Antenatal diagnosis of inborn errors of metabolism

M A Cleary, J E Wraith

The introduction of experimental treatment for lysosomal storage disorders and the increasing understanding of the molecular defects behind many inborn errors have overshadowed the fact that for many affected families the best that can be offered is a rapid, accurate prenatal diagnostic service. Many conditions remain at best only partially treatable and as a consequence the majority of parents seek antenatal diagnosis in subsequent pregnancies, particularly for those disorders resulting in a poor prognosis in terms of either life expectancy or normal neurological development.

The majority of inborn errors result from a specific enzyme deficiency, but in some the primary defect is in a transport system or enzyme cofactor. In some conditions the biochemical defect is limited to specific tissues only and this serves to restrict the material available for antenatal diagnosis for these disorders. Fortunately for many inborn errors the metabolic defect is generalised and both amniotic and chorion villus cells can be used as a diagnostic tissue.

Before contemplating prenatal diagnosis it is essential that a firm biochemical diagnosis has been established in the index case. It is unsafe to rely only on a clinical or histological diagnosis as many of the inherited disorders share a similar phenotype. To ease interpretation of results obtained on the fetus it is necessary to know the heterozygote levels of enzyme activity in the parents; occasionally these are remarkably low and can lead to difficulties in ascribing fetal genotype.

The properties of some enzymes are appreciably different when studied at different times of gestation. In addition, the activity obtained from chorion villus material may be very different from that obtained on amniotic fluid cells. It is essential that the correct tissue is collected at the most appropriate time. Liaison with the laboratory staff performing the test is mandatory if mistakes are to be avoided.

Prenatal testing by analysis of fetal DNA by either a gene specific DNA probe or gene tracking using restriction fragment length polymorphisms (RFLPs) requires proband DNA for comparison. This underlies the importance of establishing fibroblast cultures from all patients diagnosed as having a metabolic disorder as well as ensuring that blood is taken from all relevant family members for DNA extraction and storage.

Most prenatal testing for metabolic disease is performed in a few specialised laboratories.

Sample requirement and techniques used in prenatal diagnosis

By far the majority of antenatal diagnoses are performed on samples obtained by either amniocentesis or chorion villus biopsy. For some disorders, however, the defect is not detectable in this material and more invasive methods have been applied to obtain a diagnostic sample.

FETAL LIVER BIOPSY

Fetal liver biopsy has been performed to diagnose ornithine carbamoyl transferase deficiency and primary hyperoxaluria type 1. Glucose-6-phosphatase deficiency (glycogen storage disease type I) could also be detected by this method. The technique, however, is invasive and can be performed by only a few highly specialised fetal diagnostic units.

FETAL BLOOD SAMPLING

Fetal blood sampling could be used for the antenatal diagnosis of many inborn errors. The sample, however, tends to be collected late in pregnancy and the technique is probably best reserved as a back up in case of failed amniotic fluid cell culture.

AMNIOCENTESIS

Amniocentesis has been the most common procedure for antenatal diagnosis of metabolic disease. Both the cell free amniotic fluid and cultured and uncultured amniotic fluid cells are useful in diagnosis.

The procedure is usually performed at 15–16 weeks' gestation and most analyses can be performed within two to three weeks of culture. First trimester amniocentesis has been attempted to allow earlier diagnosis, but the smaller sample size and possible variation in enzyme activity at the earlier stage of pregnancy have introduced variables that need to be studied before the technique can be widely applied.

(1) Cell free amniotic fluid can be used to detect a number of intermediary metabolites in many inborn errors. Where possible this technique should be backed by specific enzyme analysis, but for many conditions does allow a quick diagnosis. It is particularily relevant for organic acid disorders using stable isotope dilution gas chromatography with mass spectrometry and selected ion monitoring.

In mucopolysaccharide disorders the pattern

Willink Biochemical Genetics Unit, Royal Manchester Children's Hospital, Pendlebury, Manchester M27 1HA M A Cleary J E Wraith

Correspondence to: Dr Wraith. of excess glycosaminoglycan excretion can be detected by two dimensional electrophoresis and this can form the basis of a reliable antenatal test for this group of conditions.

