Metabolism and Biological Activity of Gibberellin A₄ in Vegetative Shoots of Zea mays, Oryza sativa, and Arabidopsis thaliana¹

Masatomo Kobayashi², Paul Gaskin, Clive R. Spray, Yoshihito Suzuki³, Bernard O. Phinney*, and Jake MacMillan

Department of Biology, University of California, Los Angeles, California 90024–1606 (M.K., C.R.S., Y.S., B.O.P.); and Department of Agricultural Sciences, University of Bristol, Agricultural and Food Research Council Institute of Arable Crops, Long Ashton, Bristol BS18 9AF, United Kingdom (P.G., J.M.)

[17-13C, 3H]Gibberellin A4 (GA4) was injected into the shoots of tall (W23/L317), dwarf-1 (d1), and dwarf-5 (d5) Zea mays L. (maize); tall (cv Nipponbare), dwarf-x (dx), and dwarf-y (dy) Oryza sativa L. (rice); and tall (ecotype Landsberg erecta), ga4, and ga5 Arabidopsis thaliana (L.) Heynh. [13C]GA4 and its metabolites were identified from the shoots by full-scan gas chromatography-mass spectrometry and Kovats retention indices. GA4 was metabolized to GA1 in all nine genotypes. GA4 was also metabolized in some of the genotypes to 3-epi-GA1, GA2, 2β-OH-GA2, 3-epi-GA2, endo-GA4, 16α, 17-H2-16, 17-(OH)2-GA4, GA34, endo-GA34, GA58, 15-epi-GA63, GA71, and 16-epi-GA82. No evidence was found for the metabolism of GA4 to GA7 or of GA4 to GA3. The bioactivities of GA4 and GA1 were determined using the six dwarf mutants for assay. GA4 and GA1 had similar activities for the maize and rice mutants. For the Arabidopsis mutants, GA4 was more active than GA1 at low dosages; GA4 was less active than GA1 at higher dosages.

Information concerning the GA biosynthetic pathways is necessary for an understanding of the origin, identification, and regulation of bioactive GAs. Specific pathways, together with mutants that block specific steps in these pathway(s), have been described for several plant systems (Reid, 1990). In this report we evaluate the role of GA₄ and GA₁ in the control of shoot elongation for Zea mays (maize), Oryza sativa (rice), and Arabidopsis thaliana. (The structures of the C₁₉-GAs relevant to this study are shown in Fig. 1).

The early 13-hydroxylation pathway is the major one present in vegetative shoots of maize. The evidence is based on the isolation of nine members of the pathway from vegetative shoots (Fujioka et al., 1988a, 1988b) and the demonstration of five metabolic steps in the pathway (Spray et al., 1984; Fujioka et al., 1990). The relative roles of GA_{20} and GA_1 in the control of growth are based on studies of the

two GA mutants, d1 and d5. The d1 mutant controls the late step, GA₂₀ to GA₁. In the d1 mutant, GA₁ is bioactive and GA₂₀ has less than 1% of the activity of GA₁ (Phinney and Spray, 1982). The d1 mutant accumulates endogenous GA₂₀, has trace amounts of GA₁ (Fujioka et al., 1988a), and does not metabolize GA₂₀ to GA₁ (Spray et al., 1984). The d5mutant controls the early step, copalylpyrophosphate to *ent*kaurene (Hedden and Phinney, 1979). In the d5 mutant, GA₂₀ and GA₁ have similar bioactivities (Phinney and Spray, 1982), endogenous GA₂₀ and GA₁ are present in trace amounts (Fujioka et al., 1988a), and the mutant metabolizes GA₂₀ to GA₁ (Spray et al., 1984). The data suggest that GA₂₀ is bioactive in maize shoots only because of its metabolism to bioactive GA₁.

 GA_3 is also endogenous to tall maize shoots but is present in trace amounts only (Fujioka et al., 1988b). GA_3 originates from GA_{20} via GA_5 (Fujioka et al., 1990). GA_4 , GA_7 , GA_9 , GA_{15} , GA_{24} , and GA_{34} (GAs that are not members of the early-13-hydroxylation pathway) are also present in trace amounts in tall maize (Fujioka et al., 1988b). Nothing is known about their biosynthetic origin or their biological role in the control of maize shoot growth.

Five endogenous GAs have been identified from vegetative shoots of rice (Kobayashi et al., 1988). All are members of the presumptive early 13-hydroxylation pathway. Studies of the two GA mutants, dx and dy, indicate that the dy mutant controls the step GA₂₀ to GA₁, and the dx mutant controls a step before GA₅₃. GA₁ has relatively high bioactivity and GA₂₀ has low bioactivity when assayed on the dy dwarf mutant of rice (Murakami, 1972). The dy mutant accumulates GA₂₀ and has reduced levels of GA₁ (Kobayashi et al., 1989). GA₂₀ and GA₁ have similar bioactivities when assayed on the dx mutant (Murakami, 1972), and levels of endogenous GA₂₀ and GA₁ are low (Kobayashi et al., 1989). The data support the position that GA₂₀ is bioactive because of its metabolism to GA₁.

¹ Supported by the National Science Foundation, grant DCB 8819809 (B.O.P.), the Agricultural and Food Research Council (P.G.), and the Leverhume Trust (J.M.).

