A Mutant Isolated from the Cyanobacterium Synechococcus PCC7942 Is Unable to Adapt to Low Inorganic Carbon Conditions¹

Jian-Wei Yu^{2*}, G. Dean Price³, and Murray R. Badger

Plant Environmental Biology Group, Research School of Biological Sciences, Australian National University, P.O. Box 475, Canberra City, Australian Capital Territory 2601, Australia

Using a novel screening procedure, we have selected a new class of mutant from the cyanobacterium Synechococcus PCC7942 that fails to adapt to growth at an extremely low inorganic carbon (C_i) concentration. The mutant (Tm17) reported in this study grows normally at or above air levels of CO₂ (340 μ L L⁻¹) but does not survive at 20 μ L L⁻¹ CO₂ in air. Air-grown Tm17 cells showed properties similar to wild-type cells in various aspects of the CO₂concentrating mechanism examined. Following transfer from air levels to 20 μ L L⁻¹ CO₂, however, the mutant cells failed to increase their photosynthetic affinity for C_i. This results in an approximately 10-fold difference in photosynthetic affinity between the wild-type and Tm17 cells under Ci-limiting conditions [the K0.5(Ci) values were 11 and 136 µm, respectively]. Further examination of factors possibly contributing to this low photosynthetic affinity showed that Tm17 cells have no inducible high-affinity HCO₃⁻ transport and do not appear to show induction of increased carboxysomal carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/ oxygenase activities. It appears that a common factor, possibly relating to CO₂ detection and/or induction signal, or the HCO₃ transport mechanism may have been impaired in the mutant. Complementation results indicate that the mutation responsible for the phenotype has occurred in an 8- to 10-kb EcoRI genomic DNA fragment.

Elevation of CO_2 by the novel CCM in cyanobacteria greatly increases the efficiency of CO_2 fixation in these organisms. Research in the past decade has demonstrated that a functional CCM in cyanobacteria comprises two parts: (a) a C_i transport system that actively accumulates C_i from the surrounding medium and (b) the carboxysome that provides a compartment for the localized elevation of CO_2 concentration around Rubisco (Badger and Price, 1992). Although the mechanics of the C_i transport system are not fully understood, evidence suggests that a "CA-like" component is involved (Volokita et al., 1984; Price and Badger, 1989a; Espie et al., 1991; Miller et al., 1991; Badger and Price, 1992). The transport system can utilize both CO_2 and HCO_3^- as substrates (Price and Badger, 1989a) but delivers HCO_3^- as the C_i species into the cytoplasm of the cell (Volokita et al., 1984; Price and Badger, 1989c). Catalyzed dehydration of HCO_3^- apparently occurs only in the carboxysomes where CA activity is specifically localized (Price et al., 1992). The corresponding gene for carboxysomal CA has been isolated (Fukuzawa et al., 1992; Yu et al., 1992). Because of the special properties of the carboxysome, wasteful CO₂ leakage is minimized and its concentration is thus elevated in the vicinity of the CO₂-fixing enzyme, Rubisco.

The efficiency of the CCM changes in response to the environmental conditions, especially the availability of C_i . When cyanobacterial cells that have been grown in a relatively high C_i (e.g. 340 μ L L⁻¹) are transferred to lower C_i conditions, a higher photosynthetic affinity for C_i is observed (Badger and Andrews, 1982; Mayo et al., 1986; Badger and Gallagher, 1987). Correlating with this increase in photosynthetic efficiency are the induction of a higher affinity C_i transport system and an increase in the number of carboxy-somes (Turpin et al., 1984) and the activity of carboxysomal CA (Price et al., 1992). Although the processes involved in induction are poorly understood, it is clear that induction involves protein synthesis and is light dependent (Marcus et al., 1982).

Selection and characterization of mutants have proven to be powerful tools for studies of the CCM in cyanobacteria. The study described here is part of our ongoing efforts to recover mutants defective in various components of the process. The novel selection procedure was originally designed to screen for mutations in HCO_3^- transport that may include the primary transport proteins and the pathways for energization of the transport process (Badger et al., 1991). The mutants obtained thus far in *Synechococcus* PCC7942 were selected for growth at elevated CO_2 (1–5%) but with an inability to grow at air levels of CO_2 . Most are defective in the ability to use the internal C_i pool (Badger et al., 1991). The only reported mutants with defects in C_i transport have been isolated from *Synechocystis* PCC6803 and have lesions

¹ This work was supported in part by the Australian Research Council.

² J.-W.Y. is a recipient of an Australian Research Council Postdoctoral Fellowship.

³ G.D.P. is a recipient of an Australian Research Council Queen Elizabeth II Fellowship.

^{*} Corresponding author; fax 61-6-249-4919.

