
Plant Physiol. (1994) 105: 699-706 

Cell Expansion and Tracheary Element Differentiation Are 
Regulated by Extracellular pH in Mesophyll Cultures of 

Zinnia elegans L.' 

Alison W. Roberts* and Candace H. Haigler 

Botany Department, University of Rhode Island, Kingston, Rhode lsland 02881 (A.W.R.); and Department of 
Biological Sciences, Texas Tech University, Lubbock, Texas 79409 (C.H.H.) 

as well as cell expansion in a variety of cell cultures (Minocha, 
1987). For example, embryogenic carrot cultures can be main- 
tained as preglobular stage proembryos at pH 4.0 but form 
mature embryos at pH 5.8 (Smith and m o n a n ,  1990a, 
1990b, 1992). tobacco thin-layer cultures, high p~ h- 
creased the ratio of flower bud to vegetative bud formation 
(Cousson et al., 1989, 1992; Pasqua et al., 1991). Shoot 

gation was promoted at pH 4.8 in Euphorbia fulgens cultures 
(Zhang and Stoltzg 1989). In cultured CimS fmit vesiclesg TE 
differentiation had a pH o p h u m  of 5.0 to 6.0 (Khan et al., 
1986). With a few exceptions (Cousson et al., 1992; Smith 
and Krikorian, 1992), these studies were camed out in un- 
buffered medium. In one case (Pasqua et al., 1991), reported 
p~ changes of buffered cultures were nearly identical with 
those of unbuffered cultures. 

Few systematic studies have been camed out to character- 
these effectst 'Onsidenng the potential influente Of extra- 

cellular pH On the growth and differentiation Of cultured 
Plant cells (for review, see Minochat 1987). In many of the 
studies in which pH-dependent effects on p w t h  and de- 
velopment were noted, cultures were not buffered and pH 
was not monitored throughout the culture period (Banthorpe 
and Brown, 1990). It is difficult to draw conclusions from 
these studies, since it is clear that pH can fluctuate dramati- 
cally in unbuffered plant cell cultures. Suspension cultures of 
mesophyll cells isolated from the leaves of Zinnia elegans L. 
have been used extensively to investigate cellular processes 
involved in the differentiation of TEs (Fukuda and Koma- 
mine, 1985; Fukuda, 1989,1992; Seagull and Falconer, 1991). 
Here we report the influence of extracellular pH on cell 
expansion, as well as the timing of differentiation and the 
size and secondary cell wall pattem of resulting TEs. 

The effeds of medium pH on cell expansion and tracheary 
element (TE) differentiation were investigated in differentiating 
mesophyll suspension cultures of Zinnia elegans 1. In unbuffered 
cultures initially adjusted to pH 5.5, the medium pH fluduated 
reproducibly, decreasing about 1 unit prior to the onset of TE 
differentiation and then increasing when the initiation of new TEs 
was complete. Elimination of large pH fluctuations by buffering 

acid altered both cell expansion and TE differentiation, whereas 
altering the starting pH of unbuffered culture medium had no 
effed on either process. Cell expansion in buffered cultures was 
pH dependent with an optimum of 5.5 to 6.0. The direction of cell 
expansion was also pH dependent in buffered cultures. Cells elon- 
gated at pH 5.5 to 6.0, whereas isodiametric cell expansion was 
predominant at pH 6.5 to 7.0. The onset of TE differentiation was 
delayed when the pH was buffered higher or lower than 5.0. 
However, TEs eventually appeared in cultures buffered at pH 6.5 
to 7.0, indicating that a decrease in pH to 5.0 i s  not necessary for 
differentiation. Very large TEs with secondary cell wall thickenings 
resembling metaxylem differentiated in cultures buffered at pH 5.5 
to 6.0, which also showed the greatest cell expansion. The corre- 
lation between cell expansion and delayed differentiation of large, 
metaxylem-like TEs may indicate a link between the regulatory 
mechanisms controlling cell expansion and TE differentiation. 

the culture medium with 20 m,+q 2-(N-morpholino)ethanesulfonic proliferation was promoted at pH 5.4t whereas shoot 