² Present address: Institute of Physical and Chemical Research, Wako-shi, Saitama 351-01, Japan.

³ Present address: Department of Agricultural Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan.

^{*} Corresponding author; fax 1-310-825-3177.

Abbreviations: AcOH, acetic acid; AE, acidic ethyl acetate-soluble fraction; *endo*, 15,16 double bond isomer; EtOAc, ethyl acetate; *iso*-GA₃, 19,2-isomeric lactone of GA₃; KRI, Kovats retention index; MeOH, methanol; NB, neutral butanol-soluble fraction; NBE, acidic ethyl acetate-soluble fraction recovered from hydrolyzed NB fraction; Rt, retention time.

Figure 1. The structures of the C_{19} -GAs relevant to this study.

In addition to the GAs identified from rice shoots, GA_4 , GA_9 , GA_{12} , GA_{17} , GA_{24} , GA_{34} , GA_{44} , and GA_{51} have been isolated from reproductive organs (Kobayashi et al., 1984, 1988). This is the only identification of GA_4 in rice. Metabolic steps have been defined from anthers only. They are GA_{12} to GA_{15} , GA_{53} to GA_{44} , and GA_{20} to GA_1 (Kobayashi et al., 1990).

Twenty GAs have been isolated from the early bolting stage of tall Arabidopsis (ecotype Landsberg erecta) (Talon et al., 1990b). They are members of three biosynthetic pathways, the early 13-hydroxylation pathway (eight GAs), the early-3-hydroxylation pathway (seven GAs), and the early non 3,13-hydroxylation pathway (five GAs). The three hypothetical pathways originate from GA12 and converge to GA1. The two dwarf mutants ga4 and ga5 have been analyzed in terms of these three pathways (Talon et al., 1990b; Zeevaart and Talon, 1992). The ga4 mutant blocks 3β -hydroxylation at three different steps, GA₂₀ to GA₁ (late in the early 13-hydroxylation pathway), GA9 to GA4 (late in the early non-3,13-hydroxylation pathway), and probably GA12 to GA14 (early in the early 3-hydroxylation pathway). GA levels are relatively high before the blocks and relatively low after the blocks. GA_{20} had relatively low bioactivity, and GA_1 had high bioactivity on the ga4 mutant.

The ga5 mutant blocks the oxidative removal of carbon-20 and also, possibly, the oxidation of the carbon-20 methyl group to the alcohol. The mutant controls the steps GA₅₃ to GA₄₄ and GA₁₉ to GA₂₀ (early 13-hydroxylation pathway), GA₁₂ to GA₁₅ and GA₂₄ to GA₉ (early non-3,13-hydroxylation pathway), and GA₁₄ to GA₃₇ and GA₃₆ to GA₄ (early 3hydroxylation pathway). GA levels are relatively high for GAs before the blocks and relatively low for GAs after the blocks. It has been concluded (Talon et al., 1990b; Zeevaart and Talon, 1992) that 3 β -hydroxylation is the critical feature for stem elongation, not the per se activity of GA₁, and that both GA₄ and GA₁ are active per se. Here, we demonstrate the metabolism of GA_4 to GA_1 in vegetative shoots of maize, rice, and *Arabidopsis*. We also show that GA_4 and GA_1 have similar bioactivities when assayed on the *d1* mutant of maize and on the *dx* and *dy* mutants of rice. For *d5*, maize GA_1 is more active than GA_4 . For both the *ga5* and *ga4 Arabidopsis* mutants, GA_4 is more active than GA_1 at low dosages and less active than GA_1 at higher dosages.

MATERIALS AND METHODS

GAs

[17-¹³C,³H]GA₄ (0.979 atoms of ¹³C molecule⁻¹, 0.52 GBq mmol⁻¹) was synthesized from unlabeled GA₄ by the method of Fujioka et al. (1988a) for the synthesis of [17-¹³C,³H]GA₁. [17-¹³C,³H]GA₄ was purified by silica gel column chromatography (*n*-hexane:EtOAc:AcOH, 7:3:0.2), followed by silica gel TLC (EtOAc:CHCl₃:AcOH, 15:5:1); [17-¹³C,³H]GA₄ was recovered from the zone with R_F 0.6 to 0.7. No radioactive impurities were detected after HPLC analysis of the recovered [17-¹³C,³H]GA₄, and GC-MS analysis showed its purity to be greater than 99.9%. The GA₄ and GA₁ samples used for the bioassays were also shown to be greater than 99.9% pure by GC-MS. [17-¹³C,³H]GA₄ was dissolved in ethanol:H₂O (1:1, v/v) for metabolic studies; GA₁ and GA₄ were dissolved in acetone:H₂O (1:1, v/v) for bioassays.

Plant Material

The origin of the Zea mays L. (maize) seed of the tall phenotypes segregating for the d1 and d5 mutants is given by Fujioka et al. (1988a). The seed of the tall phenotype of Oryza sativa L. (rice) (cv Nipponbare, previously called Nihonbare) and the dwarf mutants dx (cv Tan-ginbozu) and dy (cv Waito-C) originated from Dr. Hitoshi Saka (National Institute of Agrobiological Resources, Tsukuba-shi, Ibaraki 305, Japan). The Arabidopsis thaliana (L.) Heynh. seed of the tall phenotype (ecotype Landsberg *erecta*) and dwarf mutants *ga4* and *ga5* originated from Dr. Maarten Koornneef (Agricultural University, Wageningen, the Netherlands) via Dr. Judy Brusslan (Department of Biology, University of California, Los Angeles, CA).

