exist in this design.  (b) 
Multiple feedback loop design: The dash-dotted line indicate the movement of the poles when Kc2 = 0 
(single feedback loop design).  The solid line represents the movement of the pole when Kc2 increases from 
its zero value resulting in the two poles moving towards the real axis.  The system zero moves along the 
real axis and is indicated by the horizontal dash-dotted line.  For large values of Kc2, one of the two poles 
and the zero are in close proximity and represent a pole-zero cancellation. 
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(a) 

(b) 

Figure S5:  Variation of the peak value of the sensitivity transfer function with process parameters using the 
single feedback (dash-dotted) and multiple feedback (solid) designs.  (a) Variation in the valve coefficient 
k1 of drain valve D1, (b) Variation in the valve coefficient k2 of drain valve D2.   
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