The acid growth hypothesis (Cleland, 1971; Hager et al., 
1971) has served as a working model for the regulation of 
cell expansion for two decades and the predictions of this 
model have been demonstrated in a variety of plant tissues 
(Taiz, 1984; Rayle and Cleland, 1992). However, in some cell 
cultures the pH optimum for cell expansion has been shown 
to be higher than predicted by the acid growth hypothesis 
(Nesius and Fletcher, 1973; Smith and Krikorian, 1992). It 
has also been shown that long-term auxin-induced growth 
in coleoptiles has a pH optimum higher than predicted by 
the acid growth hypothesis (Cleland, 1992). These observa- 
tions indicate that factors other than acid-induced cell 
wall loosening may control cell expansion under Some 
circumstances. 

Medium pH has been reported to influence morphogenesis 

MATERIALS AND METHODS 

Isolated mesophyll cells from Zinnia elegans L. var Envy 
were cultured in shell vials as described previously (Roberts 
and Haigler, 1990). Growth regulators in the inductive me- 
dium included 0.5 @ and 0.9 PM BA. For most exper- 
iments, buffered media were prepared with 20 m~ Mes-free 
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Some cultures were buffered with one of the following at 20 
mM: sodium potassium tartrate/HCl, sodium acetate/acetic 
acid, sodium citrate/citric acid, maleic acid/NaOH, potassium 
biphthalate/NaOH, glycyl-glycine/piperazine, succinic acid/ 
NaOH, or sodium potassium phosphate. The pH was ad- 
justed before autoclaving and was checked afterward. 

Culture medium pH was measured at daily intervals using 
an Accumet model925 H*/ion meter (Fisher Scientific, Pitts- 
burgh, PA) and Sure-Flow semi-microelectrode (Orion Re- 
search, Inc., Boston, MA). Osmolarity was detennined by 
vapor pressure osmometry (Wescor, Logan, UT). 

The secondary cell wall thickenings characteristic of TEs 
were detected by fluorescence microscopy using an epifluo- 
rescence microscope (Olympus BH-2) and UV filter pack after 
glutaraldehyde-fixed cell suspensions were stained with 
0.01% (w/v) Tinopal LPW in 0.05 M phosphate buffer (pH 
7.2). Differentiation was scored as described previously (Rob- 
erts and Haigler, 1990). Points on graphs indicate the means 
of three to four replicates from a single representative exper- 
iment, and error bars indicate the SD of the sample. A11 
experiments were repeated at least twice with similar results. 

Cell areas were measured using a computer image analysis 
system consisting of an Olympus Vanox microscope, Hitachi 
video camera, IBM PCAT computer, digitizing tablet, and 
Microcomp planar morphometry software (Southem Micro 
Instruments, Inc., Atlanta, GA). Fifty cells were measured 
from each of three replicate samples for each treatment. The 
relationships among TE length, width, and secondary cell 
wall pattem were investigated by classifying each TE accord- 
ing to cell wall pattem and measuring its length and width 
by computer image analysis. For irregularly shaped cells, 
widths were always measured at the widest point and per- 
pendicular to the length. Secondary cell wall pattems were 
classified as helical, helical-reticulate, reticulate, or pitted 
according to the method of Bierhorst (1960). 

Photomicrographs were produced using Tmax 100 film 
and developer (Kodak, Rochester, NY) and a Zeiss Universal 
microscope with bright-field optics. 

RESULTS 

Changes in the pH of the Culture Medium during 
TE Differentiation 

Unbuffered culture medlum was adjusted to pH 5.5 before 
autoclaving and measured 5.3 to. 5.7 after autoclaving. As 
described previously (Roberts et al., 1992, and refs. therein), 
TE differentiation in Zinnia mesophyll suspension cultures 
was first detectable with fluorescence microscopy at 48 to 60 
h in culture and reached a maximum of 50 to 70% of living 
cells about 20 h later (Fig. 1). A comparison of the time 
courses of TE appearance and pH fluctuation shows an initial 
increase in pH during the first 24 h, followed by a decrease 
in pH prior to the onset of TE differentiation (Fig. 1). The pH 
remained below 5.0 during the initiation of new TEs (45-76 
h). When new TEs ceased to appear (79 h) the pH increased 
(Fig. 1) and eventually stabilized at about pH 5.5 (data not 
shown). Although the time of first TE appearance varied 
among experiments, the correlation between TE formation 
and the decrease in pH was highly reproducible, being con- 
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Figure 1. Time courses of differentiation (O) and change in extra- 
cellular pH (O) in suspension cultures of Zinnia mesophyll cells. 
Percentage differentiation was determined by fluorescerice micros- 
copy with ‘Tinopal LPW staining. 