For bioassay and metabolic studies, maize and Arabidopsis plants were grown in the University of California, Los Angeles, greenhouse under natural sunlight supplemented with Sylvania incandescent 300-W PS35 Excel bulbs to give a daylength of at least 12 h. The rice plants used for bioassay and metabolic studies were grown in an incubator chamber maintained at 28°C under continuous light supplied by General Electric F96PG17CW fluorescent bulbs.

Bioassays

The maize seedling bioassay was described by Phinney and Spray (1982), and the rice microdrop bioassay was discussed by Murakami (1968). For the *Arabidopsis* assay, seeds were soaked in 0.1% agarose at 4°C for 48 h and sown in 15- × 10-cm plastic trays filled with soil:vermiculite:perlite (1:1:1), 24 seeds per tray, and covered with a 3-mm layer of fine vermiculite. Before treatment, the plants were thinned to 10 per tray. The GA solution of 2 μ L was added to the base of the fully developed vegetative rosette just before bolting (plants were about 3 weeks old). Five dosage levels were used with 10 plants per dosage level. After shoot elongation (10–14 d after treatment), plant height was measured from the soil level to the top of the inflorescence. Response data were calculated from the averages of the 10 treatments at each dosage level.

Metabolic Studies: Treatment, Extraction, and Purification

[17-13C, 3H]GA4 was injected into the coleoptilar node of maize and rice seedlings at the three- to four-leaf stage; for Arabidopsis, the labeled GA4 was injected into the basal petiole of the uppermost leaf of the vegetative rosette just before bolting. For maize, five seedlings of each genotype were each injected with 1510 Bq of $[17^{-13}C, {}^{3}H]GA_4$ (2 μ L); for rice, 97 tall and 100 dx and dy seedlings were each injected with 152 Bq of [17-13C,3H]GA4 (1 µL); for Arabidopsis, 30 plants of each genotype were each injected with 215 Bq of $[17-{}^{13}C, {}^{3}H]GA_4$ (0.5 µL). Incubation times were 8 (rice), 12 (maize), and 24 h (Arabidopsis). After incubation, the shoots were harvested and immediately frozen in dry ice. The frozen plant material was homogenized and extracted twice at 4°C with MeOH:H₂O (4:1, v/v). After filtration and removal of the MeOH, the aqueous residue was solvent fractionated to give the AEs as described by Fujioka et al. (1988a) and the NBs, as described by Yokota et al. (1980; see fig. 2.8, p. 126). The AEs and NBs were evaporated to dryness in vacuo and purified further (see below).

AE

The AE in H_2O (1 mL) was loaded onto a Bond Elut C_{18} column (1 g; Analytichem International, Harbor City, CA). The column was washed with H_2O (2 mL) and then eluted

with MeOH (2×2 mL). The MeOH eluates were combined, evaporated to dryness redissolved in MeOH (1 mL), and loaded onto a Bond Elut DEA column (500 mg) that had a head of DEAE-Sephadex A-25 (1 mL of gel suspended in MeOH). The column was washed with MeOH (1 mL) and then eluted with 1 N AcOH in MeOH (5 \times 1 mL). The fractions containing radioactivity (usually fractions 2-4) were combined and dried under a stream of N2. This combined fraction was dissolved in 40% MeOH (aqueous) (200-250 μ L) and injected onto a HPLC column of Nucleosil 5 C₁₈ (10 $cm \times 6$ mm, i.d.). The column was eluted as described by Kobayashi et al. (1990). Fractions were collected at 1-min intervals, and an aliquot of each fraction was analyzed by liquid scintillation spectrometry. Radioactive fractions were combined according to their Rt, and each of the combined fractions was purified further by HPLC on a column of Nucleosil 5 N(CH₃)₂ (10 cm \times 6 mm, i.d.). The column was eluted with 0.05% AcOH in MeOH at a flow rate of 1.5 mL min⁻¹, and fractions were collected at 1-min intervals. The radioactivity in each fraction was determined by liquid scintillation spectrometry, and radioactive fractions were combined according to their Rt, concentrated, and derivatized for GC-MS analysis (Gaskin and MacMillan, 1991).

NΒ

The NB was passed through the two Bond Elut columns as described for the AE, and the recovered radioactive fraction was hydrolyzed with cellulase (30 mg, type I; Sigma) in acetate buffer (1 N, pH 4.5, 1 mL) at 30°C. After 24 h, the solution was acidified with 6 N HCl and extracted with EtOAc. The EtOAc extract (NBE) was dried, redissolved in MeOH (1 mL), and purified using a Bond Elut DEA column, followed by HPLC as described for the AE. The fractions containing radioactivity were combined according to their Rt values and dried. Each dried fraction was redissolved in MeOH and methylated with excess diazomethane, dried, and trimethylsilylated with *N*-methyl-*N*-trimethylsilyltrifluoroacetamide, to give methyl ester, trimethylsilyl ether derivatives for GC-MS analysis (Gaskin and MacMillan, 1991).

