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Hydroxycinnamic acids associated with hypocotyl cell walls of 
dark-grown seedlings of Pinus pinaster Aiton were extracted with 1 
N NaOH and identified by gas chromatography-mass spectrometry. 
l h e  main hydroxycinnamic acid found was ferulic acid. Diferulic 
acid dehydrodimers were also found, with the 8,8-coupled isomer 
(compound 11) being the dehydrodiferulate present in the highest 
amount. However, the 5,5-coupled isomer, commonly referred to 
as diferulic acid, was not detected. Two truxillic acids, 4-4'- 
dihydroxy-3-3'-dimethoxy-a-truxillic acids I and 11, were tenta- 
tively identified. l h e  8,8-coupled dehydrodiferulic acid (compound 
11) was the phenolic acid that showed the most conspicuous 
changes with hypocotyl age as well as along the hypocotyl axis. 
Peroxidase activity against ferulic acid was found in the apoplastic 
fluid as well as being ionically and covalently bound to the cell 
walls. The peroxidase activity increased with hypocotyl age as well 
as from the subapical toward the basal region of the hypocotyls. A 
key role in the cell-wall stiffening of 8,8 but not 5,s dimerization of 
ferulic acid catalyzed by cell-wall peroxidases is proposed. 

The polysaccharides of plant cell walls contain hydroxy- 
cinnamic acids that are present as an ester-linked side 
chain. Ferulic acid has been identified as being ester linked 
to arabinoxylans in monocotyledonous plants (Kato and 
Nevins, 1985; Hartley and Ford, 1989; Hartley et al., 1990b) 
and to pectic arabinans and galactans in dicotyledonous 
plants (Fry, 1982). Ferulic and p-coumaric acids have been 
identified as major hydroxycinnamic components bound to 
gymnosperm secondary cell walls (Strack et al., 1987). 

Ferulic acid is able to undergo dimerization through 
peroxidase-mediated oxidative coupling to produce de- 
hydrodiferulic acid, which cross-links matrix polysac- 
charides. The 5,5-coupled dehydrodiferulic acid, com- 
monly referred to as diferulic acid, had been the only 
dehydrodiferulate reported as a cross-link between cell- 
wall polysaccharides (Kato and Nevins, 1985; Wallace 
and Fry, 1994). Recently, however, Ralph et al. (1994) 
identified new dehydrodiferulates coupled through 8,5, 
8,8, 8-0-4, and 4-0-5 formed by peroxidases in grass 
walls. Cyclodimers formed photochemically from wall- 
bound p-coumaric and ferulic acid (truxillic and truxinic 
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acid types) were also reported in monocotyledonous and 
dicotyledonous plants as a mechanism for cross-linking 
polysaccharide chains (Hartley et al., 1988, 1990a; Eraso 
and Hartley, 1990). 

A key role of cell-wall peroxidases in the stiffening of the 
cell wall through the formation of biphenyl bridges be- 
tween wall polymers and, consequently, in the cessation of 
cell elongation has been postulated (Fry, 1986). Peroxidases 
have been found to be soluble in the apoplastic fluid and 
linked by ionic or covalent bonds to Pinus pinaster wall 
(Sánchez et al., 1995). 

The purpose of this work was to identify and quantify 
phenolic acids associated with pine hypocotyl walls at 
different stages of growth and to study peroxidase ac- 
tivity associated with pine cell walls in order to establish 
a relationship among hydroxycinnamic acids, cell-wall- 
associated peroxidases, and growth cessation. 

MATERIALS AND METHODS 

Plant Material 

Seeds of Pinus pinaster Aiton were soaked in running tap 
water for 24 h and germinated and grown at 25°C in 
darkness (Sánchez et al., 1995). Whole hypocotyls were 
harvested at 7, 10, 13, and 16 d after soaking. Ten-day-old 
hypocotyls were divided into four 5-mm sections from the 
cotyledonary node toward the base and the sections were 
named I, 11, 111, and IV, as the distance from the cotyledon- 
ary node increased. 

Cell-Wall Preparation and Hydroxycinnamic 
Acid Extraction 

Whole hypocotyls or hypocotyl segments were immedi- 
ately killed by boiling in methanol for 10 min and stored in 
methanol until further use. The rehydrated material was 
homogenized, treated with pronase and a-amylase from 
hog pancreas (Sigma), and washed with water, acetone, 
methano1:chloroform (l:l, v/v), and ethyl ether before air 
drying. The dry residue was considered to be the cell-wall 
preparation (Lorences and Zarra, 1986). 

