Plant Gene Register

Sequence of a cDNA from *Linum usitatissimum* Encoding the Stearoyl-Acyl Carrier Protein Desaturase

Surinder Singh*, Susan McKinney, and Allan Green

Commonwealth Scientific and Industrial Research Organization, Division of Plant Industry, Canberra, ACT, Australia

The soluble plastid enzyme SAD (EC 1.14.99.6) introduces a double bond into the C18 fatty acid stearic acid between carbons 9 and 10 to produce the monounsaturated oleic acid. We report here the isolation and sequence characterization of a cDNA clone isolated from flax that encodes a precursor to SAD (Table I). This clone was isolated by screening a pGEM3Z cDNA library, constructed from mRNA isolated from mid-maturity (18-22 d after fertilization) flax embryo tissue, with a castor bean SAD probe (Shanklin and Somerville, 1992). The 1447-bp cDNA contained a 1188-bp open reading frame, with the putative initiation of translation beginning at ATG residing within an exact 9-bp copy of the proposed consensus sequence for initiation of translation in plants, AACAAUGGC (Lutcke et al., 1987). The open reading frame encodes a polypeptide of 396 amino acid residues, exactly the same size as described for castor bean, cucumber, and safflower desaturases (Gregory et al., 1991; Shanklin et al., 1991; Shanklin and Somerville, 1992). Most of the amino acid residues are generally hydrophilic, and there is a lack of hydrophobic clusters commonly found in membrane-associated proteins. This is consistent with SAD being a soluble plastidic protein. A putative transit peptide cleavage site could be identified by homology to the safflower SAD cleavage site (Gregory et al., 1991), resulting in a mature peptide of 366 amino acid residues. A high degree of conservation was observed between the flax SAD and the SAD from castor, cucumber, and safflower. Greater than 80% identity exists at the amino acid level within the mature SAD peptides of flax and the above-mentioned species (Gregory et al., 1991; Shanklin et al., 1991; Shanklin and Somerville, 1992).

Received August 30, 1993; accepted October 25, 1993.

Copyright Clearance Center: 0032-0889/94/104/1075/01.

The EMBL/GenBank/DDBJ accession number for the sequence reported in this article is X70962.

ACKNOWLEDGMENTS

We are indebted to Chris Somerville (Michigan State University) for providing the castor SAD probe.

 Table I. Characteristics of pDs1, a cDNA from flax encoding the SAD

Organism:

Linum usitatissimum L. (Flax, cv Glenelg).

Location of Gene:

Nuclear encoded.

Function:

- Introduction of a *cis* double bond between carbons 9 and 10 of stearoyl-acyl carrier protein.
- Clone Type, Designation:

cDNA, full-length, pDs1.

Method of Identification:

Sequence comparison (greater than 80% amino acid identity in the mature peptide) to cDNA encoding the SAD from castor, cucumber, and safflower.

Gene Copy Number and Expression:

Southern blot data suggested that the flax SAD is encoded by a single-copy gene, and northern analysis indicated that the transcript was abundant in the developing cotyledons.

Structural Features of the Protein:

The 1188-bp open reading frame encodes a 396-amino acid preprotein. A putative transit peptide of 30 amino acids could be identified by homology to the safflower preprotein resulting in a mature peptide of 366 amino acids.

Subcellular Location:

Soluble plastid enzyme.

LITERATURE CITED

- Gregory AT, Donna ES, Fox-Van Aken S, Kenny JW, Young HL, Shintani DK, Kridl JC, Knauf VC (1991) Primary structure of the precursor and mature forms of stearoyl-acyl carrier protein desaturase from safflower embryos and requirement of ferredoxin for enzyme activity. Proc Natl Acad Sci USA 88: 2578–2582
- Lutcke HA, Chow KC, Mickel FS, Moss KA, Kern F, Scheele GA (1987) Selection of AUG initiation codons differs in plants and animals. EMBO J 6: 43-48
- Shanklin J, Mullins C, Somerville C (1991) Sequence of a complementary DNA from *Cucumus sativus* L. encoding the stearoyl-acyl carrier protein desaturase. Plant Physiol 97: 467–468
- Shanklin J, Somerville C (1992) Stearoyl-acyl-carrier protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs. Proc Natl Acad Sci USA 88: 2510–2514

^{*} Corresponding author; fax 61-6-246-5255.

Abbreviation: SAD, stearoyl-acyl carrier desaturase.