Control Experiment for Metabolic Studies

[¹³C,³H]GA₄ was injected into *d1* maize seedlings, and the seedlings were frozen immediately after injection, extracted, purified, and analyzed as described in "Metabolic Studies: Treatment, Extraction, and Purification."

GC-MS

Mass spectra were obtained using a computerized VG 7050 mass spectrometer (VG Analytical, Manchester, UK) fitted with a DANI 3800 GC (Kontron Instruments, St. Albans, UK) equipped with a WCOT vitreous silica column (25 m \times 0.2 mm, i.d.; GC² Chromatography, Altrincham, UK) coated with a 0.25- μ m layer of bonded OV-1. The initial GC column temperature was 50°C. After injection, the temperature was held at 50°C for 2 min, followed by temperature programming at 10°C min⁻¹ to 150°C and then 3°C min⁻¹ to 300°C. The use of the GC-MS instrument and GC column was described by Gaskin et al. (1984).

Table I. ¹³C-Labeled metabolites identified by GC-MS after injection of [¹³C,³H]GA₄ into tall, d1, and d5 maize (4.85 μ g, 7.55 × 10³ Bq each), tall (9.44 μ g, 14.7 × 10³ Bq), dx, and dy rice (9.76 μ g, 15.2 × 10³ Bq each), and tall, ga4, and ga5 Arabidopsis (4.14 μ g, 6.45 × 10³ Bq each)

Plant Material (fresh weight, g)	Fraction	Recovered Radioactivity	ODS-HPLC Fraction	N(CH ₃) ₂ -HPLC Fraction	Radioactivity	Metabolites ^a							
		%			Bq								
Maize													
Tall (8.9)	all (8.9) AE 41.		7-8	6-9	151	16α,17-H ₂ -16,17-(OH) ₂ -GA ₄							
			9-10	16	13	GA ₁							
			11-15	6-9	170	GA ₂ ; 15-epi-GA ₆₃ ; 16-epi-GA ₈₂							
			19-22	17-18	67								
	NIDE	20.2	23-26	/-	35/5								
	INDE	20.2	0-10	0.10	00 158	GA2 3-epi-GA2							
			21_22	9=10 16	77								
			24-25	10-12	123	GA.							
			21 25	10 12	125	5.4							
d5 (4.9)	AE	38.8	10	28-30 ^b	211	GA1: 3-epi-GA1							
			19–20	12-13	17	GA4							
			23-25	8-10	1658	GA ₄							
	NBE	18.8	10	11	57	GA1; 3-epi-GA1							
			13-14	6-7	57	GA ₂							
•			21-22	13-14	30	GA ₃₄							
			23-25	7-9	276	GA4							
d1 (5.2)	AE	17.5	10	28-30°	63	GA ₁ ; 3-epi-GA ₁ ; GA ₅₈							
			23-25	9-10	753	GA4							
	NBE	31.2	9-10	15-16	30	GA ₁ ; 3-epi-GA ₁							
			21-22	13-14	3/								
			23-25	9-10	504	UA4							
Pico													
Tall (21.3)	AF	46.6	8-11	9_10	20	GAs: 16g 17-Ha-16 17-(OH)s-GA							
Tun (21.5)	/ L	40.0	8-11	13	11	GA:							
			12-15	8-10	51	GA ₂							
			19-23	10-13	1226	GA₄; endo-GA₄							
			19-23	14-15	19	GA ₃₄							
			24-25	11-12	1322	GA ₄							
	NBE	12.9	8-10	9-10	109	2β-OH-GA₂; 16α,17-H₂-16,17-(OH)₂-GA₄							
			8-10	13	1.9	GA ₁							
			12-15	8-10	45	GA ₂							
			21-22	14	6.3	GA ₃₄							
dx (16.5)	AE	43.8	8-11	9-10	4/	16α , $1/-H_2-16$, $1/-(OH)_2-GA_4$							
			8-11	13	25	GA_1 ; GA_{58}							
			12-16	8-10	2/4	GA ₂ ; 15-epi-GA ₆₃ ; 16-epi-GA ₈₂							
			19-25	14~10	90								
	NIDE	0 1	24-20 8 10	9 10	4004	$16 \propto 17 H_{-1} = 16 (17 - 10 H)_{-1} = CA$							
	INDE	0.1	14-15	9~10 8~10	40	GA_{2} : 15-epi- GA_{2} : 16-epi- GA_{2}							
			21-22	13-14	44	GA_{24}							
			25	11	24	GA ₄							
dv (15.1)	AE	42.0	7-11	9-10	32	16α,17-H ₂ -16,17-(OH) ₂ -GA₄							
			7-11	13	23	GA ₁							
			12-15	8-10	95	GA2; 15-epi-GA63; 16-epi-GA82							
			18-22	13-15	57	GA ₃₄							
			23-26	9-14	4291	GA₄							
	NBE	9.4	8-10	9–10	44	16α,17-H ₂ -16,17-(OH) ₂ -GA ₄							
			14-15	8	18	GA ₂ ; 16-epi-GA ₈₂							
			21-22	14	13	GA ₃₄							
			24-25		59								

