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Rumex palustris, a flooding-tolerant plant, elongates its petioles 
in response to complete submergence. lhis response can be partly 
mimicked by enhanced ethylene levels and low O, concentrations. 
High levels of CO, do not markedly affect petiole elongation in R. 
palustris. Experiments with ethylene synthesis and action inhibitors 
demonstrate that treatment with low O, concentrations enhances 
petiole extension by shifting sensitivity to ethylene without chang- 
ing the rate of ethylene production. l h e  expression leve1 of the R. 
palustris gene coding for the putative ethylene receptor (RP-fRS7) is 
up-regulated by 3% O, and increases after 20 min of exposure to a 
low concentration of O,, thus preceding the first significant in- 
crease in elongation observable after 40 to 50 min. In the flooding- 
sensitive species Rumex acetosa, submergence results in a different 
response pattern: petiole growth of the submerged plants is  the 
same as for control plants. Exposure of R. acetosa to enhanced 
ethylene levels strongly inhibits petiole growth. This inhibitory ef- 
fect of ethylene on R. acetosa can be reduced by both low levels of 
O, and/or high concentrations of CO,. 

Some aquatic and amphibious plant species respond to 
complete submergence with stimulated elongation of shoot 
organs. This adaptive reaction allows the survival of these 
plants in habitats with sustained high water levels by re- 
establishing contact with the aerial environment (Van der 
Sman et al., 1991,1993). The O, status of the roots improves 
as shoots emerge from the water (Armstrong et al., 1994). 
At the same time, root-growth-inhibiting amounts of the 
gaseous plant hormone ethylene that had accumulated in 
flooded roots can be vented off (Visser et al., 1997). 

Ethylene plays a key role in stimulated shoot elongation 
in many wetland plants; however, other plant hormones 
and gases also affect this submergence response (Ridge, 
1987; Voesenek and Blom, 1997). Apart from ethylene, 
stimulated shoot elongation also depends on the presence 
of auxin (Horton and Samarakoon, 1982) or GAs (Raskin 
and Kende, 1984a). Studies of the effect of gases other than 
ethylene on stimulated shoot elongation showed that the 
promotive action of O, and CO, on elongation operated 
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independently of each other and of ethylene (Raskin and 
Kende, 1983; Pearce et al., 1992; Nishizawa and Suge, 1995). 
Others, however, demonstrated an effect of O, and CO, on 
the tissue sensitivity toward ethylene (Suge and Kusanagi, 
1975; Horton, 1991). In internodes of deepwater rice low 
levels of O, stimulated elongation via an increased produc- 
tion rate of ethylene (Raskin and Kende, 1984b; Cohen and 
Kende, 1987). 

The genus Rumex is used as a model system to explain 
the distribution patterns of plants in river floodplains, 
which are characterized by regular floods even in the 
growing season (Blom and Voesenek, 1996). Rosettes of 
wetland Rumex sp., such as Rumex palustris, accommodate 
to complete submergence by stimulated petiole elongation. 
This petiole response requires ethylene and GA (Voesenek 
and Blom, 1989; Rijnders et al., 1997). Continued ethylene 
production and physical entrapment of the gas causes a 
100-fold increase in the endogenous ethylene concentration 
in R. palustris within 24 h of submergence (Voesenek et al., 
1993a; Banga et al., 1996b). However, an enriched ethylene 
atmosphere could only mimic 80% of the submergence- 
induced petiole growth in R. palustris. 

Submergence of the flooding-intolerant species Rumex 
acetosa resulted in a completely different petiole response. 
In this species petiole growth of the submerged plants was 
the same as that of control plants in air (Voesenek and 
Blom, 1989). Submergence, however, induced entrapment 
of ethylene to similar levels as in R. palustris (Voesenek et 
al., 1993a). Exposure of R. acetosa to elevated concentrations 
of ethylene resulted in the classical response of terrestrial 
plants: a reduction of elongation growth (Voesenek and 
Blom, 1989; Voesenek et al., 1996). We hypothesize that the 
discrepancies between submergence experiments and eth- 
ylene exposures in both Rumex sp. are related to the atmo- 
spheric concentrations of O, and/or CO, used during the 
ethylene-exposure experiments. 

While testing this hypothesis we found that low O, 
concentrations stimulated petiole elongation in the 
flooding-tolerant R. palustris and that this response was 
ethylene dependent. Low concentrations of O, sensitized 
the petiole tissue to ethylene, and this increase in respon- 

Abbreviations: AVG, L-a-(2-aminoethoxyviny1)-Gly; NBD, 2,5- 
norbornadiene. 
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siveness was preceded by an increase in the expression 
level of a gene coding for the putative R. palustris ethylene 
receptor. Ethylene inhibited petiole elongation in the 
flooding-intolerant R. acetosa. This effect of ethylene could 
be counteracted by low concentrations of O, and high 
concentrations of CO,. 