(2) Amniotic fluid cells in culture are a common material used in antenatal diagnosis. In most cases the enzyme activity obtained in this tissue mirrors that obtained in cultured skin fibroblasts. As well as direct enzyme assay, radiolabelled incorporation studies can be performed on the cultured cells and a wide range of disorders detected. Contamination by mycoplasma or other organisms is the biggest threat to antenatal diagnosis by this method.

CHORION VILLUS BIOPSY

Chorion villus biopsy offers the advantage of first trimester diagnosis. Direct analysis of enzyme activity on fresh uncultured villus tissue usually allows a result to be available within 24– 48 hours of the procedure. Problems associated with the technique include the possibility of maternal contamination and differences in enzyme activity in this tissue as compared with skin fibroblasts or cultured amniotic fluid cells. Despite these possible limitations most prenatal diagnoses for inborn errors are performed on chorion villus samples.

Specific inborn errors of metabolism

The appendix lists the specific inborn error, the biochemical defect, chromosome location of the gene mutation where known, and the test used for antenatal diagnosis. Where antenatal diagnosis has been successfully achieved the method used is clearly shown. For some disorders prenatal diagnosis is theoretically possible, although to the authors' knowledge not as yet successfully performed. In this case the most likely tissue and method are indicated with the rider, 'possible'. The key to the abbreviations used is shown at the end of the appendix.

Appendix

Specific inborn errors of metabolism

Condition	Enzyme deficiency	Chromosome location	Prenatal diagnosis
(A) CARBOHYDRATE METABOLISM (i) Galactose			
Galactokinase deficiency 'Classical' galactosaemia	Galactokinase Galactose-1-phosphate- uridyltransferase	17q21-q22 9p13	AF, CVB AF, CVB
Epimerase deficiency	UDP-Galactose-4-epimerase	lpter-p32	Poss CC
(ii) Fructose			
Hereditary fructose intolerance Fructose 1–6 bisphosphatase deficiency	Aldolase B Frutose 1–6 bisphosphatase	9q22 —	Poss DNA No
(iii) Glycogen storage disease			
Ia Von Gierke b	Glucose-6-phosphatase Glucose-6-phosphatase translocase (T1)		Poss FT Poss FT
c	Glucose-6-phosphatase translocase (T ₂)	—	Poss FT
II Pompe	Lysosomal acid glucosidase	17q23	AF, CVB
III Debrancher enzyme deficiency	Amylo-1-6-glucosidase		AF, CVB
IV Brancher enzyme deficiency	1-4-Glucan 6-glycosyl- transferase	—	AF, CVB
V McCardle	Muscle phosphorylase	11q13-qter	No
VI Liver phosphorylase deficiency	Liver phosphorylase	14	Poss FT
VII Phosphofructokinase deficiency	Phosphofructokinase	lcen-q32	No
IXa Phosphorylase kinase (recessive)	Phosphorylase kinase	16q12–q13·1	Poss FT
IXb Phosphorylase kinase (X linked)	Phosphorylase kinase	Xq12–q13	Poss FT
(B) AMINO ACID METABOLISM (i) Phenylalanine			
Classical' phenylketonuria	Phenylalanine hydroxylase	12q22–q24·1	DNA
Tetrabiopterin homoeostasis	Dihydropteridine reductase	4p15·3	AF, CVB
Tetrabiopterin synthesis	Guanosine triphosphate cyclohydrolase		MET
	6-Pyruvoyltetrahydropterin synthase	_	MET