sistent in at least 18 separate tials. When differentcation was 
deliberately delayed by reducing the mannitol concentration 
of the culture medium to 0.1 M (Roberts et al., L992), the 
decrease in pH was also delayed and again conaesponded 
with the onset of differentiation (data not shown). 

The normal fluctuations in medium pH were prevented by 
buffering the medium with 20 m~ Mes at starting pH 4.5, 
5.0, 5.5, 6.0, 6.5, or 7.0. The change in pH under these 
conditions was C0.5 pH units throughout the 8-d culture 
period foi- a11 but one treatment (data not shown). Mes- 
buffered medium initially adjusted to pH 4.5 increased to 4.7 
during autoclaving and to 5.2 after 8 d in culture. ‘Ws is not 
unexpected since the pK, of Mes is 6.1. Cells were also 
cultured iin unbuffered medium adjusted to pH 4 O, 5.5, or 
7.0 before autoclaving. Autoclaving altered the pH of these 
media slightly. The pH of the three media converged during 
the first 24 h after inoculation and then decreased below pH 
5.0 during TE initiation (data not shown). 

Media were buffered with 20 m~ acetate, citrate, maleate, 
phthalate, glycyl-glycine/piperazine, succinate, tartrate, or 
phosphate in an attempt to mimic the effects of buffering 
with Mes. However, cells were not viable in media buffered 
with acetate, citrate, maleate, and phthalate. Glycyl-glycinel 
piperazinc reduced cell viability, especially above pH 5.0. 
Phosphate buffer did not maintain the culture pH. Succinate 
and tartra te induced cell expansion, but only a few large TE 
differentiated in media containing these buffers. 

Effect of piH on Cell Expansion 

The expansion of Zinnia mesophyll cells was pH dlependent 
in Mes-buffered culture medium. During the first 3 d in 
culture the mean projected cell area as measured by image 
analysis inicreased more rapidly in medla buffered at pH 5.5 
to 6.5 com.pared to unbuffered medium or media buffered at 
pH 4.5 to 5.0 and pH 7.0 (Fig. 2). Cells became difficult to 
measure after 60 h because of extensive cell division. 
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Figure 2. Mean projected cell area at 25 h in culture (solid bars) 
and 59 h in culture (shaded bars) of Zinnia mesophyll cells incubated 
in unbuffered medium and buffered medium adjusted to various 
pHs. 

Differences in the orientation of cell enlargement were 
apparent by 96 h (Fig. 3). Cells cultured in medium buffered 
at pH 4.5 to 5.0 (Fig. 3, C and D) were similar in appearance 
to cells cultured in unbuffered medium throughout the cul- 
ture period (Fig. 3B). When the culture medium was buffered 
at pH 5.5 to 6.0, cells became strikingly elongated (Fig. 3, E 
and F). In contrast, cells expanded isodiametrically when 
culture medium was buffered at pH 6.5 to 7.0 (Fig. 3, G 
and H). 

Effect of pH on TE Differentiation 

Changes in the pH of Mes-buffered culture medium altered 
the timing, synchrony, and final percentage of TE differen- 
tiation (Table I). The time of appearance of TEs as detected 
by Tinopal LPW fluorescence in unbuffered and Mes-buff- 
ered culture medium (pH 4.5-7.0) is shown in Table I. The 
first TEs appeared at about the same time in unbuffered 
medium and medium buffered at pH 5.0. In some experi- 
ments differentiation was detected slightly earlier in pH 5.0 
buffered medium compared to unbuffered medium, but the 
increase in percentage of differentiation was always less rapid 
in buffered medium. The delay in differentiation increased 
with increasing pH above the optimum of pH 5.0, with no 
differentiation detected in medium buffered at pH 7.0 until 
d 8 or 9 (data not shown). Differentiation was also less 
synchronous in buffered cultures, in which new TEs contin- 
ued to appear for 5 d or more. In unbuffered cultures, new 
TEs stopped appearing 20 h after the first ones were observed, 
except for a second asynchronous "burst" of differentiation 
beginning after about 6 d (Falconer and Seagull, 1988). The 
final percentage of differentiation in cultures buffered at pH 
4.5 to 6.0 approached the percentages measured in unbuf- 
fered cultures. In cultures buffered at pH 6.5 to 7.0 the 
percentage of differentiation was never above 2%, even after 
9 d (data not shown). 