MATERIALS A N D  METHODS 

Plant Material and Cas Treatments 

Experiments were performed with small seedlings of 
Rumex acetosa and Rumex palustris that had four or five 
leaves. Plants were grown in climate-controlled rooms 
from seeds that were collected locally from field popula- 
tions. Unless otherwise stated, plants were raised under the 
temperature and light conditions described by Voesenek 
and Blom (1989). 

The impact of low O, (3%) and high CO, (50/,) concen- 
trations on petiole elongation of R. acetosa and R. palustris 
in the presence and absence of ethylene (5 pL L-') was 
studied. The appropriate gas mixture was flushed contin- 
uously (flow rate, 10 L h-') through airtight desiccators 
with a volume of approximately 10.8 L. The inlet tube 
bubbled the gas mixture through a thin layer of water at 
the bottom of the desiccator to maintain a high RH. Seed- 
lings in 70-mL pots filled with a mixture of sand and 
potting compost (l:l, v /v)  were placed in the desiccators 
and exposed during the gas experiment to a PPFD of 100 to 
120 pmol m-'s-' (daylength, 16 h) (TLD 36W/84 bulbs, 
Philips, Eindhoven, The Netherlands). 

The gas treatment experiment lasted 96 h, with nine 
replicates used per desiccator and per gas mixture. Before 
and after the experiment the length of the youngest petiole 
was measured. Three gases, ethylene (O versus 5 pL L-I), 
O, (3 versus 21%), and CO, (0.03 versus ~ Y o ) ,  were used, 
resulting in a total of eight treatments. The effects of these 
gas treatments were compared with the elongation occur- 
ring in plants belonging to the same batch (n  = 9) that had 
been submerged in tap water for 96 h under the same light 
regime as the gas experiment. 

To produce O, concentration-response curves for both 
species, the soil was gently washed from the seedling roots 
and the plants were placed individually in 40-mL glass 
vials filled with tap water. The seedlings were kept in 
position with a rubber stopper that clamped the root-shoot 
junction just above the water level. The seedlings and vials 
were prepared the day before the experiment started to 
avoid interference of handling-induced ethylene produc- 
tion. The next day vials containing the seedlings were 
placed in desiccators and the required O, concentration 
was installed with gas blenders (HI-TEC model E55N3, 
Bronkhorst, Ruurlo, The Netherlands). The gas inlet and 
outlet were then closed and the O, concentration was 
checked at least twice a day with a gas chromatograph 
(Chrompack CP-9000, Bergen op Zoom, The Netherlands) 
fitted with a column-switching valve connected to a Pora- 
pack QS column (length, 150 cm), a Molsieve 5A column 
(length, 200 cm), and a TCD 903 detector (Chrompack). 

These O, measurements were used to calculate a mean 
O, concentration that was plotted against petiole growth. 
Experiments lasted 48 h and were performed with eight 
replicates, and the petiole length of the youngest leaf was 
measured just before and after the start of the experiment. 
This O, experiment was performed in a growth chamber 
with a temperature of 20°C and a PPFD of 100 pmol mP2 
s-' (daylength, 16 h). 

Ethylene lnhibitors 

To answer the question of whether the low-concentration- 
O,-induced stimulation of petiole growth in R. palustris re- 
quires the presence of ethylene, inhibitors of ethylene syn- 
thesis and action were applied under low-concentration-O, 
conditions. Seedlings of R. palustris were prepared as men- 
tioned for the O, concentration-response experiment. In this 
experiment 10-mL vials filled with glass beads and 6 mL of 
a 5 mM potassium phosphate buffer, pH 6.0, were used. 
Ethylene biosynthesis was inhibited by 0.2 mM AVG, and 
ethylene action was inhibited by 5000 pL L-l NBD. AVG 
was applied to the buffer solution in the vials at least 16 h 
prior to the start of the experiment; NBD was injected into 
the desiccators just before the onset of the experiments. Both 
AVG and NBD were applied to seedlings (n = 8) exposed to 
21 and 3% O,. The specificities of AVG and NBD were tested 
by applying 1 mM ACC and 10 pL L-l ethylene, respec- 
tively. This experiment was performed in a growth chamber 
with a temperature of 20°C and a PPFD of 100 pmol m-'sC1 
(daylength, 16 h). 

