Table 2. Crystallographic data statistics

Data conection statistics								
<u>Space group</u> P6 ₅ 22 P6 ₅ 22		$\frac{\text{Cell dimensions}}{a = 185.0 \text{ Å}, b = 185.0 \text{ Å}, a = 185.2 \text{ Å}, b = 185.2 \text{ Å}, a = 185.2 \text{ Å}, b = 185.2 \text{ Å},$						
<u>d_{min}, Å</u>	No. of measurements	No. of unique reflections	Completeness, %	<u>Ι/σ</u>	<u>R_{svm}, %</u>			
3.1	128,504	12,651	98.5 (98.1)	13 (2.7)	6.9 (46.9)			
3.2	248,283	11,812	99.5 (98.9)	15 (5.7)	6.4 (48.3)			
3.2	153,292	11,692	98.3 (93.8)	14 (3.9)	6.5 (53.8)			
3.2	155,029	11,703	98.3 (94.2)	14 (3.5)	5.8 (59.7)			
	Space gro P6522 P6522 dmin. Å 3.1 3.2 3.2 3.2 3.2	$\frac{\text{Space group}}{\text{P6}_522}$ $P6_522$ $\frac{\text{d}_{min}}{3.1} \frac{\text{A}}{128,504}$ $3.2 248,283$ $3.2 153,292$ $3.2 155,029$	Space group P6_522Cell dimensions $a = 185.0$ Å, $b = 185.0$ Å, $b = 185.2$ Å, $a = 185.2$ Å, $b = 185.2$ Å, $a = 185.2$ Å, $b = 185.2$ Å, $a = 185.2$ Å, $b = 185.2$ Å, 	Space group P6_522Cell dimensions $a = 185.0$ Å, $b = 185.0$ Å, $c = 67.7$ Å $a = 185.2$ Å, $b = 185.2$ Å, $c = 68.3$ Å d_{min} . Å 	Space group P6_522Cell dimensions $a = 185.0$ Å, $b = 185.0$ Å, $c = 67.7$ Å $a = 185.2$ Å, $b = 185.2$ Å, $c = 68.3$ Å $\frac{d_{min}}{3.1}$ $\frac{N}{128,504}$ $\frac{No. of unique reflections}{12,651}$ Completeness, % 98.5 (98.1) $\frac{1/\sigma}{13}$ (2.7) 3.2 $248,283$ $11,812$ 99.5 (98.9) 15 (5.7) 3.2 $153,292$ $11,692$ 98.3 (93.8) 14 (3.9) 3.2 $155,029$ $11,703$ 98.3 (94.2) 14 (3.5)			

Data collection statistics

MAD phasing statistics

		Peak		Edge		Remote	
		Isomorphous	Anomalous	Isomorphous	Anomalous	Isomorphous	<u>Anomalous</u>
Phasing power	Centric	_	_	0.476	_	0.615	_
	Acentric	-	2.554	0.542	1.179	0.734	1.666
FOM	Centric	0.198					
	Acentric	0.415					
FOM after DM		0.856					

Refinement statistics (native data set)

No. of reflections (working/test) 10,286 / 1,185	
No. of nonhydrogen atoms	1,805
Resolution, Å	8.0-3.1
R _{crvst} / R _{free} , %	26.8 / 31.6
Bond length deviation, Å	0.008
Bond angle deviation, °	1.5

Values in parentheses are for the highest-resolution bin.

 $R_{\text{sym}} = \sum_{h} \sum_{i} |I_i(h) - \langle I(h) \rangle| / \sum_{h} \langle I(h) \rangle$, where $I_i(h)$ is the *i*th measurement and $\langle I(h) \rangle$ is the weighted mean of all measurements of I(h).

Phasing power = $\langle |F_H(\text{calc})| \rangle \langle E \rangle$, where *E* is the phase-integrated lack of closure. FOM, figure of merit. FOM after DM, figure of merit after solvent flipping in the program DM.

 $R = \Sigma(|F_{obs}| - K|F_{calc}|) / \Sigma|F_{obs}|$. R_{free} is the *R* value obtained for a test set of reflections that consisted of a randomly selected 8% subset of the diffraction data used during refinement of σ_A value calculations.