Abbreviations: CA, carbonic anhydrase; CCM, CO₂-concentrating mechanism; C_i, dissolved inorganic carbon; EZ, ethoxyzolamide; I_{50} , inhibitor concentration required for half-maximal inhibition; $K_{0.5}(C_i)$, $K_{0.5}(CO_2)$, and $K_{0.5}(HCO_3^-)$, concentration of total inorganic carbon, CO₂, and HCO₃⁻, respectively, required for half-maximal response; TTES, BG medium containing 1% agar and 50 mM Tes (pH 8.0).

in a thylakoid-located NADH dehydrogenase gene cluster that is probably involved in energization of C_i transport (Ogawa, 1992a, 1992b). Using the model of Reinhold et al. (1989), we predicted that a mutation in the HCO₃⁻-utilizing system, either for a one- or a two-pump model, would produce a mutant with a medium to high C_i requirement for growth (Badger et al., 1991). Air would be a permissive CO₂ condition and 20 μ L L⁻¹ would be a nonpermissive CO₂ level. Using these conditions for mutagenesis and selection, we have obtained a new class of mutants of *Synechococcus* PCC7942. The mutant reported here, Tm17, appears to have normal photosynthetic physiology when grown at air levels of CO₂, but it was unable to survive after transfer to C_ilimiting conditions, i.e. 20 μ L L⁻¹ CO₂ in air.

MATERIALS AND METHODS

Growth Conditions

Liquid cultures of *Synechococcus* PCC7942 (formerly known as *Anacystis nidulans* R2) were grown under conditions similar to ones previously described (Price and Badger, 1989a). CO₂ concentrations in the gas phase were 2% (v/v), or air level (about 340 μ L L⁻¹), or 20 μ L L⁻¹, as indicated. Unless otherwise stated, the light intensity was 100 μ mol of photons m⁻² s⁻¹. Cells were harvested by centrifugation at room temperature when the Chl density reached about 3 μ g mL⁻¹. Plate colonies were grown on 1% agar/BG11 medium (Rippka et al., 1981) buffered with 50 mM Tes-KOH (TTES plates) in transparent plastic boxes as described previously (Price and Badger, 1989b).

Mutagenesis and Selection of Mutants

The procedure was modified from the protocol used for selection of high CO₂-requiring mutants as described by Price and Badger (1989d). Actively growing *Synechococcus* PCC7942 cells (2 ml; 10⁹ cells mL⁻¹) were incubated with 0.2 M ethylmethyl sulfonate in 30 mM phosphate buffer (pH 7.0) in the dark for 45 min at 37°C. The mutagen was then inactivated with 5% sodium thiosulfate (pH 8.0). The cells were washed twice in unbuffered BG11 medium and diluted to 10^{-2} , 10^{-3} , and 10^{-4} of the starting density. A 50-µL aliquot of diluted cells was plated onto a cellulose disc (7.5 cm in diameter) laid on top of a TTES plate so that colonies could be transferred from one plate to another without perturbation. Each colony represents an independent mutation. Two plates of each dilution were set up. Care was taken to minimize water condensation on the cellulose disc during growth.

Plates were incubated at permissive CO₂ conditions (air levels) and low light (10 μ mol of photons m⁻² s⁻¹) for 21 h and then transferred to nonpermissive CO₂ conditions (20 μ L L⁻¹) for 2 d to deplete internal carbon reserves. An ampicillinenrichment step was then imposed by transferring the cellulose discs with the cells on top to plates containing 100 μ g mL⁻¹ of ampicillin and incubating them at 20 μ L L⁻¹ of CO₂ and normal light intensity (30 μ mol of photons m⁻² s⁻¹) for 19 h. The cellulose discs were then transferred back to normal TTES plates and incubated at 20 μ L L⁻¹ of CO₂ for another 6 d. Wild-type colonies were marked, and the plates were

returned to air. Putative mutants appeared 3 d later, and a total of 103 putative mutants were collected. After rescreening on duplicate plates under nonpermissive and permissive CO₂ conditions, six were obtained with various degrees of inability to grow at 20 μ L L⁻¹ of CO₂ compared to wild-type. One of them, designated Tm17, failed to grow on 20 μ L L⁻¹ of CO₂ plates and was examined in this study.

Measurement of CO₂ and HCO₃⁻ Uptake during Steady-State Photosynthesis

Activity of CO₂ and HCO₃⁻ uptake during steady-state photosynthesis was measured in a glass cuvette connected to a mass spectrometer as described by Badger et al. (1993). Cells were washed twice with the assay buffer aerated with CO2-free air. The Chl content in the assay medium was 3 to 5 μ g mL⁻¹. O₂ evolution and CO₂ uptake in the light were measured simultaneously in the closed cuvette at a light intensity of 300 μ mol of photons m⁻² s⁻¹ and at a temperature of 30°C. The assay medium was BG11 medium (Rippka et al., 1981) buffered with 50 mm 1,3-bis[tris(hydroxymethyl)methylamino]propane (pH 8.0). The light was turned off after steady-state rates of photosynthetic O₂ evolution and CO₂ uptake were recorded, and the initial CO₂ efflux in the dark was measured. Subsequent addition of C_i was made after CO₂ reached equilibrium with HCO₃⁻ in the assay medium.