Ethylene Production and Leaf Crowth 

The effect of a low concentration of O, on the ethylene 
production rate and leaf growth of R. palustris was moni- 
tored simultaneously on the same individual plants. To 
achieve this, a special cuvette (Voesenek et al., 1997) was 
connected to a flow-through system that ventilated the 
shoot compartment at a rate of 2 L h-' with ethylene-free 
air. The roots were adjusted in a separate compartment in 
which a well-aerated nutrient solution circulated. The eth- 
ylene concentration was measured every 1 min in the out- 
flowing air of the shoot compartment with laser-driven 
photoacoustic spectroscopy (Harren et al., 1990; Voesenek 
et al., 1997). The ethylene concentration was multiplied by 
the applied flow rate to calculate ethylene production (nL 
h-' shoot-I). Growth of the youngest leaf (petiole and leaf 
blade) was measured with a linear-variable displacement 
transducer (type ST 2000, Schlumberger Industries, Bognor 
Regis, UK). A stainless steel wire with a diameter of 0.1 mm 
connecting the leaf tip to the transducer entered the plant 
cuvette through a "water seal" filled with a saturated so- 
lution of ammonium sulfate. 

Ethylene production and growth were measured in a 
light and dark regime of 16 and 8 h, respectively. The 
experiments were performed in a controlled environment 
with a temperature of 20°C and a PPFD inside the cuvette 
of approximately 100 pmol mC2 s-' (daylength, 16 h). 
During the first 48 h of an experiment the shoots were 
exposed to a 21% O, concentration. Hereafter, the O, level 
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in the flowing air passing the shoot was changed to 3% 
without opening the cuvette or handling the plant. In a 
separate experiment AVG was added to the nutrient solu- 
tion of the root compartment to give a concentration of 0.05 
mM at the onset of the experiment. 

Ethylene Sensitivity 

To test whether subambient O, concentrations induce a 
shift in the ethylene sensitivity of R. palustris, defined as the 
petiole growth response to applied ethylene, a concentration- 
response experiment was carried out at 21 and 3% O,. Seed- 
lings of R. palustris were prepared as in the ethylene-dubitor 
experiment. To avoid interference of endogenously produced 
ethylene, AVG was added at least 16 h prior to the start of the 
experiment to the root solution to achieve a concentration of 
0.2 mM. Ethylene concentration treatments were applied in 
desiccators filled with either 3 or 21% O, by injecting pure 
ethylene to obtain the required concentrations. Ethylene was 
checked at least twice a day with a gas chromatograph 
(Chrompack model437A, Bergen op Zoom) with a Hayesep 
N column (length, 100 cm; Chrompack) and a flame ioniza- 
tion detector; O, and CO, were checked with the gas chro- 
matograph. 

In daylight photosynthesis reduced the CO, concentra- 
tions significantly within a few hours. A separate experi- 
ment with a flow-through system demonstrated that this 
strong reduction did not affect the ethylene sensitivity of 
the petioles (data not shown). To obtain a concentration- 
response curve, the mean ethylene concentration calculated 
from the ethylene checks was plotted against the length 
increase of the youngest petiole after 48 h. The experiment 
was performed with seven replicates per ethylene concen- 
tration in a growth chamber with a temperature of 20°C 
and a PPFD of 100 Fmol m-' s-' (daylength, 16 h). 

Kinetics of Low-Concentration-O,-Induced Growth 
Stimulation and Ethylene-Response Sensor Expression 

Two experiments were carried out to compare the kinetics 
of the low-concentration-O,-induced stimulation of petiole 
growth with the kinetics of the expression of the ethylene- 
response sensor gene (RP-ERS1) in R. palustris. Seedlings 
were prepared as described for the O, concentration- 
response curves. 

For the first experiment one individual plant was placed 
in a glass cuvette with approximately 600 mL. The leaf tip 
of the youngest full-grown leaf (leaf number 4) was con- 
nected to a linear displacement transducer to monitor elon- 
gation continuously. The stainless steel wire (0.1 mm) join- 
ing the leaf tip with the transducer entered the top of the 
cuvette via a 0.2-mm hole. After a few hours of growth in 
a 21% O, gas mixture, a mixture containing 3% O,, 0.03% 
CO,, and 97% N, was flushed into the cuvette at a rate of 
20 L h-l. During the shift in gas composition an extra gas 
outlet was created in the cuvette by opening a small valve. 
Gas was sampled every 2 min with a syringe and injected 
into the gas chromatograph to quantify the change in O, 
concentration. Within 5 min after the onset of the switch 

the O, concentration had declined to 3% (data not shown). 
After 10 min the 3% O, gas flow was reduced to 1.5 L h-'. 

