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Introduction

Models for cancer screening pro-
grams typically focus on subgroups of the
general population on the basis of age- and
sex-specific incidence, prevalence, and
mortality rates of a particular cancer. Al-
though analyses of individual characteris-
tics indicate who should be screened,
small-area analysis can be used to deter-
mine where to set up screening programs
so that high-risk populations can be more
easily recruited. In previous studies of
small-area variation in cancer incidence,
we quantified the benefits of geographi-
cally targeting cancer screening programs,
using clustered census tracts as the unit of
analysis.1,2 Those analyses, based on can-
cer registry data, indicated that the effi-
ciency of breast cancer screening pro-
grams can be substantially improved by
targeting communities with known high
incidence rates.

In many localities, there is no cancer
registry to provide incidence data at the
community level, so targeting based on
known small-area incidence, using the
methodology described above, is not pos-
sible. Here we describe a two-step tech-
nique for making geographic targeting
available to these localities:

of screening programs is to reduce this
rate by identifying in situ and localized
cancer in individuals who would other-
wise have developed late-stage disease be-
fore diagnosis and treatment.

Methods
Geocoding Cancer Incidence and
Mortaity

NewYorkCity cancer incidence data
for the years 1976 through 1982 were ob-
tained from the New York State Depart-
ment of Health Cancer Registry. Mortal-
ity data for the years 1977 through 1983
were obtained from the New York City
Department of Health. The geographic
coding of these data has been previously
described.' Denominators for small area
rates were obtained from 1980 US census
data (Summary Tape File 3a).

Incidence, mortality, and census data
were aggregated to health areas, adminis-
trative units used by the New York City
Department of Health. Each health area,
with an average population of about
21 000, consists of four to six census
tracts. Data were obtained for four of the
five boroughs that make up New York
City: Bronx, Brooklyn, Manhattan, and

1. Develop a small-area multiple re-
gression model relating incidence for a
particular cancer site to mortality, census-
basedvariables, orboth in a localitywhere
cancer registry data are available.

2. Apply the model in the locality of
interest, where cancer registry data are
not available, and obtain an estimated in-
cidence value for each small area.

The outcome in the regression mod-
els is the incidence rate of disease staged
as regional or distant at the time of diag-
nosis (late-stage incidence). The main goal
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Queens. To reduce rate instability due to
small denominators, health areas with a
total 1980 population of less than 5000
were excluded from the analysis. Areas in
which more than 10% of the total popula-
tion resided in an institution were also ex-
cluded. The 22 health areas excluded by
these criteria contained 4.2% of the total
population of the four boroughs. The 319
health areas that were included contained
a total population of 6 637 686 in 1980.

Rate Calcation
It is customary to adjust for age when

comparing geographic variability in can-
cer rates. However, when targeting geo-
graphic areas for screening service deliv-
ery, a concentration of age groups at
higher risk for a particular cancer should
be considered as part of the planning pro-
cess. We therefore calculated crude age-
truncated rates for each area by dividing
the total number of incident late-stage
cases at or above a specific age by the total
area population of the appropriate sex at
or above the same age. For cervical can-
cer, we used the incidence of invasive dis-
ease as the measure of late stage. For
breast and colorectal cancer, late stage
was defined according to the Cancer Reg-
istry categories of regional or distant dis-
ease.

For each cancer site, an age-trun-
cated crude late-stage incidence rate and
an age-truncated crude mortality rate
were calculated. For breast cancer, inci-
dence and mortality rates were calculated
for women aged 35 years and older, for
cervical cancer, rates were calculated for
women aged 20 years and older; for col-
orectal cancer, we combined men and
women aged 45 years and older in calcu-
lating rates. No upper age limitwas set for
any site. These age-truncated rates in-
clude more than 95% of registry cases for
each ofthe three sites. The total number of
late-stage cases used for rate calculation
was 11 634 for breast cancer, 16 140 for
colorectal cancer, and 3640 for cervical
cancer. For mortality rate calculation, the
numerator for each cancer site represents
all individuals forwhomthe primary cause
of death was cancer of that site during the
period 1977 through 1983: 9132 for breast
cancer, 9212 for colorectal cancer, and
1285 for cervical cancer. Incidence data
and mortality data were not linked: the
numerator for each mortality rate includes
all deaths for that cancer site in the stated
time period, not just deaths of individuals
reported to the Cancer Registry during the
period for which incidence rates were cal-
culated.

All rates are expressed in terms of
yearly averages per 100 000 population.
The formula for rate calculation is

[(N/7)/1] 100 000,

whereN is the total number of late-stage
cases in a given health area for a particular
cancer site among individuals in the des-
ignated age group during the 7-year study
period and Tis the total 1980 population in
the health area for the site-defined age and
sex group. Hereinafter, age-truncated
late-stage incidence rates for breast and
colorectal cancer and the rate of invasive
cervical cancer will be referred to as late-
stage rates.