Complementation by Wild-Type Genomic DNA

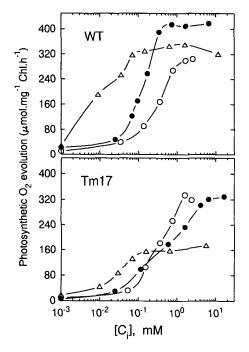
Wild-type chromosomal DNA of *Synechococcus* PCC7942 was prepared according to the protocol of Dzelzkalns et al. (1984) and digested to completion with an appropriate restriction enzyme. When required, restriction fragments were fractionated by size in a preparative electrophoresis device (ELFE, Genofit, Switzerland) as described by Price and Badger (1989c). Actively growing cells in liquid culture were harvested and washed in unbuffered BG11 medium. An aliquot of a 50- μ L cell suspension (containing about 10⁸ cells) was incubated with about 0.5 μ g of DNA fragments under low light (<10 μ mol of photons m⁻² s⁻¹) at 30°C for about 4 h. The cells were then spread on the TTES plates and grown for 16 to 24 h in air in the light (30 μ mol of photons m⁻² s⁻¹) before being transferred to 20 μ L L⁻¹ of CO₂ in air. Complemented colonies were scored after 10 d.

Measurement of CA and Rubisco Activity in Crude Extracts

Cells were lysozyme-treated and broken by French press treatment as described by Price et al. (1992). The homogenate was spun for 60 s in a bench-top microfuge to pellet unbroken cells, and crude carboxysome preparations were obtained from the homogenate after precipitation with 20 mM MgSO₄ as described by Yu et al. (1992). CA activity was determined by a mass spectrometric method and Rubisco by NaH¹⁴CO₃ as previously described (Price et al., 1992).

Other Measurements

 C_i accumulation time courses and photosynthetic O_2 evolution measurements in the O_2 electrode were performed as


previously described (Price and Badger 1989b). Chl was estimated in ethanol according to the procedure of Wintermans and de Mots (1965).

RESULTS

Affinity for C_i

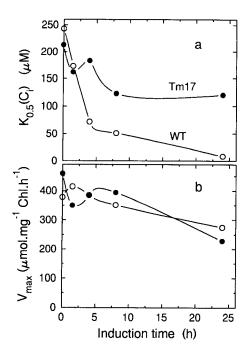
When grown at various CO₂ concentrations, wild-type cells of *Synechococcus* PCC7942 have the ability to adapt to the growth C_i conditions by changing their affinity for C_i so that a high level of photosynthetic CO₂ fixation is maintained (Fig. 1). When the cells were grown at 2% CO₂, about 2 mM C_i was required to reach maximal photosynthetic O₂ evolution. As growth C_i decreased to air levels or following induction at 20 μ L L⁻¹ for 16 h, much less C_i (0.7 and 0.1 mM, respectively) was required to saturate photosynthesis. In contrast, mutant Tm17 did not show such a dramatic adaptation to the changes in growth C_i concentrations (Fig. 1).

Comparison of the $K_{0.5}(C_i)$ values estimated from these experiments clearly shows that wild-type cells increase their affinity for C_i when the growth CO_2 concentration decreases; the greatest change occurs between air level and 20 μ L L⁻¹ of CO_2 with an order of magnitude decrease in the $K_{0.5}(C_i)$ value (Table I). Similar values were obtained for mutant Tm17 when the growth C_i was at or above air levels (Table I). However, when the growth C_i was further decreased to

Figure 1. The response of photosynthetic O₂ evolution to inorganic carbon in wild-type (WT) and Tm17 cells of *Synechococcus* PCC7942. Cells were grown at 2% CO₂ in air (O), or air levels of CO₂ (**●**), or air levels of CO₂ but induced at 20 μ L L⁻ of CO₂ for 24 h before measurements (Δ) under continuous illumination of 100 μ mol of photons m⁻² s⁻¹. Measurements were made at 30°C in BC11 medium (pH 8.0) with a light intensity of 300 μ mol of photons m⁻² s⁻¹.

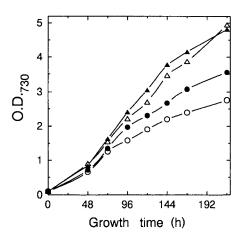
Table I. Changes in the kinetic parameters of photosynthesis in wild-type and Tm17 cells grown at different CO_2 concentrations

The data are means \pm sp from at least three measurements in the mass spectrometer at 30°C and at 300 µmol of photons m⁻² s⁻¹ light and assayed in BG11 medium buffered with 50 mm 1,3bis[tris(hydroxymethyl)methylamino]propane (pH 8.0).