In the second experiment seven desiccators were filled 
with 15 seedlings each and flushed with air before closure. 
Hereafter, the desiccators were placed in an airtight glove 
box (model 1029, Forma Scientific, Marietta, OH) with a 
gas-blender (modelOl52, Brooks Instruments, Veenendaal, 
The Nether1ands)-installed gas mixture of 2% O, and 98% 
N,. The experiment started with the opening of the seven 
desiccators by lifting their tops. The gas mixtures from the 
desiccators diffused into the glove box and resulted in a 
very fast change to a new equilibrium concentration of 3% 
O,. With the aid of a lock, desiccators were removed from 
the glove box after O, 20, 40, 60, 120, 240, and 360 min. 
Within 3 min the youngest full-grown petiole of 15 plants 
was cut from the shoot (total fresh weight, approximately 
200 mg) and frozen in liquid N,. This petiole tissue was 
used for RNA extraction. 

RP-ERS1 was isolated with an ETRl probe from Arabidopsis 
thaliana from a cDNA library derived from the two youngest 
leaves (petioles and leaf blades) of R. palustris plants that had 
been submerged for 24 h (Vriezen et al., 1997). 

Total RNA was isolated by homogenizing 200 mg of 
tissue from the youngest full-grown petiole in 2 mL of 
extraction buffer (100 mM Tris-HC1, pH 8.0, 50 mM EDTA, 
1% SDS, 0.1 M NaC1, 50 mM p-mercaptoethanol, and 1% 
Tri-isopropylnaphthalene sodium salt [Kodak]) (Goldberg 
et al., 1981) and an equal volume of phenol (Tris- and 
EDTA-saturated, pH 8.0) with a 10-mL glass-Teflon ho- 
mogenizer. After the homogenized mixture was trans- 
ferred to a centrifuge tube and incubated for 10 min at 
60"C, 2 mL of ch1oroform:isoamyl alcohol(49:l) was added 
and vortexed for 20 s; it was then centrifuged at 3000g at 
4°C for 20 min and the aqueous phase was extracted with 
2 mL of pheno1:chloroform:isoamyl alcohol (50:49:1) until 
no interface remained. RNA/DNA was precipitated with 
ethanol (1 h, -20°C) and separated with an additional2 M 

LiCl precipitation overnight at 4°C. 
Total RNA was separated on a 1% agarose gel containing 

0.4 M formaldehyde and 0.1 pg mL-' ethidium bromide. 
After electrophoresis the gel was inspected by UV expo- 
sure and photographed to check the amounts of RNA 
present in each lane. RNA was transferred overnight to a 
nylon membrane by capillary transfer in 20X SSC. RNA 
was fixed to a Hybond-N nylon membrane according to the 
directions of the manufacturer (Amersham). The mem- 
brane was prehybridized for 4 h and hybridized overnight 
at 62°C with a solution containing 6X SSC, 5X Denhardt's 
reagent, 0.1% SDS, and 100 mg mL-l denaturated, frag- 
mented salmon sperm DNA. Probes were labeled in low- 
melting-point agarose with [ ( U - ~ ~ P I ~ A T P  by the random- 
priming method (Church and Gilbert, 1984). Hereafter, the 
membrane was washed two times in 2~ SSC plus 0.1% SDS 
at 65°C for 15 min each and two times in 0 . 2 ~  SSC plus 
0.1% SDS for 15 min. 

Statistical Analysis 

The gas treatment experiment was performed twice. The 
two similar data sets were pooled before analyses. This 
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total data set was analyzed with a three-way analysis of 
variance (SAS Institute, 1989) per species to determine the 
main effects and interactions between gases (ethylene, O,, 
and CO,). Since the initial length of the petiole can have an 
effect on the elongation response, we included initial pet- 
iole length as a co-variate in the analysis of variance. 

A nonlinear regression method (SAS Institute, 1989) cal- 
culated ethylene concentration-response curves for both O, 
concentrations. The response ( R )  at a given ethylene con- 
centration ( H )  is described by the following equation (Peng 
and Weyers, 1994): 

R palustris No C2H4 
Wlth C,H, 

tZZ2 Submerged 

where Rmin is the minimum response, R,,, is the maxi- 
mum response, [H],, is the hormone concentration giving a 
response of 0.5 X ([R,,, - Rmin] + [Rmi,,]), and p is the 
interaction of the Hill coefficient. 