Medium pH also altered the size, shape, and secondary 

cell wall pattems of TEs as illustrated in Figure 4. These 
differences were quantified by measuring the lengths and 
widths of TEs from 132-h cultures (unbuffered and buffered 
at pH 4.5-6.0) and 197-h cultures (buffered at pH 6.5-7.0) 
by image analysis. TEs in these cultures were also scored for 
secondary cell wall pattem based on the following criteria 
(Bierhorst, 1960): helical pattems were defined as having 
transverse bands with no apparent connecting bands (Fig. 
4A), helically reticulate pattems had generally helical pattems 
with forks and anastomoses (Fig. 4B), reticulate pattems had 
a netted thickening pattem (Fig. 4C), and pitted cells had 
secondary wall material covering the entire cell except for 
small, nearly round pits (Fig. 4D). To avoid classifying TEs 
on the basis of immature cell wall pattems that could change 
because of continued cell wall deposition (Falconer and Sea- 
gull, 1988), only autolyzed TEs were counted. When the 
secondary cell wall pattem varied over the cell surface, the 
cell was categorized according to the most complex pattem. 
Unbuffered cultures were scored before the second burst of 
differentiation, during which very large TEs with predomi- 
nantly reticulate or pitted secondary cell wall pattems form 
(Falconer and Seagull, 1988). 

The mean lengths and widths of TEs from various buffered 
media are summarized in Figure 5A. The length of TEs 
peaked at pH 6.0, whereas width increased with pH to 7.0. 
The only exception to this pattem was the occurrence of 
longer and wider cells at pH 4.5 than at pH 5.0. It should be 
noted that the delay of differentiation was also greater at pH 
4.5 than at pH 5.0. The secondary cell walls of the larger TEs 
that differentiated at high pH were predominantly 'metaxy- 
lem-like," with a greater proportion of reticulate or pitted 
pattems, rather than the 'protoxylem-like" helical or helical- 
reticulate pattems most common in unbuffered medium (Fig. 
5B). Cultures buffered at pH 4.5 to 5.5 had nearly equal 
proportions of metaxylem-like and protoxylem-like TEs. 

Based on the results summarized in Figure 5, we surmised 
that secondary cell wall pattem had a greater dependence on 
cell width than on cell length. When the lengths and widths 
of individual TEs from a11 treatments were plotted, cells with 
different secondary cell wall pattems formed clusters that 
tended to separate along the axis describing cell width (Fig. 
6). A plot of the mean lengths and widths of TEs with 
different cell wall patterns also reflected a relationship be- 
tween cell geometry and wall pattem (Fig. 6, inset). 

In contrast to results obtained with buffered cultures, al- 
tering the initial pH of unbuffered culture medium (pH 4.0- 
7.0) had no effect on cell expansion or differentiation. Fur- 
thermore, no difference in the time course of differentiation 
or in the appearance of TEs or undifferentiated cells could be 
detected (data not shown). 