Condition	Enzyme deficiency	Chromosome location	Prenatal diagnosis
(ii) Methionine Homocystinuria	Cystathionine synthase	21q22-q22·1	AF, CVB
(<i>iii</i>) <i>Tyrosine</i> Tyrosinaemia I Tyrosinaemia II	Fumarylacetoacetate hydrolase Tyrosine aminotransferase	15q23-q25 16q22-q22·1	AF, CVB No
(iv) Valine, leucine, isoleucine Maple syrup urine disease	Branched chain ketoacid dehydrogenase	19q13·1–q13·2	AF, CVB
(v) Glycine Non-ketotic hyperglycinaemia	Glycine cleavage system	9p22	CVB
(vi) Lysine Hyperlysinaemia	Aminoadipic semialdehyde synthase	_	UNK
(<i>vii</i>) <i>Proline</i> Hyperprolinaemia I Hyperprolinaemia II	Proline oxidase Pyrroline-5-carboxylate dehydrogenase	_	UNK UNK
Hyperimidodipeptiduria	Prolidase	19q12–q13·2	Poss CC
(viii) Ornithine Gyrate atrophy of the choroid	Ornithine aminotransferase	10q26	Poss CC
and retina Hyperornithinaemia- hyperammonaemia- homocitrullinaemia (HHH syndrome)	Basic defect unknown	_	No
(C) UREA CYCLE DISORDERS N-acetylglutamate synthetase	N-acetylglutamate synthetase	_	UNK
deficiency Carbamyl phosphate synthetase	Carbamyl phosphate synthetase	2p	Poss DNA/
Ornithine carbamyltransferase	Ornithine carbamyltransferase	Xp21·1	FT Poss DNA/
Citrullinaemia Argininosuccinic aciduria (ASA) Argininaemia	Argininosuccinic acid synthetase Argininosuccinate lyase Arginase	9q34 7p21-cen 6q23	AF, CVB AF, CVB Poss DNA/ FT
(D) ORGANIC ACID DISORDERS (i) Propionate and methylmalonate m	etabolism		
Multiple carboxylase deficiency	Propionyl-CoA carboxylase: α-subunit β-subunit Holocarboxylase synthetase Biotinidase Methylmalopyl-CoA mutase	$ \begin{array}{c} 13 \\ 3q13.3-q22 \\ \\ 6p12-p21.2 \end{array} $	AF, CVB AF, CVB MET MET AF, CVB
	Adenosylcobalamin synthesis: cblA cblB (see also cobalamin metabolism)		AF, CVB AF, CVB
(ii) Pyruvate and lactate metabolism Lactate dehydrogenase deficiency	Lactate dehydrogenase	11p15·4	UNK
Pyruvate dehydrogenase deficiency	Pyruvate dehydrogenase complex:		* * *
	E ₁ (decarboxylase) component	α-Χρ22·1–22·2	Poss DNA
	E_2 (dihydrolipoyl transacylase)	β-3p13-q23 —	
	E ₃ (dihydrolipoyl dehydrogenase) Pyruvate dehydrogenase phosphatase	7p15-q35 —	
Pyruvate carboxylase deficiency Phosphoenolpyruvate carboxykinase deficiency	Pyruvate carboxylase Phosphoenolpyruvate carboxykinase	11q —	AF UNK