Cells	Growth [CO2]	$K_{0.5}$ (C _i)	V _{max}		
		μм	µmol mg ⁻¹ of Chl h ⁻¹		
Wild type	2% (v/v)	240 ± 76	241 ± 34		
	Air (350 mL L ⁻¹)	203 ± 56	461 ± 68		
	20 µL L ⁻¹	11 ± 6	317 ± 29		
Tm17	2% (v/v)	313 ± 35	297 ± 35		
	Air (340 µL L ^{−1})	165 ± 57	370 ± 75		
	$20 \ \mu L \ L^{-1}$	136 ± 31	255 ± 27		

20 μ L L⁻¹, the mutant failed to show a significant increase in its photosynthetic affinity for C_i (Table I). This results in an approximately 10-fold difference between the wild-type (11 μ M) and Tm17 cells (136 μ M) in their photosynthetic K_{0.5}(C_i) values under C_i-limiting conditions. In fact, the mutant cells showed signs of photoinhibition after about 16 h of induction, as indicated by the reduction in the V_{max} value (Table I, Fig. 1). Prolonged exposure to such C_i conditions leads to the death of the mutant, probably as a result of an inability of the mutant to induce a high-affinity CCM under C_i-limiting conditions.

Induction Time Courses


A time-course experiment was carried out to identify when air-grown Tm17 cells become different from the wild-type during adaptation to limited Ci conditions (Fig. 2). Estimation of the $K_{0.5}(C_i)$ values in photosynthetic O_2 evolution revealed that wild-type cells had two phases during the adaptation to limited C_i: a rapid initial phase, followed by a slow phase (Fig. 2a). During the rapid phase, a significant decrease in $K_{0.5}(C_i)$ occurred within 1.5 h of the start of induction, and this rapid phase lasted for 4 h, during which the $K_{0.5}(C_i)$ decreased more than 3-fold. This was followed by a slower decline phase, during which the $K_{0.5}(C_i)$ decreased from 243 μ M in air-grown cells to less than 10 μ M after a 24-h induction at 20 μ L L⁻¹ of CO₂. A substantial difference was observed within 4 h of induction between wild-type and Tm17 cells. Although Tm17 cells showed some reduction in their photosynthetic $K_{0.5}(C_i)$ values during the induction, the values remained greater than 120 µM after 24 h of induction (Fig. 2a). In contrast to the dramatic change in the $K_{0.5}(C_i)$ values, however, the maximal photosynthetic capacity (V_{max}) of wildtype cells showed much less change throughout the experiment (Fig. 2b), and somewhat greater reduction in V_{max} was observed in Tm17 cells after 24 h at 20 μ L L⁻¹ of CO₂ (about half of the starting value, Fig. 2b).

Thus, unlike other high CO_2 -requiring mutants (Badger et al., 1991), photosynthesis in mutant Tm17 is not significantly different from wild-type cells when they were grown at or above the air levels of CO_2 concentrations (Figs. 1 and 2, Table I). This would explain the similarity between them in growth at 2% CO_2 in air or air levels of CO_2 (Fig. 3). Both

Figure 2. A time course of induction of photosynthetic O_2 evolution in wild-type (WT) and Tm17 cells of *Synechococcus* PCC7942. Both wild-type (O) and the mutant (\bullet) cells were grown at air levels of CO₂ and transferred to 20 μ L L⁻¹ at time zero. At the indicated time intervals, aliquots were taken for measurement of photosynthetic C_i response under the same conditions as in Figure 1. The values of $K_{0.5}(C_i)$ and V_{max} were estimated from such responses.

grew better at the higher CO_2 concentration. After 9 d of growth, the cell density reached about 3×10^8 cells mL⁻¹ at air and 5×10^8 cells mL⁻¹ at 2% CO₂. Both appeared to be able to continue to grow beyond the time indicated under the conditions used, especially when a high CO₂ concentration was available.

Figure 3. A time course of growth of wild-type (open symbols) and Tm17 cells (closed symbols) of *Synechococcus* PCC7942. Actively growing cells were inoculated to a density of $0.1 A_{730}$ unit. Growth at air levels of CO₂ (circles) or 2% CO₂ in air (triangles) was followed by measuring the A_{730} .

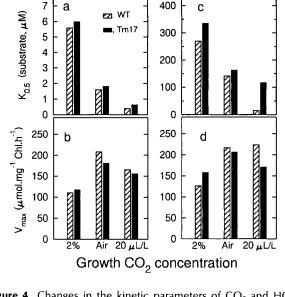
A higher internal C_i pool is normally observed in high CO_2 -requiring mutants with defects in the ability to utilize accumulated C_i for CO_2 fixation (Price and Badger, 1989d). However, when the C_i pool was measured in Tm17 cells, little difference was found relative to wild-type cells (Table II). Fully induced cells were able to accumulate nearly double the amount of C_i of that in air-grown cells. In wild-type cells, this larger C_i pool must have been accumulated by the induction of high-affinity transport of both CO_2 and HCO_3^- . In Tm17 cells, however, it is probably accumulated primarily by the CO_2 transport system in the absence of high-affinity HCO_3^- transport (see below).