DlSCUSSlON 

The pH 5.5 to 6.0 optimum for cell expansion in Mes- 
buffered Zinnia suspension cultures is higher than the pH 
4.0 to 4.5 optimum predicted by the acid growth hypothesis 
(Rayle and Cleland, 1977, 1992; Taiz, 1984). However, higher 
pH optima for expansion of cultured cells have been noted 
previously. For example in carrot cell cultures, cell expansion 
was inhibited when the medium was buffered at pH 4.0 but 
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stimulated when cells were transferred to medium buffered
at pH 5.8 with or without auxin (Smith and Krikorian, 1992).
Cultured rose cells had a pH optimum for growth (measured
as increase in fresh weight) of 5.2 to 5.4 during the cell
division phase and an optimum of pH 5.8 to 6.0 during the
cell expansion phase (Nesius and Fletcher, 1973). Recently it
has been shown that the pH optimum for long-term auxin-
induced growth in Avena coleoptiles is higher than 5.0 (Cle-
land, 1992). In this tissue the pH optimum for growth was
<5.0 during the first 1 to 2 h after auxin treatment but
increased to 5.5 to 6.0 after 2 h. It was proposed that the
initial auxin-induced growth phase was regulated by extra-
cellular acidification but that prolonged growth was con-
trolled by a different auxin-mediated process with a less
acidic pH optimum. The higher pH optimum for cell expan-
sion in Zinnia cultures is consistent with a growth control
mechanism similar to long-term auxin-induced growth in
intact organs. It is interesting that buffering influences the
direction as well as the magnitude of cell expansion, indicat-
ing that pH effects are not solely due to general cell wall

Table I. Time of first appearance of TEs and final percentage
differentiation in unbuffered cultures and cultures buffered with 20
HIM Mes at pH 4.5 to 7.0

Treatment

-Mesa

pH 4.5
pHS.O
pH 5.5
pH 6.0
pH6.5
pH 7.0

Time of TE
Appearance

h in culture
59
72
59
72
96

184
197

Final Percentage
Differentiation

(at 197 h in culture)

47.3 (52.5)b

47.4
43.3
39.2
53.6
<1
<1

' Initial pH was 5.5. b In this treatment the percentage differ-
entiation declined after reaching a peak of 52.5 at 72 h. The decline
was due to division of nondifferentiated cells.

B

/<* ;1

( pH 5.0

Figure 3. Micrographs of Zinnia mesophyll cells cultured under different conditions of extracellular pH. A, Freshly
isolated cells. B, Cells cultured for 96 h in unbuffered medium. C to H, Cells cultured for 96 h in medium buffered with
20 mM Mes initially adjusted to the pH shown in the lower left of each micrograph. Bar = 50 jim.
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Figure 4. TEs representing each of the four classes of secondary
cell wall patterns: A, helical; B, helical reticulate; C, reticulate; D,
pitted. Bar = 10 urn.

relaxation, which would be expected to alter only the mag-
nitude of cell expansion. Because auxins are weak acids, their
uptake is influenced by extracellular pH (Raven, 1975). For
example, the uptake of IAA is reduced by about 30% at pH
6.0 compared to 5.0 and by an additional 10% at pH 7.0
compared to pH 6.0 (Raven, 1975). However, all buffered
cultures in this study contained 0.5 HM NAA even though
Zinnia cells expand maximally with 0.038 to 0.5 ^.M NAA
(Roberts et al., 1993). Therefore, altered NAA uptake is not
likely the primary explanation for the effect of extracellular
pH on cell expansion.

The coincidence of medium acidification with the onset of
differentiation, along with the observation that cultures buff-
ered at pH 5.0 produce TEs earlier than any other buffered
cultures, indicates a pH optimum for differentiation of 5.0. A
pH optimum of 5.0 to 6.0 has also been noted for TE
differentiation in citrus vesicle cultures (Khan et al., 1986).
Extracellular pH fluctuations observed previously in unbuf-
fered plant cell cultures are species specific and may include
acidification or alkalinization (Minocha, 1987). In most cases
the processes leading to these fluctuations are unknown.
However, use of ammonia rather than nitrate as a nitrogen
source may result in medium acidification (Veliky and Rose,
1973; Martin et al., 1977). In differentiating Zinnia cultures,
the decrease in pH below 5.0 in unbuffered cultures is closely
correlated with the period of secondary cell wall deposition,
even when differentiation is delayed. Therefore, it is likely