Condition	Enzyme deficiency	Chromosome location	Prenatal diagnosis
(iii) Respiratory transport chain defect	S	location	anaBirosis
The components of the respirato	ry transport chain are composed	of many polypepti	de subunits
some of which are encoded by mitod	chondrial DNA		
Complex I Complex II	NADH CoQ reductase Succinate CoA reductase		###
Complex II	$CoQH_2$ -cyt c reductase		
Complex IV	Cytochrome oxidase		AF, CVB
Complex V	Oligomycine sensitive A I Pase		
(iv) Branched chain organic acidaemi	as	15 14 15	
Isovaleric acidaemia Isolated 3-methyl crotonyl CoA carbovylase deficiency	Isovaleryl-CoA dehydrogenase 3-Methylcrotonyl carboxylase	15q14-q15 —	MET, AF Poss CC
3-Methylglutaconic aciduria	3-Methylglutaconic hydratase	_	Poss CC
3-Hydroxy-3-methylglutaryl	3-Hydroxy-3-methylglutaryl-	AF, CVB	
Mevalonic aciduria	Mevalonate		AF
2-Methylacetoacetyl-CoA	2-Methylacetoacetyl-CoA		Poss CC
thiolase deficiency	thiolase		
(v) Disorders of the γ -glutamyl cycle			
5-Oxoprolinuria	Glutathione synthetase	_	Poss CC
γ-Glutamylcysteine synthetase deficiency	γ-Glutamylcysteine synthetase	—	Poss CC
γ-Glutamylcysteine synthetase deficiency	γ-Glutamyltranspeptidase		Poss CC
5-Oxoprolinase deficiency	5-Oxoprolinase	_	Poss CC
(vi) Other organic acid disorders			
Alkaptonuria	Homogentisic acid oxidase	—	UNK
Glutaric aciduria type I	Glutaryl-CoA dehydrogenase	—	AF, CVB
Giutaric aciduria type fi	ETF:ubiquinone oxidoreductase	_	AF, CVB
Glycerol kinase deficiency	Glycerol kinase	Xp21·3–p21·2	AF, CVB
Hyperoxaluria type I (glycolic aciduria)	Alanine:glyoxylate aminotransferase	_	FT
Hyperoxaluria type II			
(glyceric aciduria)	Glyceric dehydrogenase	—	UNK Doce MET
Canavan's disease	Aspartoacylase		FUSS MIE I
(E) FATTY ACID OXIDATION DEFECT	S		
Short chain acyl-CoA	Short chain acyl-CoA		
dehydrogenase deficiency (SCAD)	dehydrogenase	12q22-qter	Poss CC
Medium chain acyl-CoA	Medium chain acyl-CoA		
dehydrogenase deficiency	dehydrogenase	lp31	DNA/CVB
(MCAD) Long chain acyl-CoA	Long chain acyl-CoA		
dehydrogenase deficiency	dehydrogenase	7	Poss CC
(LCAD)			
(E) I VOOSOMAL ENZVME DEEECTS			
(i) Mucopolysaccharidoses			
Type IH (Hurler's syndrome)	Iduronidase	4p16·3	AF, CVB
Type IS (Scheie's syndrome)	Iduronidase	X 30	
Type II (Hunter's syndrome) Type III (Sanfilippo's syndrome)	Iduronate sulphatase	Xq28	AF, CVB
A A	Heparan N-sulphatase		AF, CVB
В	N-acetylglucosaminidase	—	AF, CVB
C	Acetyl-CoA-glucosaminide		AF CVR
D	N-acetylglucosamine 6-sulphatase		Poss CC
Type IV (Morquio's syndrome)		•	-
A	Galactosamine 6-sulphatase	<u></u>	Dose CC
D Type VI (Maroteaux-Lamy	N-acetylgalactosamine	5p21-001	1 022 CC
syndrome)	4-sulphatase	5q11-q13	AF, CVB
Type VII (Sly's disease)	β-Glucuronidase	7q11·2–q22	Poss CC

Condition	Enzyme deficiency	Chromosome location	Prenatal diagnosis
(ii) Mucolinidosos			
Mucolipidosis II (I-Cell disease)	UDP-N-acetylglycosamine: lysosomal enzyme N-acetylglucosaminyl-l- phosphotransferase	_	AF, CVB
Mucolipidosis III (pseudo- Hurler polydystrophy)	Same as mucolipidosis II	_	AF, CVB
(iii) Glycoproteinoses	n Mannasidaaa	10-12-2 -12	AE CUR
α -Mannosidosis β -Mannosidosis	α-Mannosidase β-Mannosidase	19p13·2–q12	Poss CC
Fucosidosis	α-Fucosidase	1p34	AF, CVB
Aspartylglycosaminuria Sialidosis type I (cherry-red spot-myoclonus syndrome) Sialidosis type II:	Aspartylglycosaminidase Neuraminidase	4q21-qter 6p21·3	AF, CVB AF, CVB
Congenital and infantile Juvenile	Neuraminidase Combined neuraminidase and β galactosidase deficiency	6p21·3 20	AF, CVB AF, CVB
(iv) Gm2 gangliosidoses			
Tay-Sach's disease (variant B)	Hexosaminidase a-subunit	15q22-q25·1	AF, CVB
Sandhoff's disease (variant 0)	Hexosaminidase β -subunit	5q13 5	AF, CVB
(variant AB)	Ging activator protein	5	1033 00
(v) Other lysosomal storage disorder	rs		
Metachromatic leucodystrophy Multiple sulphatase deficiency Niemann-Pick disease:	Arylsulphatase A Multiple lysosomal sulphatases	22q13 —	AF, CVB AF, CVB
Type A	Sphingomyelinase	17	AF, CVB
Туре В Туре С	Cholesterol esterification	17	AF, CVB AF, CVB
Farbers	Ceramidase		AF, CVB
Gaucher's disease:	Glucocerebrosidase	1021	AF CVR
Type 2 (acute neuronopathic)	Glucocerebrosidase	lq21	AF, CVB
Type 3 (Norrbottnian)	Glucocerebrosidase	1q21	AF, CVB
Krabbe's disease	Galactocerebrosidase	14 Xa22	AF, CVB
Schindler's disease	α -N-acetylgalactosaminidase	22q13-qter	Poss CC
Gm ₁ gangliosidosis	β-Galactosidase	3p21-cen	AF, CVB
Wolman's disease	Acid lipase	10q	AF, CVB
Mucolipidosis type IV	Ganglioside sialidase		HIST
(G) PEROXISOMAL DISORDERS			
Zellweger syndrome	Peroxisome biogenesis	7q11·23	AF, CVB
Neonatal adrenoleucodystrophy	Peroxisome biogenesis	<u> </u>	AF, CVB
(For disorders of peroxisome	biogenesis a peroxisomal enzyme		phosphate
Rhizomelic chondrodysplasia punctata	Multiple peroxisomal enzymes	_	AF, CVB
Pseudo-Zellweger syndrome Pseudo-neonatal	3-Oxoacyl-coenzyme A thiolase Acyl-CoA oxidase	3p23–p22 —	AF, CVB Poss CC
X linked adrenoleucodystrophy Refsum's disease Acatalasia	Very long chain fatty acid ligase Phytanic acid hydroxylase Catalase	Xq28 11p13 —	AF, CVB Poss CC UNK
(H) PURINE AND PYRIMIDINE MET Lesch-Nyhan syndrome	ABOLISM Hypoxanthine phosphoribosyl-	Xq26-q27	AF, CVB
Adenine phosphoribosyl- transferase deficiency	transterase Adenine phosphoribosyl- transferase	16q	AF, CVB
Adenosine deaminase deficiency Purine nucleoside phosphorylase deficiency	Adenosine deaminase Purine nucleoside phosphorylase	20q13·1 14q13	AF, CVB AF, CVB