Rubisco and CA Activity

CA and Rubisco are two important enzymes that affect the photosynthetic performance of cyanobacteria (Badger and Price, 1992). With improved procedures, two types of CA activity have been identified in cyanobacteria and can be distinguished by their sensitivity to inhibition by EZ (Price et al., 1992). The CA activity associated with purified carboxysomes has an I_{50} value for EZ inhibition of 4 μ M (Price et al., 1992), and the enzyme expressed in Escherichia coli had an I₅₀ of 2 μM (Yu et al., 1992). Carboxysomal CA activity was totally inhibited with 30 µM EZ. The other CA activity was much less sensitive to inhibition by EZ with a much higher $I_{50}(EZ)$ of about 150 μM (Price et al., 1992). Therefore, the low-I₅₀ (carboxysomal) and high-I₅₀ (possibly membrane bound in the C_i pump) CA activity can be measured separately, even in crude cell extracts, by the addition of 30 μ M EZ.

The results of CA and Rubisco activities measured in crude extracts of wild-type and Tm17 cells are given in Table III. In wild-type cells, when the growth CO₂ concentration decreased from air levels to 20 μ L L⁻, Rubisco activity remained constant, whereas CA activity, including both low- and high- I_{50} components, increased. This resulted in a significant increase in the ratio of CA to Rubisco (Table III; Price et al., 1992). A similar increase in this ratio was also observed in Tm17 cells, but it was due to the reduction in Rubisco activity rather than an increase in the CA activity, as in the wild-type cells. Although air-grown Tm17 cells showed CA activities

Table II. The internal C_i pool in wild-type and Tm17 cells


Cells were grown in liquid media at air level CO₂ or induced at 20 μ L L⁻¹ of CO₂ for 11 h. Measurements were made with 30 μ g mL⁻¹ of Chl in the presence of 1 mm NaHCO₃ and 20 mm glycoal-dehyde to inhibit CO₂ fixation under a light intensity of 300 μ mol of photons m⁻² s⁻¹. CA was added to the medium, and CO₂ concentrations were monitored by a mass spectrometer. When steady state was reached, light was turned off, and the amount of C_i evolved was taken as the size of the internal pool.

Cells	Growth [C _i]	Internal C _i Pool	
		тм	
Wild type	Air	27.6	
	20 µL L⁻¹	46.3	
Tm17	Air	23.2	
	20 µL L ⁻¹	40.6	

comparable to wild-type cells, virtually no increase was obtained when induced at 20 μ L L⁻¹ of CO₂. It is not clear whether the reduction in Rubisco activity was a positive adaptation to achieve a higher ratio of CA to Rubisco or a consequence of inhibition occurring under the experimental conditions, but it is unlikely that lower activities of these enzymes alone, in comparison to wild-type cells, could have contributed to the low photosynthetic efficiency observed (Figs. 1 and 2; Table I).

Uptake of CO₂ and HCO₃⁻ Before and After Induction

The C_i transport system is another essential component that determines the photosynthetic performance of cyanobacteria. We have developed a mass spectrometric disequilibrium technique to measure the uptake activity of both CO₂ and HCO3⁻ during steady-state photosynthesis (Badger et al., 1993). Compared to techniques used under non-steady-state conditions, such as the silicone oil centrifugation technique, this method provides a better estimation of C_i uptake and its interactions with other associated processes in the light. CO2 and HCO3⁻ uptake activities can be determined separately and $K_{0.5}(CO_2)$, $K_{0.5}(HCO_3^-)$, and V_{max} values can be estimated from respective substrate responses during steady-state photosynthesis. Figure 4 shows that there was no significant difference in CO₂ uptake between wild-type and Tm17 cells (Fig. 4, a and b). Both cells exhibited a stepwise increase in their affinity for CO_2 [decrease in $K_{0.5}(CO_2)$ values] as growth C_i decreased from 2% to 20 μ L L⁻¹ of CO₂, with V_{max} ranging from 100 to 200 μ mol mg⁻¹ of Chl h⁻¹. In contrast to CO_2 uptake, however, HCO3⁻ uptake in the mutant showed no significant decrease in the $K_{0.5}(\text{HCO}_3^-)$ values when growth C_i was reduced from air levels to 20 μ L L⁻¹ of CO₂ for 8 h, although partial induction was observed between cells grown at 2% and air CO₂ levels (Fig. 4c). The $K_{0.5}$ (HCO₃⁻) value obtained for fully induced cells was 117 µM in Tm17 cells, which was almost an order of magnitude higher than the value in wild-type cells of 15 μ M. In other words, wild-type cells are able to adapt to the Ci-limiting conditions by increasing the affinity of its C_i transport system for both CO₂ and HCO₃⁻, but Tm17 cells were only able to do so for CO₂ but not for HCO3⁻. Nevertheless, the maximal capacity for HCO₃⁻ transport in the mutant still reached a comparable level in the presence of higher substrate concentrations (Fig.