-MES pH 4.5 pH 5.0 pH 5.5 pH 6.0 pH 6.5 pH 7.0

-MES pH4.5 pH 5.0 pH 5.5 pH 6.0 pH 6.5 pH7.0

Treatment

Figure 5. Characteristics of TEs formed under different conditions
of extracellular pH. Measurements were made at 132 h for unbuf-
fered cultures and cultures buffered at pH 4.5 to 6.0 and at 197 h
for cultures buffered at pH 6.5 to 7.0. Fifty TEs from each treatment
were measured. A, Mean length (solid bars) and width (shaded
bars) of TEs as measured by image analysis. B, Percentage of TEs
with secondary cell wall patterns of each of the four types: helical
(solid bars), helical-reticulate (striped bars), reticulate (shaded bars),
and pitted (open bars).
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Figure 6. Scatter plot illustrating clustering of helical (O, hei), helical 
reticulate (O, h-r), reticulate (O, ret), and pitted (W, pit) TEs according 
to length and width. Data were pooled from all treatments repre- 
sented in Figure 5. Inset, Mean length (solid bars) and width (shaded 
bars) of TEs of four types. 

that the decrease in pH is related to differentiation rather 
than other factors such as nutritional status. The pH decrease 
is also not correlated with the onset of cell division, which 
begins much earlier (Roberts et al., 1992). However, pH 5.0 
is not necessary for differentiation, since TEs develop abun- 
dantly in buffered medium in which the pH never decreases 
below 5.8. Although differentiation was delayed in most Mes- 
buffered cultures, the magnitude of the delay was pH de- 
pendent and TEs formed in pH 5.0 Mes-buffered cultures at 
about the same time as in unbuffered cultures, indicating that 
the delay could not be attributed to Mes alone. Reduced NAA 
uptake is not a likely explanation for delayed differentiation, 
since reduction in the auxin concentration has been shown 
to inhibit, but not delay, differentiation in these cultures 
(Church and Galston, 1988). However, it is possible that 
reduced NAA uptake plays a role in the inhibition of differ- 
entiation at pH 6.5 to 7.0. 

The larger TEs that develop in buffered cultures could 
result directly from either pH-dependent stimulation of cell 
expansion or pH-dependent delay in differentiation. In the 
first case, higher pH directly stimulates cell expansion and 
indirectly causes a delay in differentiation, which cannot 
begin until expansion ceases. In the second case, the higher 
pH directly delays the onset of differentiation so that cells 
have a longer period of time to expand before the secondary 
wall is deposited. The second case is less likely, since cells in 
cultures buffered at pH 5.5 to 6.0 have already expanded 
more than cells in unbuffered cultures long before TE differ- 
entiation starts. 

Cultured Zinnia mesophyll cells express polar de welopment 
despite the apolarity of a swirling cell suspension. For ex- 
ample, it has been noted that secondary cell wall tlhickenings 
are always deposited perpendicularly to the longitudinal axis 
of the differentiating cell, except when cultures are treated 
with cytoskeleton-disrupting drugs such as taxo1 (Falconer 
and Seagull, 1985). This indicates that the in situ polarity of 
the mesophyll cells is retained in culture and thar the cyto- 
skeleton inay play a role in maintaining this polaiity. Extra- 
cellular pH modifies the expression of cell polarity in Zinnia 
cultures, and again the cytoskeleton is implicaíed. Much 
evidence supports the role of microtubules in controlling 
cellulose imicrofibril orientation and thus the direciion of cell 
expansiori (Shibaoka, 199 1). Furthermore, a relationship be- 
tween extracellular pH and the orientation of corhcal micro- 
tubules has been established in the giant cells of the alga 
Chara (Wasteneys and Williamson, 1992), which exhibit 
banded pattems of net proton efflux (acid bands) and net 
proton influx (alkaline bands). The acid bands of maturing 
cells contain parallel microtubules, whereas microtubules in 
the alkaliine bands are not ordered. The cell elongation that 
occurs at pH 5.5 to 6.0 in Zinnia cultures would be consistent 
with ordered arrays of microtubules as seen in the ,tcid bands 
of Chara, whereas isodiametric growth that occuis at more 
alkaline pH would be consistent with less ordered microtu- 
bule arrays. We are now using immunofluorescence micros- 
copy to investigate the effect of extracellular pH on micro- 
tubule orientation in Zinnia suspensions. 