General assumptions for this model were formulated by 
Weyers et al. (1987). More specifically, in our experiments 
it is assumed that p equals 1 (Banga et al., 1996a). It was 
emphasized by Weyers et al. (1987) that X should be the 
initial rate of response to avoid (a) the consequences of 
feedback effects that may affect the rate of response, (b) the 
interference of unknown factors that might limit the overall 
response, and (c) a possible change in the transduction 
process during the experiment. In an attempt to measure 
the initial growth response of the youngest leaf of R. palus- 
tris exposed to various exogenous ethylene concentrations 
with linear displacement transducers, it was concluded 
that the initial response depended not only on the applied 
ethylene concentration but also strongly on the stage of 
development of a leaf and the growth rate before the 
addition of ethylene (data not shown). Based on these 
experiments we decided to use petiole growth over a span 
of 48 h as a response unit, since in this relatively long span 
of ethylene exposure the effects of stage of development 
and growth rate before ethylene exposure are negligible. 

The kinetics of 3% O,-induced petiole elongation was 
analyzed with analysis of variance (SAS Institute, 1989) for 
each time, with O, treatment (3  versus 21%) as the main 
effect. Comparison of means was performed with pairwise 
t tests to obtain LSD. 

RESULTS 

Low O, and High CO, 

The effects of various combinations of ethylene, O,, CO,, 
and submergence on petiole growth of R. palustris and R. 
acetosa are presented in Figure 1. The three-way analysis of 
variance per species is given in Table I. 

High ethylene and low O, concentrations significantly 
stimulated petiole elongation in R. palustris, whereas high 
levels of CO, reduced petiole growth slightly (Fig. 1). 
However, in contrast to the ethylene and O, effects, only a 
very limited amount of variance could be explained by CO, 
(Table I). The increase in petiole growth of R. palustris upon 
exposure to a low O, concentration was larger in the ab- 
sence than in the presence of ethylene (Fig. 1). In the 
statistical analysis this is expressed as a significant interac- 
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Figure 1 .  Elongation of the youngest petiole (n  = 18; means t SE) of 
R. palustris and R. acetosa in response to different gas mixtures and 
su bmergence. 

tion between O, and ethylene (Table I). High ethylene 
levels with ambient concentrations of O, and CO, mim- 
icked only 80% of the submergence response in R. palustris. 
However, when ethylene was added with low levels of O, 
petiole growth was more strongly stimulated than under 
submerged conditions (Fig. 1). 

A high ethylene concentration inhibited petiole growth 
in R. acetosa, whereas a promotion of petiole growth was 
observed during exposure to a high CO, concentration 
(Fig. 1; Table I). The ethylene-induced inhibition of petiole 
growth in R. acetosa was reduced in the presence of low O, 
and/or high CO, concentrations (Fig. 1). In the statistical 
analysis this is expressed as significant interactions be- 
tween ethylene and O, and between ethylene and CO, 
(Table I). High concentrations of ethylene applied to R. 
acetosa in a gas mixture with ambient O, and CO, levels 
inhibited petiole growth much more strongly than submer- 
gence. The best mimic of the submergence effect was ex- 
posure to 5 FL Lpl ethylene, 5% CO,, and 21% O, (Fig. 1). 

The O, concentration-response curve of R. palustris 
showed a stimulation of petiole growth in the subambient 
concentration range between 2 and 11% O, (Fig. 2). Petiole 
growth in R. acetosa decreased with the decline in the O, 
concentration. Another marked difference between the two 
species was the very slow petiole growth of R. acetosa when 
exposed to 0.3% O,. At the same O, concentration R. palus- 
tris had a growth rate identical to that observed at 21% O,. 

Ethylene Dependence of the 
Low-O,-Concentration-Induced Elongation 

The ethylene-biosynthesis inhibitor AVG inhibited peti- 
ole growth in R. palustris plants exposed to 21 and 3% O, 
(Fig. 3) .  At both O, concentrations AVG treatment resulted 
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Table I .  Analysis of variance of gas treatments 
Three-way analysis of variance of petiole growth of R. palustris and R. acetosa (type 111 MS) exposed 

for 4 d to various combinations of ethylene (E),  oxygen (O), and carbon dioxide (C). lnitial petiole length 
is included for both species as a co-variate. F, Statistic; MS, mean square. 

Source of Variance 

lnitial length 
E 
O 

E X O  
E X C  
o x c  
E X O X C  
Error 

R. palustris R. acetosa 

df MS F 

1 22.5 0.5 
1 
1 
1 
1 
1 
1 
1 

134 

44,929.4 1 062.3a 
19,054.9 450.5a 

21 1.5 5 .Oc 
227.4 3.4‘ 

60.7 1.4 
121.1 2.9 

0.2 O 
42.3 

df 

1 
1 
1 
1 
1 
1 
1 
1 

135 

MS 

7990.8 
9932.4 

20.5 
7553.2 
3964.6 
2828.5 

8.2 
126.7 
249.8 

F 

32.0” 
39.EÍa 

0.1 
30.2“ 
15.9” 
11 .3h 

O 
0.5 

a P < 0.001, P < 0.01. P < 0.05. 

in a similar amount of remaining growth. The addition of 
ACC, the immediate precursor of ethylene in its biosyn- 
thetic pathway, with AVG restored the original 3% induced 
stimulation of petiole growth completely. 