Plant Material (fresh weight, g)	Fraction	Recovered Radioactivity	ODS-HPLC Fraction	N(CH ₃) ₂ -HPLC Fraction	Radioactivity	Metabolites ^a				
		%			Bq					
Arabidopsis										
Tall (42.4)	AE	61.7	8-10	10-12	47	GA ₁				
			19-22	13-16	248	GA34				
			23-26	8-10	2196	GA4				
			23-26	11-12	40	GA34				
	NBE	5.9	24	10	29	GA4				
ga5 (18.8)	AE	72.5	8-12	8-10	68	GA ₁ ; 2β-OH-GA ₂				
			13-16	6-9	415	GA4; endo-GA4				
			18-22	7-11	179	endo-GA34				
			23-26	7-8	178	GA4; endo-GA4				
	NBE	7.7	25	8-9	28	GA₄				
ga4 (10.0)	AE	45.9	8-12	9-11	60	GA1; GA58; GA71				
			13-15	6-8	89	GA2; 15-epi-GA63; 16-epi-GA82				
			20-23	11-14	89	GA34				
			24-27	7~10	1409	GA4; endo-GA4				
	NBE	12.0	13-15	7	11	GA ₂				
			23-25	8-9	54	GA₄				

^a Metabolites identified by comparison of GC-MS data and KRIs with published values (Gaskin and MacMillan, 1991). Representative data are presented in Table II. ^b Unusual Rt due to a lower concentration of AcOH in the solvent system.

RESULTS

The fractions from each genotype that were analyzed for ¹³C-metabolites are shown in Table I. The ¹³C-metabolites were identified by comparison of the full-scan GC-MS and KRI data with those of reference compounds (Kovats, 1958; Gaskin and MacMillan, 1991); typical characterizing data are given in Table II.

In the free GA fraction, $[^{13}C]GA_1$ was identified as a metabolite of $[^{13}C, ^{3}H]GA_4$ from all nine kinds of plant material. Eleven additional ^{13}C -labeled products were identified from other radioactive fractions. They were GA₂, GA₃₄, GA₅₈, 15-*epi*-GA₆₃, and 16-*epi*-GA₈₂ from maize, rice, and *Arabidopsis*; 16 α ,17-H₂-16,17-(OH)₂-GA₄ from maize and rice; *endo*-GA₄ from rice and *Arabidopsis*; 3-*epi*-GA₁ from maize; and 2 β -OH-GA₂, *endo*-GA₃₄, and GA₇₁ from *Arabidopsis*.

In the hydrolyzed fraction (NBE) of the presumptive bound GAs, [¹³C]GA₁ was identified from maize and rice. Other ¹³C-labeled products also identified were GA₂ and GA₄ from maize, rice, and *Arabidopsis*; 2β -OH-GA₂, 16α , 17-H₂-16, 17-(OH)₂-GA₄, and GA₃₄ from maize and rice; 3-*epi*-GA₁ and 3-*epi*-GA₂ from maize; and 15-*epi*-GA₆₃ and 16-*epi*-GA₈₂ from rice.

A control experiment was designed to determine whether any of the identified GAs were artifacts of extraction and purification rather than metabolites of the added [¹³C,³H]GA₄ (see "Materials and Methods"). Six HPLC fractions contained radioactivity; one had the Rt corresponding to GA₄; it was not analyzed further. The second fraction was shown by GC-MS to contain [¹³C]GA₂. The other four fractions had only traces of radioactivity, and they were not analyzed chemically.

The dosage-response curves for GA4 and GA1 are shown

in Figure 2. For the d1 maize and dx and dy rice mutants, GA_4 and GA_1 have similar bioactivities. For d5 maize, GA_1 is more active than GA_4 . For ga5 and ga4 Arabidopsis mutants, GA_4 is more active than GA_1 at low dosages and less active at high dosages.

DISCUSSION

The metabolism of [³H]GA₄ to presumptive GA₁ has been reported for seedlings of rice (Durley and Pharis, 1973) and Phaseolus coccineus (Turnbull et al., 1986), maturing seeds of maize (Rood et al., 1983), germinating seeds of bean (Phaseolus vulgaris) (Yamane et al., 1975), germinating pollen of knobcone pine (Pinus attenuata) (Kamienska et al., 1976), and cell cultures of anise (Pimpinella anisum) (Koshioka et al., 1983a) and carrot (Daucus carota) (Koshioka et al., 1983b). However, in all of these examples, the presence of GA₁ was based on HPLC and/or GC Rt values. GC-MS-single ioncurrent monitoring has been used to identify [2H]GA1 as a metabolite of [2H]GA4 from cell cultures of rice (Koshioka et al., 1991). For Arabidopsis there have been two preliminary reports of the metabolism of GA4 to GA1 with GC-MS identification (Kobayashi et al., 1991; Zeevaart and Talon, 1992). The results of the study reported here establish the metabolism of [13C,3H]GA4 to [13C]GA1 in shoots of maize, rice, and Arabidopsis using full-scan GC-MS and KRIs.