Selection ofPredictors for Use in
Models to Estimate Late-Stage
Incidence Rates

In choosing census-based predictors,
we were guided by two criteria: known
etiologic relationship to one or more ofthe
three cancers under consideration and ab-
sence of multicollinearity among predic-
tors. We were aided in variable selection
by previous research that identified di-
mensions of demography and housing
characteristics in New York City.3 Begin-
ning with the 14 census-based variables
that defined these dimensions, we used
multiple regression analysis to isolate a
subset offourvariables that met the above
criteria and that, when used together, ac-
counted for nearly as much variability
(adjustedR2) in each ofthe late-stage rates
as the full set of 14 variables: (1) percent-
age of the population aged 65 years and
older; (2) percentage of households with
income higher than $50 000 per year; (3)
percentage of the population (aged 15
years and older) divorced or separated;
and (4) percentage ofwomen in the labor
force with one or more children aged 16
years oryounger. Descriptive statistics for
these variables, together with mortality
rates and late-stage incidence rates, are
shown in Table 1. For analytic purposes,
we applied log or square root transforma-
tions to skewed variables to approximate
a normal distribution, as indicated in
Table 1.

Data from all four boroughs were
used to develop a multiple regression
model for each of the three late-stage
rates, with the four census variables and
the appropriate mortality rate as predic-
tors. To simulate a situation in which tar-
geting is to be done in a locality for which
cause-specific mortality data are not avail-
able or not accessible, we also developed

a model for each cancer in which only
census variables were used as predictors.
The addition of interaction terms did not
improve the adjustedR2 values for any of
the regression models.

Model Validation
For each cancer site, we used the fol-

lowing procedure to determine the accu-
racywith which a model developed in one
geographical area could predict late-stage
rates in another area.

1. One of the four boroughs of New
York City-for example, Queens-was
designated as the geographic area for
which estimated rates of late-stage disease
for a particular site-say breast cancer-
were needed.

2. A multiple regression model for
estimating late-stage breast cancer rates
was developed, using only data from the
other three boroughs-in this case,
Bronx, Manhattan, and Brooklyn.

3. The regression model was used to
calculate an estimated late-stage rate for
each health area in Queens. Thiswas done
by taking the known value of each predic-
tor for a particular health area in Queens
and multiplying by the appropriate un-

standardized regression coefficient speci-
fied in the three-borough model. These
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terms were then summed and the value of
the model intercept was added, yielding
the estimated late-stage rate for that health
area. This process was repeated for each
health area in Queens.

4. The model was validated by cor-
relating the estimated late-stage rates for
the 74 health areas of Queens, based on
the model developed with data from the
other three boroughs, with the actual late-
stage rates in those same areas, based on
data from the New York State Depart-
ment of Health Cancer Registry.

For each cancer site, the above steps
were repeated. Data from each unique
combination of three boroughs were used
to build the model and obtain an estimated
rate of late-stage disease for each health
area in the excluded borough. For each
site and borough, one model was built
with the four census-based variables and
the site-specific mortality rate as predic-
tors; the other model included only the
four census-based predictors.

Resut
The correlation between actual late-

stage rates and late-stage rates estimated
from the appropriate model is shown for

each combination of borough and cancer
site in Table 2. In general, the association
between estimated and actual rates was
highest for invasive cervical cancer, for
which all correlations were greater than .7
whenmortality and census datawere used
in the estimation model. As shown in the
table, all correlations were greater than .6
even when census data alone were used.
The lowest correlations were obtained for
the breast cancer models: the mean cor-
relation was .65 when mortality was in-
cluded and .55when onlycensusvariables
were used. For colorectal cancer, the cor-
relation between estimated and actual
late-stage rates varied from a low of .68 in
Manhattan to a high of .80 in the Bronx
when mortality and census data were
used. When only census datawere used in
the model, correlations ranged from .44 in
Manhattan to .83 in the Bronx.

From a planner's perspective the key
question with respect to model validity is,
What is the relationship between actual
and estimated rates in the areas targeted
to receive apaniularsenvice? To answer
this question, we follow a hypothetical

scenario in which planners have decided
to target for screening the health areas
with the highest estimated late-stage rates,
defined as those areas in the top quintile
(20%).

To determine the accuracyof this tar-
geting process, we calculated the percent-
age of targeted areas in each borough that
fell in (1) the upper 20% of health areas
with respect to actual late-stage rates and
(2) the upper 40% of health areas with re-
spect to actual late-stage rates. If the
model provided perfect predictions, 100%
of the targeted areaswouldbe in the upper
20% with respect to actual late-stage rates.
In the worst-case scenario, in which the
model had no predictive power, one
would expect that on average only 20%o of
the targeted areas would fall in the upper
quintile ofactual late-stage rates-the pro-
portion expected by chance. Similarly,
with perfect prediction, 100% of the tar-
geted areas would be in the upper 40%o of
areas with respect to actual late-stage
rates; in the worst case, only 40% of the
targeted areas would be in the upper two
quintiles of actual late-stage rates. The
normal approxmation to the binomial dis-
tribution was used to determine whether
the actual number of targeted areas in the
upper quintile was significantly greater
than the number expected by chance. The
results are shown in Table 3.