The ethylene action inhibitor NBD did not inhibit petiole 
growth at the ambient O, concentration but reduced the 
increase in petiole growth at 3% O, completely (Fig. 3). 
Simultaneous addition of NBD and ethylene restored the 
original 3% growth response partially. 

These inhibitor studies demonstrate that in R. palustris 
subambient O, concentrations stimulate petiole growth in- 
directly via the plant hormone ethylene. 

Ethylene Production and Sensitivity 

The ethylene release from shoots of R. palustris showed a 
clear day-night rhythm, especially during exposure to air. 
The highest release was observed during the day (Fig. 4A). 
A slightly higher growth rate of the youngest leaf (petiole 
and leaf blade) was observed during darkness, especially 
during the first night. The shift to 3% O, did not result in 
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O 5 10 15 20 25 
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Figure 2. Elongation of t he  youngest petiole (n = 8; means ? SE) of 
R. palustris and R. acetosa in  response to a range of O, concen- 
trations. 

an increase in ethylene release during the light period. 
However, 3% O, did stimulate ethylene release during 
darkness, especially in the second night. Leaf growth was 
strongly stimulated shortly after the switch to 3% O,. The 
circadian rhythm in the rate of leaf growth was reversed 
compared with the 21% O, period; the fastest growth was 
observed during the day (Fig. 4A). 

The addition of AVG reduced the release of ethylene in 
R. palustris by approximately 30 and 40% during the day 
and night, respectively, but did not change the circadian 
character of the ethylene release (Fig. 4). The low O, leve1 
only stimulated the ethylene release slightly during the 
second night of exposure. Leaf growth under 21 and 3% O, 
was dramatically reduced in the AVG-treated plant, al- 
though a slight stimulation of leaf growth was observed 
shortly after the onset of the 3% O, treatment (Fig. 4B). 

The ethylene concentration-response curves of R. palus- 
tris during exposure to 21 and 3% O, are presented in 
Figure 5. The [H]50 of 0.26 +- 0.12 pL L-’ ethylene during 

200 T T 

21% 21% 21% 3% 3% 3% 3% 3% 
AVG AVG NBD NBD AVG NBD 

ACC ‘ZH4 

Figure 3. Elongation of the youngest petiole (n  = 8; means t SE) of 
R. palustris in an atmosphere containing 21 or 3% O, in the presence 
and absence of the ethylene biosynthesis inhibitor AVC (0.2 mM) or 
the ethylene action inhibitor NBD (5000 p L  L-’). The specificities of 
AVC and NBD were tested by applying 1 mM ACC and 10  p L  L-’ 
ethylene, respectively. The  petiole growth under  21% O, was set at 
100°/o and had an absolute value of 5.9 2 1 .O mm. 
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Figure 4. Ethylene release and elongation of the youngest leaf mon- 
itored simultaneously on the same R. palustris plant in the absence 
(A) and presence (B) of 0.05 mM AVG, the ethylene biosynthesis 
inhibitor. The first 2 days and nights of ethylene release and growth 
were measured on plants exposed to 21 % O,; afterward, the O, level 
was decreased to 3%. Ethylene release was measured almost con- 
tinuously with photoacoustic spectroscopy, whereas leaf growth was 
measured continuously with linear displacement transducers. The 
detailed experimental design of this experiment was described by 
Voesenek et al. (1996). Gray bars represent 8-h dark periods. 

ing growth under 21% O, but rapidly accumulated after 
exposure to 3% O,. This increase was transient, with max- 
imum expression after 2 h of 3% O, treatment. The first 
increase in RP-ERSZ mRNA was observed after 20 min, 
thus preceding the first significant increase in the growth 
rate of the youngest full-grown petiole (Fig. 6). 

DlSCUSSlON 

Enhanced levels of the gaseous plant hormone ethylene 
and low O, levels both stimulate petiole elongation in the 
wetland plant R. palustvis. Both gases are required to mimic 
the petiole response induced by submergence. High levels 
of CO, have no effect on petiole growth in R. palustvis 
(Fig. 1). 