CO₂ uptake

Figure 4. Changes in the kinetic parameters of CO_2 and HCO_3^- uptake in wild-type (WT) and Tm17 cells of *Synechococcus* PCC7942 grown at different CO_2 concentrations. The values were estimated from substrate responses of CO_2 uptake (a and b) and HCO_3^- uptake (c and d) and represent the means of at least three measurements.

4d), saturating at 270 μ M HCO₃⁻ instead of 50 μ M in wild-type cells (data not shown).

Complementation with Genomic DNA Fragments

It appears that the low photosynthetic efficiency of Tm17 cells in C_i-limiting conditions is associated with defects in a number of physiological functions. To determine whether it is caused by multiple mutations or by a single mutation that affects the expression of all the other components, we attempted to isolate the complementary DNA fragment(s). The "dot" transformation procedure successfully used for complementation of type II mutants (Yu et al., 1992) did not work for Tm17 cells (not shown), probably because of the difficulty of CO_2 penetration into the top agarose. Complementation

Table III. Rubisco and CA activity in crude extracts of wild-type and mutant TM17 cells Cells were grown at air level CO₂ and 100 μmol of photons m⁻² s⁻¹ light to a Chl content of about 3 μg mL⁻¹. Half of the culture was then induced at 20 μL L⁻¹ of CO₂ for 18 h with 40 μmol of photons m⁻² s⁻¹ (to minimize photoinhibition). Low-*I*₅₀ CA activity was that which is inhibited by 30 μm EZ and the remaining activity was regarded as high-*I*₅₀ activity (Price et al., 1992; Yu et al., 1992). The data are the means of four measurements.

Cells	Growth [CO2]	Rubisco	CA			Ratio of Low-
			Total	High I50	Low Iso	I₅o CA to Rubisco
		µmol mg ⁻¹ of Chl min ⁻¹	units mg ⁻¹ of Chl			
Wild type	Air (340 µL L ⁻¹)	1.52	11.0	2.3	8.7	5.7
	20 μ L L ⁻¹	1.47	18.2	4.8	13.4	9.1
Tm17	Air (340 µL L ^{−1})	1.38	10.0	2.7	7.3	5.3
	20 µL L ⁻¹	0.87	10.9	2.9	8.0	9.2

HCO3⁻ uptake

was observed when mutant cells were first incubated with wild-type genomic DNA and then spread on normal TTES plates. The efficiency of transformation varied greatly with restriction fragments generated with different restriction endonucleases (data not shown). DNA cut with the restriction enzyme EcoRI gave high transformation efficiency. Complementation with fractionated EcoRI fragments indicated that the complementary fragment has a size in the range of 8 to 10 kb. In an attempt to clone the complementing gene, the DNA fragments in the fraction enriched with the complementary fragment were inserted into the pUC18 plasmid and propagated in the E. coli strain JM109. However, no complementation was observed with more than 700 individual clones tested. Using the same procedure (with 0.5 μ g of plasmid DNA), we have also tried to complement Tm17, without success, with an 8.5-kb clone containing rbcL and a number of carboxysomal genes (Price and Badger, 1991) and the 3.5-kb pT2 clone containing the carboxysomal CA gene (Yu et al., 1992). Other approaches are being explored in an attempt to identify the mutation and the gene product responsible for the phenotype observed.

DISCUSSION

Screening with air as a permissive CO2 concentration and 20 μ L L⁻¹ as a nonpermissive CO₂ concentration, we have obtained a new class of chemically induced mutants from Synechococcus PCC7942. The Tm17 mutant presented in this article showed little difference from the wild-type cells when the growth C_i was at or above air levels of CO₂, with respect to photosynthetic performance (Figs. 1 and 2, Table I), growth (Fig. 3), internal C_i pool sizes (Table II), CA and Rubisco activities (Table III), and Ci transport (Fig. 4). It is only when the cells were induced at very low C_i (20 μ L L⁻¹ of CO₂ in air) that significant differences were observed. In Tm17 cells, all parameters examined, except CO2 transport and internal C_i pool sizes, failed to induce when the cells were transferred from air to 20 μ L L⁻¹ of CO₂. In fact, the mutant was not able to survive prolonged incubation under severely Ci-limited conditions. Recently, Ogawa (1992b) reported the isolation of a Synechocystis PCC6803 mutant (SC) that also grows normally at air levels of CO2 but is unable to grow at CO2 concentrations less than 80 µL L⁻¹. In direct contrast to our mutant Tm17, however, mutant SC has a defect only in CO2 transport but not in HCO3⁻ transport. Nevertheless, the results from these two mutants indicate that CO₂ and HCO₃⁻ transport can be manipulated separately and that they are apparently mediated by separate systems. Unfortunately, the mutagenesis procedure for the isolation of mutant SC was not presented, which may be used in Synechococcus PCC7942.