The amounts of $[^{13}C]GA_1$ formed from $[^{13}C, ^{3}H]GA_4$ can be estimated from the radioactivities of the fractions from which $[^{13}C]GA_1$ was identified (Table I). For example, for tall plants of maize, rice, and *Arabidopsis*, the amounts of $[^{13}C]GA_1$ formed are 0.93, 0.39, and 0.71 ng g⁻¹ fresh weight of tissue, respectively. These values are comparable to the reported endogenous levels of 0.12 ng g⁻¹ fresh weight for maize -

GA from Purified Fractions/ Reference Compound ^a	KRI						lons (mass/intensity [Int.])								
[¹³ C]GA ₁	2674	Mass	131	168	181	194	208	236	239	314	377	417	449	492	507
GA ₁ reference	2673	Int. Mass Int.	21 131 9	18 167 6	16 180 7	18 193 6	38 207 23	14 235 6	11 238 5	14 313 9	19 376 14	5 416 5	21 448 18	10 491 9	100 506 100
[¹³ C]3-epi-GA ₁	2793	Mass Int.	181 14	208 28	236 10	314 10	377 28	417 8	432 9	449 31	460 9	479 3	492 8	507 100	
3-epi-GA1 reference	2793	Mass	180	207	235	313	376	416	431	448	459	478	491	506	
[¹³ C]GA ₂	2761	Int. Mass	131	226 21	262	285	29 290	329	8 387	419	450	451	493	494	509
GA₂ reference	2762	Int. Mass Int.	130 100	225 12	261 8	284 10	24 289 26	329 6	386 7	42 419 15	449 6	451 6	493 13	9	508 29
[¹³ C]2β-OH-GA ₂	2906	Mass	131	147	217	262	284	290	373	417	449	507	539	582	597
2β-OH-GA ₂ reference	2905	Int. Mass Int.	100 130 94	37 147 10	24 217 16	14 261 13	21 283 15	22 289 25	11 372 13	10 416 7	14 449 19	22 506 18	6 539 8	5 581 12	61 596 100
[¹³ C]3-epi-GA ₂ (putative)		Mass Int.	131 100	226 24	262 18	290 41	329 25	344 16	372 25	387 13	419 30	451 12	493 9	494 8	509 21
[¹³ C]GA ₄	2511	Mass	129	202	225	226	234	262	285	290	329	359	387	391	419
GA₄ reference	2510	Mass Int.	129 54	201 26	92 224 77	92 225 78	233 41	261 28	284 100	289 58	328 25	358 10	386 17	390 11	418 22
[¹³ C]endo-GA ₄	2481	Mass	129	202	226	230	234	262	285	290 100	301	359	387	391	419
endo-GA ₄ reference	2478	Mass Int.	129 25	201 25	225 41	229 30	233 19	261 46	284 39	289 100	300 22	358 12	386 10	390 10	418 75
[¹³ C]16α,17-H ₂ -16,17-(OH) ₂ -GA ₄	2932	Mass	147	239	269	299	359	433	493	507	582	597 1			
16α,17-H2-16,17-(OH)2-GA4 reference	2932	Mass Int.	14 147 6	239 2	269 9	299 13	359 5	433 _2	493 100	506 3	581 2	596 1			
[¹³ C]GA ₃₄	2670	Mass	147	202	217	224	230	262	289	314	388	417	432	460	507
GA34 reference	2669	Mass Int.	147 13	201 22	217 28	223 30	229 23	261 14	288 24	313 12	387 7	416 9	431 5	459 4	506 100
[¹³ C]endo-GA ₃₄	2644	Mass Int	147 15	211	230 10	262 11	284 100	314 11	373	417	460	507 49			
endo-GA34 reference	2642	Mass Int.	147 18	211 44	229 8	261 6	284 100	314 9	372 3	416 2	459 9	506 57			
[¹³ C]GA ₅₈	2738	Mass	224	228	267	283	327	357	373	385	400	417	447	452	507
GA58 reference	2740	Mass Int.	223 92	227 48	266 67	282 90	326 42	356 100	372 40	384 94	399 20	416 93	, 446 10	451 8	506 35
[¹³ C]15-epi-GA ₆₃	2786	Mass Int	157	224	283	288	358	373	385	417	447 18	475	492 9	507 100	
15-epi-GA ₆₃ reference		Mass Int.	156 100	223 28	282 30	287 17	357 8	372 5	384 7	416 10	446 11	474 1	491 24	506 76	
[¹³ C]GA ₇₁	2695	Mass Int	129 95	222 100	228 55	267	283 70	314 41	327 28	357 70	385 60	417 57	447 9	492 11	507 18
GA71 reference	2693	Mass Int.	129 27	221 53	227 42	266 58	282 77	313 33	326 39	356 98	384 94	416 100	446 13	491 24	506 46
[¹³ C]16-epi-GA ₈₂	2821	Mass Int	129 79	226 100	234 39	262 37	285 31	290 68	380 30	449 16	477 15	481 17	491 13	494 33	509 15
16-epi-GA ₈₂ reference	2822	Mass Int.	129 47	225 76	233 56	261 49	284 29	289 100	379 26	448	476	480 12	490 11	493 5	508 10
* As methyl ester, trimethylsilyl ether derivatives.															

Table II. GC-MS data used for the identification of GAs listed in Table I

Figure 2. Dosage-response curves showing relative bioactivities of GA₄ and GA₁ assayed on *d5* and *d1* mutants of maize (A), *dx* and *dy* mutants of rice (B), and *ga5* and *ga4* mutants of *Arabidopsis* (C). Each point represents the mean of 10 to 20 measurements. Vertical bars represent sE.

(Fujioka et al., 1988a), 0.16 to 0.25 ng g^{-1} fresh weight for rice (Kobayashi et al., 1989), and 0.34 ng g^{-1} dry weight for *Arabidopsis* (Talon et al., 1990b).