The pH-dependent alteration in cell size and shape in 
Zinnia cultures correlates with changes in the secondary cell 
wall, with larger diameter cells having metaxyleni-like reti- 
culate or pitted pattems. Previous observations have indi- 
cated thai the secondary cell wall pattem is influenced by 
cell shape and the 'prebundling" microtubule array present 
at the omet of rearrangement for secondary cell wall depo- 
sition. Falconer and Seagull (1986) showed that, when cell 
shape in Zinnia cultures was changed from elongated to 
spherical with microtubule-disrupting drugs, microtubule ar- 
rays refonned in random arrays after drug removal. Spherical 
cells with random microtubule arrays formed secondary cell 
walls in "webbed" pattems, which resembled those <%ssociated 
with metaxylem. However, since microtubule arrajrs and cell 
shape could not be altered independently, it was not possible 
to determine whether the prebundling microtubiile arrays 
were the primary determinant of secondary cell wall pattem, 
or whether cell shape exerted primary control over the re- 
forming nzicrotubule arrays, which in tum influmced the 
secondary cell wall pattem (Seagull and Falconer, 1991). 

When cell shape is altered by changing the exi-racellular 
pH, the resulting TEs have 2- to 3-fold larger diameters than 
those in umbuffered cultures, but unlike the spherical cells 
generated by treatment with microtubule-disrupting drugs, 
these elongating cells would be expected to have tra nsversely 
arranged nnicrotubules. If this is true, the microtubule pattems 
that mediate the deposition of the metaxylem-like wall pat- 
tems in these large-diameter cells would differ from those 
that give rise to similar webbed pattems in that the y develop 
from parallel rather than random microtubule arrays. The 
lateral assiociation model previously invoked to er plain the 
formation of webbed pattems in drug-treated cells (Falconer 
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and Seagull, 1986; Seagull and  Falconer, 1991) can also 
explain the formation of reticulate and  pitted patterns in  
large-diameter cells. In small-diameter cells, transverse mi- 
crotubules associate with one another to form single bundles 
around the cell circumference. The process can be visualized 
as  beginning with associations formed at  single sites and 
proceeding in  a zipper-like fashion. In cells of larger circum- 
ference, transverse microtubules bundled together a t  a single 
site have more opportunity to associate with microtubules in 
forming bundles above and  below that site. This could form 
the bifurcations and interconnecting strands characteristic of 
metaxylem-like secondary cell wall patterns. 

Cell expansion has  been correlated with delayed differen- 
tiation not only in buffered cultures but also in cultures to 
which conditioned medium has been added (Roberts, 1992) 
and cultures with reduced osmotic concentrations (Roberts e t  
al., 1992). These results are consistent with the hypothesis 
that the regulatory mechanisms controlling cell differentia- 
tion and  cell expansion are linked (Fry, 1990). Further evi- 
dente for this link has  been summarized by Torrey et al. 
(1971), who pointed out that TEs differentiate abundantly in  
the compact callus that forms when water availability is 
restricted by growth on agar or in medium with a high 
osmotic concentration. The pattern of secondary cell wall 
deposition in TEs has  also been related to cell expansion 
(Brower and  Hepler, 1976; O'Brien, 1981). 

In another well-characterized differentiating culture sys- 
tem, embryogenic carrot cell suspensions, higher pH pro- 
motes cell expansion but inhibits differentiation of somatic 
embryos (Smith and Krikorian, 1992). Further evidence that 
cell expansion is incompatible with embryogenesis comes 
from experiments with tunicamycin-treated carrot cultures 
(van Engelen and  de Vries, 1992). Tunicamycin promotes cell 
expansion and blocks embryo development, whereas a 
secreted peroxidase inhibits tunicamycin-induced cell expan- 
sion and  restores embryogenesis. The microtubule cytoskel- 
eton is thought to play an important role in  both cell expan- 
sion (reviewed by Shibaoka, 1991) and  TE differentiation 
(reviewed by Seagull and Falconer, 1991). Therefore, micro- 
tubules may mediate the transition from expansion to differ- 
entiation within the cell. In expanding cells, the arrays 
associated with cell expansion could be stable, delaying dif- 
ferentiation until cortical microtubules can assume the bun- 
dled arrays associated with secondary cell wall deposition. 
Cell expansion, through its influence on the timing of differ- 
entiation, may determine the functional characteristics of TEs 
by altering their size, shape, and  secondary cell wall pattem 
(Roberts, 1976). Thus, the regulatory mechanisms controlling 
these processes merit further investigation. 
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