It is reasonable to assume that carboxysomal CO_2 fixation and membrane C_i transport are the primary factors determining the photosynthetic efficiency of cyanobacteria (Badger and Price, 1992). In addition, Rubisco and CA are two of the primary enzymes involved in CO_2 fixation. Wild-type cells normally have higher activities of these enzymes when they adapt to low C_i conditions (Table III; Price et al., 1992). The lack of such an increase in Tm17 cells (Table III) could have been partly responsible for the low photosynthetic efficiency observed under C_i -limiting conditions (Figs. 1 and 2; Table I). Results of DNA complementation, however, indicated that the mutation responsible for the phenotype is not in the structural genes or upstream-flanking regions of these enzymes.

It is possible that a lower photosynthetic efficiency in Tm17 cells is a result of the lack of induction of the high-affinity HCO_3^- uptake mechanism (Fig. 4). The C_i transport system in wild-type cells, when adapted to 20 μ L L⁻¹ of CO₂ in air, has a very high affinity for HCO_3^- , with a $K_{0.5}(HCO_3^-)$ value of 10 μ M and a maximal activity of 220 μ mol of HCO₃⁻ mg⁻¹ of Chl h^{-1} saturated at less than 0.1 mM HCO₃⁻ (Fig. 4). This high-affinity HCO3⁻ uptake, however, was not detected in Tm17 cells (Fig. 4). There are two types of high-affinity HCO3⁻ uptake, i.e. Na⁺ dependent and Na⁺ independent (Espie et al., 1991). Na⁺-independent HCO₃⁻ transport becomes significant when cells are grown in standing culture or bubbling with 30 μ L L⁻¹ of CO₂ in air. If a defect in Na⁺independent HCO3⁻ transport were responsible for the phenotype of Tm17 cells, then such transport must be an essential part of the C_i transport system in cyanobacteria during adaptation to an extremely low C_i environment. However, we have found that HCO3⁻ transport is tightly feedback regulated by CO₂ fixation (our unpublished data). A low-affinity HCO₃⁻ uptake could be the result of a slightly impaired ability to fix CO₂ within the cell, as may be caused by the failure to induce carboxysomal CA (Table III).

Another way to explain the mutant phenotype in Tm17 is to postulate that the cells lack a single factor that involves detection and/or production of an inducing signal. This common factor might be required for expression of components that confer high photosynthetic efficiency on the cell, e.g. a higher carboxysomal CA activity (Table III; Price et al., 1992) and a high-affinity component(s) for C_i uptake. At present, very little is known about the way that cyanobacteria detect a decrease in CO₂ concentrations, the transduction pathways that lead to gene expression, and the regulatory mechanisms that control and coordinate the interaction between various components. Variation of the ratio of carboxylase to oxygenase activity of Rubisco on transfer to low C_i has been proposed to be involved in induction, and phosphoglycolate has been suggested to be a signal for adaptation to low CO₂ conditions (Marcus et al., 1983). Alternatively, the cells might be able to directly monitor the CO₂ concentration in the external medium, e.g. by a promoter that is activated by low CO₂ concentration (Scanlan et al., 1990). These possibilities require further analysis. Complementation of Tm17 by wildtype genomic DNA indicates that the mutation is located in an 8- to 10-kb EcoRI fragment. Cloning and analysis of this fragment, currently in progress, may shed some light on the complex mechanism of how cyanobacteria detect and adapt to low CO₂ concentrations.

Received July 26, 1993; accepted November 12, 1993. Copyright Clearance Center: 0032-0889/94/104/0605/07.

LITERATURE CITED

- Badger MR, Andrews TJ (1982) Photosynthesis and inorganic carbon usage by the marine cyanobacterium, *Synechococcus* sp. Plant Physiol **70**: 517–523
- Badger MR, Gallagher A (1987) Adaptation of photosynthetic CO2

and HCO_3^- accumulation by the cyanobacterium *Synechococcus* PCC6301 to growth at different inorganic carbon concentrations. Aust J Plant Physiol **14**: 189–201