Hydroxycinnamic acid ester linked to polysaccharides 
was released from pine hypocotyl cell walls as described by 

Abbreviations: FA-FA, 4-4'-dihydroxy-3-3'-dimethoxy-a-trux- 
illic acid; TMS, trimethylsilylated. 
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Eraso and Hartley (1990). Milled walls (100-50 mg) were 
shaken under N, with 1 N NaOH (5 mL) at 25°C for 24 h. 
Sinapic acid (100 pg), not present in this material, was 
added as interna1 standard. The suspension was centri- 
fuged and the residue was washed with H,O (2 x 1 mL). 
The supernatant and washings were combined, acidified to 
pH 2.5 with 6 N HCl, and extracted with diethyl ether (4 x 
4 mL). The combined ether extract was evaporated under 
vacuum and the residue was dried under a stream of N,. 
The dry residue was silylated by the addition of 20 pL of 
N,O-bis(trimethylsily1)trifluroacetamide plus 20 pL of pyri- 
dine and shaken for 15 min. 

A11 handling of phenolic solutions and their derivatives 
was carried out under white fluorescent light to avoid UV 
radiation, which causes cis-trans-isomerization of substi- 
tuted cinnamic acid (Hartley and Jones, 1975). 

Phenolic Acid Analysis 

TMS derivatives (1 pL) were analyzed by GC-MS on a 
fused silica column (PTE-5, 30 m X 0.32 mm i.d., film 
thickness 0.25 pm, Supelco [Bellefonte, PAI). The column 
was held at 150°C for 2 min, programmed at 10°C min-' to 
300°C, and held for 30 min. Samples were injected using 
the splitless mode. For quantitative determination of phe- 
nolic acids, TMS derivatives were separated by GC as 
described above and detected by flame ionization. The 
same column and chromatographic conditions were used, 
except that the column oven temperature was programmed 
at 5°C min-l. The response factors for 8,8- and 8,5- 
dehydrodiferulates used for their quantification were those 
given by Ralph et al. (1994). 

Protein Extraction 

Apoplastic peroxidases from intact hypocotyls at a11 ages 
or from 10-d-old hypocotyl regions were collected from 
intercellular and wall spaces by vacuum infiltration and 
low-speed .centrifugation (Fry, 1988; Sánchez et al., 1995). 
After that the hypocotyls (10 g) were homogenized in 50 
mM NaCl (50 mL) at 4°C with a Polytron (Kinematica, 
Luzern, Switzerland) and filtered through Miracloth (Cal- 
biochem), and the residue, after washing with acetone at 
-20°C and ice-cold distilled water, was considered the 
cell-wall preparation. Wall proteins were extracted with 1 
M LiCl (50 mL) at 4°C for 24 h with magnetic stirring. The 
suspension was filtered (Whatman GF/A) and dialyzed 
against distilled water, and the filtrate was concentrated 
(10 mL) with an ultrafiltration cell (PM 10, Amicon, Bev- 
erly, MA). This fraction was considered to be the ionically 
bound protein. The residue was exhaustively washed with 
water and treated with a mixture of 0.5% cellulase (EC 
3.2.1.4) and 2.5% pectinase (EC 3.12.1.15), both from As- 
pergillus niger (Sigma), in 0.1 M sodium acetate buffer, pH 
5.0, for 24 h at 25°C with shaking. The suspension was 
centrifuged at 10,OOOg for 30 min and the supernatant was 
dialyzed against distilled water and concentrated (10 mL). 
This fraction was considered to be the covalently bound 
protein fraction. 

Protein content of the different extracts was measured as 
described by Bradford (1976) using BSA as the standard. 

Peroxidase Assay 

Peroxidase activity was measured using ferulic acid as 
substrate (Takahama et al., 1992). The oxidation of ferulic 
acid was measured spectrophotometrically following the 
absorbance decrease at 310 nm (extinction coefficient = 

11.3 miW1 cm-') in a reaction mixture (total volume 1 mL) 
containing 40 ~ L M  ferulic acid, 90 mM sodium-phosphate 
buffer, pH 4.0 to 5.5, 10 pg of protein extract, and 0.5 mM 
hydrogen peroxide. Apoplastic and covalently bound per- 
oxidases showed maximum activity at pH 5.5 and 4.0, 
respectively. However, the ionically bound peroxidase 
showed two maxima at pH 5.5 and 6.5, and it was higher at 
pH 5.5. 