Condition	Enzyme deficiency	Chromosome location	Prenatal diagnosis
Myoadenylate deaminase deficiency	Myoadenylate deaminase	-	AF, CVB
Xanthinuria Orotic aciduria	Xanthine oxidase Uridine-5'-monophosphate	 3q13	UNK Poss CC
Pyrimidine-5'-nucleotidase deficiency	Pyrimidine-5'-nucleotidase	_	UNK
 (1) TRACE METAL METABOLISM Wilson's disease Menke's disease Haemachromatosis Molybdenum cofactor deficiency Isolated sulphite oxidase deficiency 	Basic defect unknown Basic defect unknown Basic defect unknown Molybdenum cofactor Sulphite oxidase	13q14 Xq13 6p21·3 —	Poss DNA AF, CVB UNK AF, CVB Poss CC
(J) LIPID METABOLISM Abetalipoproteinaemia	Abnormal handling of	2p24	UNK
Lipoprotein lipase deficiency Lecithin:cholesterol acyltransferase deficiency (LCAT)	Lipoprotein lipase Lecithin:cholesterol acyltransferase	8p22 16q	UNK UNK
Familial hypercholesterolaemia (hyperlipidaemia type IIA)	Deficient low density lipoprotein (LDL) receptors	19p13·1–13·3	AF
Dysbetalipoproteinaemia (type III, hyperlipidaemia)	Defective apolipoprotein E	19	UNK
Tangier disease Cerebrotendinous xanthomatosis	Defective high density lipoprotein (HDL) metabolism Mitochondrial 26-hydroxylase	_	UNK UNK
Phytosterolaemia	Basic defect unknown	_	UNK
(k) vitamin metabolism (i) Folic acid			
Methylene tetrahydrofolate reductase deficiency	Methylene tetrahydrofolate reductase	—	AF, CVB
Glutamate formiminotransferase deficiency	Glutamate formininotransferase		No
 (ii) Vitamin B₁₂ (cobalamin) Transcobalamin II deficiency Defects in adenosylcobalamin (AdoCbl) synthesis: 	Transcobalamin II	22q11·2qter	Poss CC
cbl A mutation cbl B mutation	Basic defect unknown ATP:cob(I)alamin		AF, CVB AF, CVB
Both defects cause methylmaloni	adenosyltransferase c acidaemia as AdoCbl is an esse	ential cofactor for	the mutase
enzyme Defects in methylocobalamin (MeChl) synthesis:			
cbl E mutation cbl G mutation	Basic defect unknown Basic defect unknown		AF Poss CC
Both disorders lead to a functional deficiency of N ⁵ -methyltetrahydrofolate:homocysteine methyltransferase leading to homocystinuria, hypomethioninaemia without methylmalonic			
acidaemia cbl C mutation	Basic defect unknown	_	Poss CC
cbl D mutation cbl F mutation	Basic defect unknown Cobalamin transport from lysosome	_	Poss CC Poss CC
(L) DEFECTS IN THE SYNTHESIS AN	D DEGRADATION OF HAEM PROTEINS	i	
δ-Aminolevulinic acid dehydratase deficiency	δ-Aminolevulinic acid dehydratase	9q34	UNK
Acute intermittent porphyria Congenital erythropoietic porphyria	Porphobilinogen deaminase Uroporphyrinogen III cosynthase	11q23qter 	AF MET
Porphyria cutanea tarda Hereditary coproporphyria	Uroporphyrindecarboxylase	lqter-p21 9	No Poss CC
Variegate porphyria Erythropoietic protoporphyria	Protoporphyrinogen oxidase Ferrochelatase	14q32	Poss CC Poss CC