A stimulation of elongation growth by reduced O, con- 
centrations is also observed in coleoptiles of rice (Ovyza 
sativa) (Raskin and Kende, 1983; Satler and Kende, 1985; 
Horton, 1991; Pearce and Jackson, 1991), internodes of 
deepwater rice (O. sativa cv Habiganj Aman 11) (Raskin and 
Kende, 1984b), and stems of Potamogeton pectinatus (Sum- 
mers and Jackson, 1993). In the first two examples and in R. 
palustvis simultaneous addition of low O, and ethylene 
concentrations resulted in even faster elongation. In R. 
palustris fast growth and thus a quick restoration of contact 
with the aerial environment is most important under 0,- 
limiting conditions. This occurs under natural conditions 
when plants are submerged in turbid water and, therefore, 
produces little photosynthetic O,. 

Under less-turbid conditions photosynthetically derived 
O, improves not only the O, status of the whole plant 
(Laan and Blom, 1990; Voesenek et al., 199313) but also 
increases its chances of survival considerably (Laan and 
Blom, 1990; Blom et al., 1994). A lower petiole elongation 

21% O, decreased to 0.04 2 0.02 FL L-' ethylene during 
exposure to 3% O,. During 48 h of treatment with a low 
concentration of O, no significant change in the maximum 
petiole growth (Rmax) was observed. 

In conclusion, 3% O, induced in R. palustvis a fast in- 
crease in petiole growth that was not related to changes in 
the production level of ethylene but was related to at least 
a 6-fold increase in the ethylene sensitivity, expressed as 
[H]50, of the youngest petiole. 

Kinetics of Elongation and Ethylene Response 
Sensor Expression 

The transducer data were used to calculate growth rates 
of the youngest full-grown leaf (petiole and leaf blade) over 
intervals of 10 min (Fig. 6A). The growth rate increased 
significantly after 40 to 50 min of exposure to 3% O,. The 
maximum growth rate was reached after 80 to 90 min. 

The RP-ERSZ mRNA in the youngest full-grown petiole 
of R. palustris is positively regulated by low O, concentra- 
tions (Fig. 6B). RP-ERSZ mRNA was barely detectable dur- 
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Figure 5. Elongation of the youngest petiole of R. palustris in an 
atmosphere with 3 or 21% O, in response to a range of ethylene 
concentrations. Plants were pretreated with 0.2 mM AVG to avoid 
interference of endogenously produced ethylene. The concentration- 
response data were fitted with a nonlinear regression method accord- 
ing to an equation described by Peng and Weyers (1994). Both lines 
were highly significant with respect to the individual data points (21 % 
0,: F3,,,= 152.1 5***, 3 = 0.91; 3% 0 2 :  F,,32= 90.88***, ? = 0.90). 
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Figure 6. A, Growth rate (n = 5-6; means ± SE) during 10-min
intervals of the youngest full-grown leaves of R. palustris with (•) and
without (O) a switch to 3% O2. Within 5 min after the switch the O2

concentration was decreased to 3%. LSD values (P = 0.05) per time
point are included in the graph. B, Expression of the RP-ERS1 gene in
the youngest full-grown petiole of R. palustris exposed to 3% O2. The
blot was reprobed with 28S rRNA as a control for the loaded amount
of total RNA. The intensity percentages represent the RP-ERS1 tran-
script level relative to the highest signal detected and corrected for
the loaded amount of total RNA.

rate driven only by ethylene under these conditions would
be less harmful in terms of survival.

Both low O2 and high CO2 concentrations counteracted
the inhibitory effect of ethylene on petiole growth of R.
acetosa. When applied together their effects were additive
(Fig. 1). Comparable results were gained with pea (Pisum
sativum) seedlings (Burg and Burg, 1967; Beyer, 1979), in
which both low O2 and high CO2 concentrations were
thought to interfere with ethylene action via their effect on
the ethylene receptor site. Sanders et al. (1990) demon-
strated that ethylene binding in rice seedlings is not influ-
enced by CO2 and O2. The cyclo-olefin NBD, however, did
inhibit ethylene binding and stimulation of growth by eth-
ylene. It is concluded that for rice seedlings, and probably
also for petioles of R. acetosa, high CO2 and low O2 con-
centrations act independently of ethylene responses and
thus do not modulate elongation by altering ethylene re-
ceptor activity (Sanders et al., 1990). Complete submer-
gence of R. acetosa only slightly inhibited petiole growth.
However, ethylene in combination with ambient levels of
O2 and CO2 more strongly inhibited petiole growth. The

results presented in Figure 1 show that this difference in
response between submergence and ethylene application
in R. acetosa can easily be explained by variations in the
endogenous levels of CO2 and O2.