In addition to [¹³C]GA₁, 12 other ¹³C-labeled metabolites were identified. Of these, GA₃₄ (2β -OH-GA₄) is a bioinactive metabolite from GA₄ (Yamane et al., 1973). 16α , 17-H₂-16, 17-(OH)₂-GA₄, GA₅₈, 15-*epi*-GA₆₃, GA₇₁, and 16-*epi*-GA₈₂ are metabolites from GA₄, unrelated to the biosynthesis of GA₁. GA₅₈ has been identified as a natural product from seeds of *Cucurbita maxima* (Beale et al., 1984), GA₇₁ from sporophytes of *Cyathea australis* (Yamane et al., 1985) and from the *gai* mutant of *Arabidopsis* (Talon et al., 1990a), and 16α , 17-H₂-16, 17-(OH)₂-GA₄, and 16-*epi*-GA₈₂ from seeds of *Lupinus* albus (Gaskin et al., 1992). 15-epi-GA₆₃ has not been identified as a natural product. [¹³C]GA₂ is an artifact because of its identification from a control experiment using [¹³C,³H]GA₄ and d1 seedlings. [¹³C]3-epi-GA₁ has been shown to be an artifact from [¹³C]GA₁ in maize (our unpublished data).

There was no evidence in any of the experiments for the metabolism of $[{}^{13}C, {}^{3}H]GA_4$ to $[{}^{13}C]GA_7$ or to $[{}^{13}C]GA_3$ (Table I). By contrast, GA₄ is metabolized to GA₁ and to GA₃ via GA₇ in the fungus *Gibberella fujikuroi* (Bearder et al., 1975).

The data concerning the bioassays from all six mutants can be interpreted to mean that both GA_4 and GA_1 are active per se. Our metabolic studies show that at least some of the GA_4 bioactivity could be due to its metabolism to GA_1 . Although the question of per se activity for GA_4 and GA_1 can be discussed at length from these kinds of data, the question will probably not be resolved from bioassay and metabolic studies alone. The answer could come from bioassay and metabolic studies conducted in conjunction with the use of mutants and/or chemicals that block 13-hydroxylation (Zeevaart and Talon, 1992). The answer could also come from the isolation of a GA receptor followed by receptor-hormone interaction studies.

Received October 27, 1992; accepted February 12, 1993. Copyright Clearance Center: 0032-0889/93/102/0379/08.

LITERATURE CITED

- Beale MH, Bearder JR, Gaskin P, Hedden P, Graebe JE, MacMillan J (1984) Gibberellin A_{58} and $ent-6\alpha,7\alpha,12\alpha$ -trihydroxykauren-16en-19-oic acid from seeds of *Cucurbita maxima*. Phytochemistry 23: 565–567
- Bearder JR, MacMillan J, Phinney BO (1975) Fungal products. Part XIV. Metabolic pathways from *ent*-kaurenoic acid to the fungal gibberellins in mutant B1-41a of Gibberella fujikuroi. J Chem Soc Perkin Trans 1: 721-726
- **Durley RC, Pharis RP** (1973) Interconversion of gibberellin A₄ to gibberellin A₁ and A₃₄ by dwarf rice, cultivar Tan-ginbozu. Planta **109:** 357–361
- Fujioka S, Yamane H, Spray CR, Gaskin P, MacMillan J, Phinney BO, Takahashi N (1988a) Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings of Zea mays L. Plant Physiol 88: 1367–1372
- Fujioka S, Yamane H, Spray CR, Katsumi M, Phinney BO, Gaskin P, MacMillan J, Takahashi N (1988b) The dominant non-gibberellin-responding dwarf mutant (D8) of maize accumulates native gibberellins. Proc Natl Acad Sci USA 85: 9031–9035
- Fujioka S, Yamane H, Spray CR, Phinney BO, Gaskin P, Mac-Millan J, Takahashi N (1990) Gibberellin A_3 is biosynthesized from gibberellin A_{20} via gibberellin A_5 in shoots of Zea mays L. Plant Physiol 94: 127–131
- Gaskin P, Gilmour SJ, Lenton JR, MacMillan J, Sponsel VM (1984) Endogenous gibberellins and kauranoids identified from developing and germinating barley grain. J Plant Growth Regul 2: 229-242
- Gaskin P, Hoad GV, MacMillan J, Makinson IK, Readman JE (1992) Gibberellins A₈₂ and A₈₃ in seed of *Lupinus albus*. Phytochemistry **31**: 1869–1877
- Gaskin P, MacMillan J (1991) GC-MS of Gibberellins and Related Compounds: Methodology and a Library of Reference Spectra. Cantocks Enterprises Ltd, Bristol, UK
- Hedden P, Phinney BO (1979) Comparison of ent-kaurene and entisokaurene synthesis in cell-free systems from etiolated shoots of normal and dwarf-5 maize seedlings. Phytochemistry 18: 1475-1479
- Kamienska A, Durley RC, Pharis RP (1976) Endogenous gibberel-

lins of pine pollen. III. Conversion of $1,2-[^{3}H]GA_{4}$ to gibberellins A_{1} and A_{34} in germinating pollen of *Pinus attenuata* Lemm. Plant Physiol **58**: 68–70