- **Badger MR, Palmqvist K, Yu J-W** (1993) Measurement of CO₂ and HCO₃⁻ fluxes in cyanobacteria and microalgae during steady-state photosynthesis. Physiol Plant (in press)
- Badger MR, Price GD (1992) The CO₂ concentrating mechanism in cyanobacteria and microalgae. Physiol Plant 84: 606–615
- Badger MR, Price GD, Yu J-W (1991) Selection and analysis of mutants of the CO₂ concentrating mechanism in cyanobacteria. Can J Bot 69: 974–983
- Dzelzkalns VA, Owens GC, Bogorad L (1984) Chloroplast promoter driven expression of the chloramphenicol acetyl transferase gene in a cyanobacterium. Nucleic Acids Res 12: 8917–8925
- **Espie GS, Miller GM, Kandasamy RA, Canvin DT** (1991) Active HCO₃⁻ transport in cyanobacteria. Can J Bot **69**: 936–944
- Fukuzawa H, Suzuki E, Komukal Y, Miyachi S (1992) A gene homologous to chloroplastic carbonic anhydrase (*icfA*) is essential to photosynthetic carbon fixation in the cyanobacterium, *Synechococcus* sp. PCC7942. Proc Natl Acad Sci USA 89: 4437–4441
- Marcus Y, Harel E, Kaplan A (1983) Adaptation of the cyanobacterium Anabaena variabilis to low CO₂ concentration in their environment. Plant Physiol 71: 208–210
- **Marcus Y, Zenvirth D, Harel E, Kaplan A** (1982) Induction of HCO_3^- transporting capability and high photosynthetic affinity to inorganic carbon by low concentration of CO_2 in *Anabaena variabilis*. Plant Physiol **69**: 1008–1012
- Mayo WP, Williams TG, Birch DG, Turpin DH (1986) Photosynthetic adaptation by Synechococcus leopoliensis in response to exogenous dissolved inorganic carbon. Plant Physiol 80: 1038–1040
- Miller AG, Espie GS, Canvin DT (1991) Active CO₂ transport in cyanobacteria. Can J Bot 69: 925–935
- **Ogawa T** (1992a) Identification and characterization of the *ictA/ ndhL* gene product essential to inorganic carbon transport of Synechocystis PCC6803. Plant Physiol **99:** 1604–1608
- Ogawa T (1992b) NAD(P)H dehydrogenase: a component of PS-I cyclic electron flow driving inorganic carbon transport in cyanobacteria. In N Murata, ed, Research in Photosynthesis, Vol III. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 763-770
- Price GD, Badger MR (1989a) Ethoxyzolamide inhibition of CO₂ uptake in the cyanobacterium Synechococcus PCC7942 without apparent inhibition of internal carbonic anhydrase activity. Plant Physiol 89: 37–43

- Price GD, Badger MR (1989b) Ethoxyzolamide inhibition of CO₂dependent photosynthesis in the cyanobacterium Synechococcus PCC7942. Plant Physiol 89: 44–50
- Price GD, Badger MR (1989c) Expression of human carbonic anhydrase in the cyanobacterium Synechococcus PCC7942 creates a high CO₂-requiring phenotype. Evidence for a central role for carboxysomes in the CO₂ concentrating mechanism. Plant Physiol 91: 505–513
- Price GD, Badger MR (1989d) Isolation and characterization of high CO₂-requiring mutants of the cyanobacterium *Synechococcus* PCC7942. Two phenotypes that accumulate inorganic carbon but are apparently unable to generate CO₂ within the carboxysome. Plant Physiol **91**: 514–525
- Price GD, Badger MR (1991) Evidence for the role of carboxysomes in the cyanobacterial CO₂ concentrating mechanism. Can J Bot 69: 963–973
- Price GD, Coleman JR, Badger MR (1992) Association of carbonic anhydrase activity with carboxysomes isolated from the cyanobacterium, *Synechococcus* PCC7942. Plant Physiol 100: 784–793
- Reinhold L, Zviman M, Kaplan A (1989) A quantitative model for inorganic carbon fluxes and photosynthesis in cyanobacteria. Plant Physiol Biochem 27: 945–954
- Rippka R, Waterbury JB, Stanier RY (1981) Isolation and purification of cyanobacteria: some general principles. *In* MP Staff, H Stolp, HG Truper, A Balows, HG Schlegel, eds, The Prokaryotes. Springer-Verlag, Berlin, pp 212–220
- Scanlan DJ, Bloye SA, Mann NH, Hodgson DA, Carr NG (1990) Construction of LacZ promoter probe vectors for use in Synechococcus: application to the identification of CO₂-regulated promoters. Gene 90: 43–49
- Turpin DH, Miller AG, Canvin DT (1984) Carboxysome content of Synechococcus leopoliensis (Cyanophyta) in response to inorganic carbon. J Phycol 20: 249–253
- Volokita M, Zenvirth D, Kaplan A, Reinhold L (1984) Nature of the inorganic carbon species actively taken up by the cyanobacterium Anabaena variablis. Plant Physiol 76: 599–602
- Wintermans JFGM, de Mots A (1965) Spectrophotometric characteristics of chlorophylls *a* and *b* and their pheophytins in ethanol. Biochim Biophys Acta **109**: 448–453
- Yu J-W, Price GD, Song L, Badger MR (1992) Isolation of a putative carboxysomal carbonic anhydrase gene from the cyanobacterium *Synechococcus* PCC7942. Plant Physiol 100: 794-800