RESULTS A N D  DlSCUSSlON 

Phenolic Acids 

The ester-linked phenolic acids were released from pine 
cell walls by treatment with 1 N NaOH and analyzed by 
GC-MS (Table I). Their release by NaOH hydrolysis at 
room temperature is in agreement with their association 
with cell walls through ester linkages probably linked to 
pectic polysaccharides, as has been shown for dicots (Fry, 
1983). The retention time relative to both sinapic and 5,5- 
coupled dehydrodiferulic acid, as well as the mass frag- 
mentation pattern, were used for qualitative analysis of 
phenolic acids. Trans- and cis-ferulic acid and trans-p- 
coumaric acid were identified as the major monomeric 
phenolic components in pine hypocotyl cell walls. These 
hydroxycinnamic acids are commonly found to be ester 
and/or ether linked to primary cell walls of higher plants 
(Bacic et al., 1988). Some hydroxybenzoic acids such as 
p-hydroxybenzoic, vanillic, protocatechuic acids, and alde- 
hydes such as vanillin and syringaldehyde were also de- 
tected, although the amounts of these were very low (data 
not shown). 

Phenolic dimers were also found and identified by rela- 
tive retention times and GC-MS to be some of the new 
dehydrodiferulates recently reported by Ralph et al. (1994) 
in grass cell walls. Comparison with the relative retention 
times of these dehydrodiferulates to the 5,5-coupled dehy- 
drodiferulic acid (used in a reference sample), coupled 
with the mass spectra reported for their fully TMS deriva- 
tives, allowed us to identify them as compounds 9,10, and 
11 (Fig. 1). These three dehydrodiferulates were first re- 
ported by Ralph et al. (1994) in grass cell walls, and to our 
knowledge this is the first report for gymnosperm cell 
walls. The identification by GC-MS of compound 9 corre- 
sponds to the presence in the cell walls of the ester-linked 
compound 5 formed via 8,5 dimerization. The detection by 
GC-MS of compounds 10, derived by the extraction proce- 
dure from compound 6 and/or 7, and 11 from 7 and/or 8, 
shows the presence in the cell wall of compounds 6 and / or 
7, and 7 and/or 8, respectively. Although it is not possible 
to assess which of these three dehydrodiferulates (6,7, or 8 )  
are present in the cell walls, a11 of the three compounds are 
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Table 1. Main phenolic acids associated with pine hvpocotvl cell walls identified bv full-scan GC-MS of their TMS derivatives 

Phenolic Acid 
RRTa 
(SA) 

RRT 
(DFA) 

Major lons (relative abundance) 

cis-Ferulic acid 

trans-pcoumaric acid 
trans-Ferulic acid (1 )b 

8,8-Diferulic acid (1 1 )b 

8,8-Diferulic acid ( l O ) b  

8,5-Diferulic acid (9)b 
FA-FA I 

FA-FA I I  

0.74 

0.75 
0.88 

1.5 

1.6 

1.73 
1.61 

1.74 

0.35 

0.36 
0.43 

0.76 

0.77 

0.84 
0.78 

0.81 
. .. 

a RRT, Relative retention time to sinapic acid (SA) and 5,5-diferulic acid (DFA). Compound number as referred to in Figure 1. 

formed through an 8,8-dimerization mechanism (Ralph et 
al., 1994). It seems clear that of the five possible types of 
dimerization, only two, the 8,5 and 8,8 coupling, are oper- 
ative in pine hypocotyl cell walls. 

However, the 5,5-coupled dehydrodiferulate commonly 
reported for monocot and dicot cell walls has not been 
found in our material. The absence of 5,5-coupled diferulic 
acid cannot be caused by its destruction during the extrac- 
tion and derivatization procedure, because when it was 
exogenously added to wall preparations its TMS derivative 
was detected by GC-MS (data not shown). 