- Kobayashi M, Kamiya Y, Sakurai A, Saka H, Takahashi N (1990) Metabolism of gibberellins in cell-free extracts of anthers from normal and dwarf rice. Plant Cell Physiol 31: 289–293
- Kobayashi M, Sakurai A, Saka H, Takahashi N (1989) Quantitative analysis of endogenous gibberellins in normal and dwarf cultivars of rice. Plant Cell Physiol 30: 963–969
- Kobayashi M, Suzuki Y, Spray CR, Phinney BO, Gaskin P, MacMillan J (1991) GA4 is metabolized to GA1 (not to GA7/GA3) in maize, rice and *Arabidopsis* (abstract No. 899). Plant Physiol 96: S-135
- Kobayashi M, Yamaguchi I, Murofushi N, Ota Y, Takahashi N (1984) Endogenous gibberellins in immature seeds and flowering ears of rice. Agric Biol Chem 48: 2725–2729
- Kobayashi M, Yamaguchi I, Murofushi N, Ota Y, Takahashi N (1988) Fluctuation and localization of endogenous gibberellins in rice. Agric Biol Chem 52: 1189–1194
- Koshioka M, Douglas TJ, Ernst D, Huber J, Pharis RP (1983a) Metabolism of [³H]gibberellin A₄ in somatic suspension cell cultures of anise. Phytochemistry 22: 1577–1584
- Koshioka M, Jones A, Koshioka MN, Pharis RP (1983b) Metabolism of [³H]gibberellin A₄ in somatic suspension cell cultures of carrot. Phytochemistry **22**: 1585–1590
- Koshioka M, Minami E, Saka H, Pharis RP, Mander LN (1991) Metabolism of [³H]gibberellin A₄ in cell suspension cultures of rice, *Oryza sativa* cv. Nihonbare. *In* N Takahashi, BO Phinney, J MacMillan, eds, Gibberellins. Springer-Verlag, New York, pp 264-272
- Kovats E (1958) Gas-chromatographische Charakterisierung organischer Verbindungen Teil 1: Retentions Indices Aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv Chem Acta 41: 1915-1932
- Murakami Y (1968) A new rice seedling test for gibberellins, "microdrop method," and its use for testing extracts of rice and morning glory. Bot Mag Tokyo 81: 33–43
- Murakami Y (1972) Dwarfing genes in rice and their relation to gibberellin biosynthesis. In DJ Carr, ed, Plant Growth Substances 1970. Springer-Verlag, Berlin, Germany, pp 166–174
- Phinney BO, Spray CR (1982) Biochemical genetics and the gibber-

ellin biosynthetic pathway in Zea mays L. In PF Wareing, ed, Plant Growth Substances 1982. Academic Press, London, UK, pp 101-110

- **Reid JB** (1990) Phytohormone mutants in plant research. J Plant Growth Regul 9: 97-111
- Rood SB, Pharis RP, Koshioka M (1983) Reversible conjugation of gibberellins in situ in maize. Plant Physiol 73: 340–346
- Spray C, Phinney BO, Gaskin P, Gilmour SJ, MacMillan J (1984) Internode length in Zea mays L. The dwarf-1 mutation controls the 3β -hydroxylation of gibberellin A₂₀ to gibberellin A₁. Planta 160: 464-468
- Talon M, Koornneef M, Zeevaart JAD (1990a) Accumulation of C₁₉-gibberellins in the gibberellin-insensitive dwarf mutant gai of Arabidopsis thaliana (L.) Heynh. Planta **182**: 501–505
- Talon M, Koornneef M, Zeevaart JAD (1990b) Endogenous gibberellins in *Arabidopsis thaliana* and possible steps blocked in the biosynthetic pathways of the semidwarf ga4 and ga5 mutants. Proc Natl Acad Sci USA 87: 7983–7987
- **Turnbull CGN, Crozier A, Schneider G** (1986) HPLC-based methods for the identification of gibberellin conjugates: metabolism of $[^{3}H]$ gibberellin A₄ in seedlings of *Phaseolus coccineus*. Phytochemistry **25**: 1823–1828
- Yamane H, Murofushi N, Takahashi N (1975) Metabolism of gibberellins in maturing and germinating bean seeds. Phytochemistry 14: 1195–1200
- Yamane H, Yamaguchi I, Kobayashi M, Takahashi M, Sato Y, Takahashi N, Iwatsuki K, Phinney BO, Spray CR, Gaskin P, MacMillan J (1985) Identification of ten gibberellins from sporophytes of the tree fern, Cyathea australis. Plant Physiol 78: 899-903
- Yamane H, Yamaguchi I, Yokota T, Murofushi N, Takahashi N (1973) Biological activities of new gibberellins A₃₀₋₃₅ and A₃₅ glucoside. Phytochemistry 12: 255-261
- Yokota T, Murofushi N, Takahashi N (1980) Extraction, purification, and identification. In J MacMillan, ed, Hormonal Regulation of Development I, Encyclopedia of Plant Physiology, New Series, Vol 9. Springer-Verlag, Berlin, Germany, pp 113-201
- Zeevaart JAD, Talon M (1992) Gibberellin mutants in Arabidopsis thaliana. In CM Karssen, LC Van Loon, D Vreugdenhil, eds, Progress in Plant Growth Regulation. Kluwer Academic, Dordrecht, The Netherlands, pp 34-42