The simultaneous measurement of ethylene evolution
and growth of the youngest leaf allowed us to compare the
changes in ethylene release directly with petiole growth.
After the switch to 3% O2 no change in ethylene release was
observed during the day. However, in darkness 3% O2
induced an increase in ethylene release compared with the
release levels under ambient O2 concentrations (Fig. 4A).
Photosynthetic activity during the day probably increased
the endogenous O2 concentration in leaf blades and peti-
oles to levels higher than 3%. Darkness, however, probably
resulted in endogenous concentrations of approximately
3%. We conclude that in shoots of R. palustris O2 concen-
trations of approximately 3% stimulate ethylene produc-
tion. Such a stimulation of low O2 levels was earlier ob-
served in roots and stems of other plants (Jackson, 1982;
Metraux and Kende, 1983; Jackson et al., 1984; Brailsford et
al., 1993). In tomato (Lycopersicon esculentum) roots this
increase in ethylene production in response to low O2
levels is explained by an increased expression of an ACC
synthase gene, LE-ACS3 (Olson et al., 1995).

Because the highest growth rates of leaves exposed to 3%
O2 were observed during the day, we conclude that the
low-concentration-O2-induced stimulation of petiole elon-
gation in R. palustris is not related to an upsurge of the
ethylene production rate.

Low concentrations of O2 exert their stimulating effect on
the petiole elongation of R. palustris primarily via a sensi-
tization of the petiole tissue to ethylene (Figs. 3 and 5). This
shift in sensitivity is expressed by a reduction of the [H]50.
The concentration-response curve did not demonstrate an
increase in Rmax, although such a shift was expected based
on the results shown in Figure 1. This difference can be
explained by the short exposure (48 h) to low O2 and
ethylene concentrations in the concentration-response ex-
periment compared with the exposure time in the gas-
treatment experiment (96 h).

The kinetics of low-concentration-O2-stimulated growth
and the expression of the RP-ERS1 gene clearly demon-
strated that RP-ERS1 mRNA accumulated before a signif-
icant increase in growth was observed. Although only tran-
scription of the gene coding for an ethylene response
sensor is described, this observation indicates that in-
creases in ethylene sensitivity might simply be controlled
by an up-regulation of the number of receptor molecules.
During ripening, tomatoes increase their responsiveness to
ethylene dramatically. This, too, is accompanied by an
increased expression of the Never-ripe (NR) gene, a ho-
molog of the Arabidopsis gene coding for a putative eth-
ylene receptor (ERST.) (Wilkinson et al., 1995).

RP-ERS1 has a high homology with the Arabidopsis ERS
and with the tomato NR gene (Vriezen et al., 1997). In
contrast to ETR1, another Arabidopsis gene coding for an
ethylene receptor, all of these genes share the lack of a
response regulator domain, and RP-ERS1 and NR are the
only putative ethylene receptor genes so far described that
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are  developmentally and  environmentally regulated 
(Wilkinson et  al., 1995; Vriezen e t  al., 1997). 

It is not yet clear how the increase in N R  mRNA and 
tETR mRNA during fruit ripening, flower senescence, and  
flower abscission after ethylene exposure (Wilkinson e t  al., 
1995; Payton e t  al., 1996) and the accumulation of RP-ERSZ 
mRNA during flooding and exposure to high levels of 
ethylene a n d / o r  low concentrations of O, (Vriezen e t  al., 
1997) fit into one of the models of ethylene receptor func- 
tioning. This model assumes that the ethylene receptor 
protein is constitutively active i n  the absence of ethylene 
and negatively regulates the  transduction chain by activat- 
ing the CTRl protein. However, i n  the presence of ethylene 
both the ethylene receptor and the negative regulator CTRl 
are  turned off, consequently evoking ethylene responses. 
Ethylene changes the receptor-signaling activity from "on" 
to "off." In this model a n  increase i n  sensitivity can only be  
achieved by a reduction in the number of receptor mole- 
cules (Chang and Meyerowitz, 1995; Bleecker and Schaller, 
1996; Chang, 1996). 

In summary, we found that ethylene and a low O, con- 
centration stimulated petiole elongation i n  the flooding- 
tolerant plant, R. palustris. The response to  a low O, con- 
centration w a s  ethylene dependent  a n d  operated via a 
sensitization of the petiole tissue to ethylene. This increase 
in ethylene responsiveness was preceded by an increase i n  
the expression leve1 of a gene coding for the putative R. 
palustris ethylene receptor (RP-ERSZ). In contrast, ethylene 
inhibited petiole elongation i n  the flooding-intolerant R. 
acetosa. This effect of ethylene could be counteracted by low 
O, and high CO, concentrations. 
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