Two stereocyclodimers of ferulic acid were also tenta- 
tively identified. These compounds had similar mass spec- 
tra and showed the same major ions as the mass spectrum 
of the TMS derivative of trans-ferulic acid. The ratios of the 
relative quantities of m/z  338 to 308 and 249 to 219 of both 
isomers I and I1 were 3.1, 2.8 and 1.4, 1.34, respectively. 
These high ratios indicate that these compounds are FA-FA 
dimers (head-to-tail dimerization) (Ford and Hartley, 1989; 
Hartley et al., 1990b). These stereodimers were named 
FA-FA I and FA-FA I1 by their retention times. Truxillic 
acids have been reported as wall components for Gra- 
mineae (Hartley et al., 1990a) and Leguminosae (Eraso and 
Hartley, 1990) walls, but they have not yet been reported 
for other taxonomic groups. It has been suggested that such 
dimers are produced in vivo by photodimerization (Hart- 
ley et al., 1988, 1990b), but its presence in walls of etiolated 
pine seedlings suggests that light might not be necessary 
for its cyclodimerization, at least in our experimental 
material. 

The quantitative analysis of the phenolic acids associated 
with pine cell walls and their changes with hypocotyl age, 
as well as along the hypocotyl axis, was also performed 
using GLC equipped with a flame-ionization detector. The 
amount of ferulic acid ester linked to wall components, 
probably pectins (Fry, 1982), did not show significant dif- 
ferences with hypocotyl age, at least as expressed on a 
cell-wall dry weight basis (Fig. 2). Thus, it seems that the 
ferulic acid incorporation to wall polymers is balanced 
with the synthesis of new polymers. A similar situation 

was found when its content was studied along the hypo- 
cotyl, with the exception of the basal region, where its 
content was much higher (Fig. 3). This increase in the 
amount of ferulic acid ester linked to the wall components 
in the basal region, which has already ceased to grow 
(Lorences et al., 1990), might be caused by wall differenti- 
ation. The amount of p-coumaric acid released from the cell 
wall was low and did not present any important change 
with hypocotyl age or along the hypocotyl axis. 

However, the situation in the dehydrodiferulate compo- 
nents was different, with the most conspicuous changes 
being in the 8,8-coupled dehydrodiferulic acid, compound 
11. This dehydrodiferulic acid increased with hypocotyl 
age (Fig. 2) as well as from region I through region IV (Fig. 
3). Compound 10 (8,8-dehydrodiferulate) was detected 
only in the basal region of 10-d-old hypocotyls (Fig. 3). Its 
amount in the whole hypocotyl increased from d 10 to d 16 
(Fig. 2). Compound 9 (8,5-dehydrodiferulate) was detected 
only in 13- and 16-d-old hypocotyls (Fig. 2). Although the 
diferulic content of cell walls appears to be somewhat low, 
Neukom (1976) suggested that even low levels would be 
enough to cause appreciable cross-linking of wall polysac- 
charides, modifying wall extensibility (Wallace and Fry, 
1994). In fact, if the amount of dehydrodiferulic acid ester 
linked to pine cell walls (Figs. 2 and 3) is compared with 
the changes in growth capacity of pine hypocotyls with age 
(Lorences and Zarra, 1986) and along the hypocotyl axis 
(Lorences et al., 1990), an inverse relationship is found. 
Thus, it seems feasible that the formation of dehy- 
drodimers between feruloyl residues ester linked to pectic 
polymers increases wall cross-linking, decreasing cell-wall 
capacity for extension. This mechanism has been proposed 
for dicots (Fry, 1986) and monocots (Kamisaka et al., 1990) 
through the formation of 5,5-dehydrodiferulic bridges. 
However, the absence of the 5,5-coupled dehydrodiferulate 
in pine hypocotyl cell walls and the presence of the other 
dehydrodiferulates, mainly 8,8-coupled, leads to the idea 
that the 8,8-coupled dehydrodimers must be the main 
agent responsible for such cross-linking. Furthermore, 
the presence of different dehydrodiferulates in greater 
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Figure 1. General chemistry of formation and saponification of dehydrodiferulates detected in pine hypocotyl cell walls. 
Dimerization of ferulate esters via phenoxy radical 2 gives intermediates 3 and 4, which react in the cell wall to form 
dehydroferulate esters 5 to 8. During chemical analysis involving saponification and HCI acidification, esters 5 to 8 are 
converted to dehydrodiferulic acids 9 to 11. Only 8,5- and 8J-dimerization involved in the formation of intermediates 3 and 
4 are shown. Reagents and conditions are as follows: i, peroxidase; ii, NaOH; iii, HCI. (Adapted from Ralph et al., 1994.) 
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Figure 2. Changes in the amount of hydroxycinnamic acids released 
by alkali extraction from cell walls with pine hypocotyl age. A, 
Monomeric hydroxycinnamic acids; B, dimeric hydroxycinnamic 
acids. O, cis + trans-Ferulic acid; O, p-coumaric acid; O, compound 
11  ; W, compound 1 O; A, compound 9; A, FA-FA I ;  and V, FA-FA II. 

amounts than the 5,5-coupled ones in grass cell walls 
(Ralph, 1994) is in agreement with that hypothesis. 