Condition	Enzyme deficiency	Chromosome location	Prenatal diagnosis
(ii) Bilirubin metabolism			
Crigler-Najjar syndrome type I	UDP-glucuronyltransferase		No
Crigler-Najjar syndrome type II	UDP-glucuronyltransferase		No
Gilbert's syndrome	UDP-glucuronyltransferase		No
Dubin-Johnson syndrome	Basic defect unknown	_	No
Rotor syndrome	Basic defect unknown	_	No
(M) DISORDERS OF MEMBRANE TRA	ANSPORT		
Cystinuria	Renal and intestinal transport defect		No
Lysinuric protein intolerance	Defect of cationic amino acid transport	_	No
Hartnup disease	Defect of neutral amino acid transport	_	No
Cystinosis	Lysosomal cystine transport		AF, CVB
Infantile free sialic acid storage disease	Lysosomal sialic acid transport	_	AF, CVB
Salla disease	Lysosomal sialic acid transport	_	AF
(N) MISCELLANEOUS DISORDERS			
Lowe's syndrome	Basic defect unknown	Xq25	UNK
Carbonic anhydrase II deficiency	Carbonic anhydrase II	8q22	No
Steroid sulphatase deficiency	Steroid sulphatase	Xpter-p22.32	AF, CVB
Hypophosphatasia	Alkaline phosphatase	lp	AF
Fumaric aciduria	Fumarase	_	Poss CC
Sjögren-Larsson syndrome	Fatty alcohol NAD oxidoreductase		Poss CC

AF: cell free amniotic fluid or cultured amniocytes. CVB: assay performed on either uncultured or cultured villus cells. Poss CC: as far as authors' are aware prenatal diagnosis has not been performed for these disorders. However, enzyme is expressed in fibroblast cells and theoretically could be used as the basis of a prenatal test. Poss DNA: the genetic mutation causing these disorders has been established and may be the most appropriate approach to prenatal testing. Poss FT: the enzyme deficiency can only be detected in fetal tissue. This would usually require a fetal liver biopsy, but in some instances direct fetal blood sampling by cordocentesis. MET: metabolites from fetal urine are detected in samples obtained by amniocentesis at 14-16 weeks' gestation. UNK: as far as the authors' are aware prenatal diagnosis has not been attempted. In a number of cases the exact biochemical defect is yet to be established. ***: assay of the total activity of the pyruvate dehydrogenase complex is possible, but as far as the authors' are aware has not been applied to prenatal testing. Partial deficiencies are common leading to difficulty in interpreting results. ###: only one component of the respiratory transport chain (complex IV, cytochrome oxidase) has been studied prenatally. In families with a deletion of mitochondrial DNA a molecular approach may be more appropriate. HIST: histological changes (usually abnormal lysosomal inclusions) within amniocytes have been used as a prenatal test. UDP: uridine diphosphate.