Peroxidase Activity 

Biochemical interest in hydroxycinnamic acids ester 
linked to wall polysaccharides is due to the fact that they 
apparently undergo oxidative coupling in vivo to yield 

500 

375 

2 
c 

ICI 250 

a CI 

125 

50 

2 - 
25 lw 

W 1 

I II 111 IV I II 111 IV 

Region Region 

Figure 3. Phenolic acids released by alkali extraction from cell walls 
of different hypocotyl regions. Ten-day-old pine hypocotyls were 
divided into four  5-mm regions and named I,  II, 111,  and IV, as the 
distance from t h e  cotyledonary node increased. A, Hydroxycinnamic 
acids; B, dehydrodiferulic acids. O, cis + trans-Ferulic acid; O, 
p-coumaric acid; O, compound 11 ;  W, compound 1 O; A, FA-FA I ;  
and V, FA-FA II. 

cross-linked polysaccharides. Such cross-linking is thought 
to decrease extensibility of cell walls, leading to the cessa- 
tion of cell growth. The oxidative coupling was carried out 
by peroxidases associated with plant cell walls (Wallace 
and Fry, 1994). The peroxidase activity associated with 
pine hypocotyl cell wall as a possible agent responsible for 
ferulic acid dimerization was also studied. Peroxidase ac- 
tivity against ferulic acid has been found to be associated 
with pine cell walls to different extents, freely soluble in 
the apoplastic fluid, as well as ionically and covalently 
bound to cell walls (Figs. 4 and 5). Most of the peroxidase 
activity was present in the covalent fraction, whereas the 
lowest activity was found in the apoplast fluid. The perox- 
idase activity in the three fractions, apoplastic and ionically 
and covalently bound, increased with hypocotyl age (Fig. 
4) and as hypocotyl growth decreased (Lorences and Zarra, 
1986; Sánchez et al., 1995). When the peroxidase activity 
was studied along the hypocotyl axis, its activity in the 
three fractions increased from the subapical (11) through 
the basal region (Fig. 5). Because the growth capacity de- 
creased from the apical to the basal region of the hypocotyl 
(Lorences et al., 1990), it is possible to assume a negative 
relationship of peroxidase activity toward ferulic acid and 
growth capacity. A similar relationship between peroxi- 
dase and growth along the plant axis (Goldberg et al., 
1987), as well as with plant age (Valer0 et al., 1991), has 
already been proposed for dicot axes, suggesting a role for 
peroxidases in the cell-wall stiffening. Furthermore, the 
ability of pine peroxidases to catalyze wall cross-linking 
through ferulic acid esterified to polysaccharides has al- 
ready been shown (Whitmore, 1976). 

CONCLUSIONS 

We have presented evidence that dimerization of ferulic 
acid in pine hypocotyl cell walls takes place primarily 
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Figure 4. Changes in peroxidase activity with hypocotyl age. Shown 
are apoplastic (O), ionically bound (O), and covalently bound (A) 
peroxidase activities. Values shown are means of three different 
experiments. 
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Figure 5. Changes in peroxidase activity along the hypocotyl axis. 
Shown are apoplastic (O), ionically bound (O), and covalently bound 
(A) peroxidase activities. Values shown are means of three different 
experiments. 

through 8,8- and 8,5-coupling mechanisms a n d  not  through 
5,5, as has been proposed for other higher plants. The 
capacity of peroxidases associated with pine cell walls to  
oxidize ferulic acid and the inverse relationship found 
between the content of ester-linked dehydrodiferulates 
(mainly 8,8 coupled) a n d  growth capacity strongly support  
dimerization of ester-linked feruloyl a s  an important factor 
in the wall stiffening, causing growth cessation. 
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