The concordance between targeted
areas and the upper quintile of actual late-
stage rates is greatest for invasive cervical
and colorectal cancer and lowest for
breast cancer. For all cancer sites, the
concordance between upper quintile ofes-
timated and actual rates is considerably
better than what would be expected by
chance (P < .00001). For example, as in-
dicated in the first row, first column of
Table 3, 45% of the areas in the upper
quintile of estimated late-stage rates of
breast cancer in Brooklyn (the targeted
areas) were also in the upper quintile of
actual late-stage rates-more than twice
the chance expectation of 20%1o. As indi-
cated in the first row, second column, 81%
of the health areas that were in the upper
quintile with respect to estimated late-
stage rates were either in the highest or
second highest quintile in terms of actual
late-stage rates, more than twice the 40o
rate of concordance expected by chance.
Consistent with the correlational analyses
(Table 2), concordance between esti-
mated and actual rates is better in models
using mortality and census-based predic-
tors than in models using only census-
based predictors.
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Maps ofthe resultswithrespect toone
of the outcomes, invasive cervical cancer,
are shown for the Bronx (Figure 1), pro-
viding visual confinnation of the strong re-
lationship between estimated and actual
rates. The maps also show that the high-
rate areas that would be targeted for
screening in the Bronx tend to cluster geo-
graphically. Such clustering should en-
hance the efficiency with which screening
resources can be geographically allocated.

"Best" MOadels
In the validation process described

above, several models were developed for
each cancer site, each based on data from
three boroughs. Given the apparent via-
bility of targeting small areas on the basis
of census data alone or census and mor-
tality data, the question arises, What spe-
cific model should be used in applying this
approach in a city or region in which can-
cer registry data are not available?

To develop a set of "best" models for
usebyplanners,we used data from all four
boroughs to maximize the stability of pa-
rameter estimates. As shown in Table 4,
the four census variables alone explained
a statistically significant proportion of
variability in each of the late-stage rates
(P < .001): the adjusted R2 was .33 for
breast cancer, .54 for invasive cervical
cancer, and .39 for colorectal cancer. In
the models using breast cancer and colo-
rectal cancer as outcomes, only one cen-
sus variable accounted for a significant
proportion of variability in late-stage
rates-the percentage of the population in
the health area that was 65 and older. For
cervical cancer, two census variables
were signifcantly associated with the rate
of invasive disease: (1) percentage of the
population divorced or separated and (2)
income level-poor areas had signifi-
cantly higher rates than wealthier areas.

For each cancer site, the addition of
the site-specific mortality rate to themodel
added significantly to the proportion ofex-
plained variability. The greatest incre-
ment in adjustedR2 resulting from the ad-
dition of mortality rate as a predictor
occurred for colorectal cancer (19%).
Moreover, for this cancer site two census
variables that were not significant in the
census-only model, percentage of work-
ing mothers and percentage of population
divorced or separated, did make signifi-
cant contributions toR2 when the mortal-
ity rate was added.

When the site-specific mortality rate
was used without census variables in the
model, a substantial proportion of vari-
ability in late-stage rates was accounted
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for: 37%, 41%, and 49% for cancers of the
breast, cervix, and colon/rectum, respec-
tively (Table 5). Thus, site-specific mor-
tality data could be used without census
data to target areas where late-stage dis-
ease is high. However, since census data
are available everywhere in the United
States, and since the addition of census-
based variables adds 10%o to 20%o to the
explained variability in the models, there
should be no need to develop or imple-
ment mortality-only models. The only sit-
uation in which such models might be
valuable is one in which (1) there has been
rapid change in the demographic charac-
teristics of the neighborhoods under con-
sideration forcommunity-based screening
programs and (2) available census data
were collected too long ago to capture
these changes.

To test the possibility that there was
a spurious inflation of R2 in the models
owing to the use of census-based popula-
tion counts in the calculation of both pre-
dictors and outcome rates, we entered the
factor 1/N in each equation, where Nwas
the same value used in the denominator of
the age-truncated rate. The results indi-
cated that there was no spurious correla-
tion: in each model the significance ofeach
predictor was unaffected by the addition
of 1/N, and the values of the regression
coefficients remained approximately the
same as those shown in Table 4. How-
ever, for two of the cancer sites, breast
and cervix, the term 1/Nwas itself signif-
icant in the model. In the case of late-stage
breast cancer, the adjusted R2 was in-
creased by 2% by the addition of 1/N to

the model. For both sites, the sign of the
regression coefficient for 1/N was posi-
tive, indicating that when the other vari-
ables in the model were held constant in
the regression model, late-stage rates
tended to be higher in areas of low popu-
lation. This suggests that low population,
or some factor associated with it, makes
an independent contribution to the risk of
late-stage disease.

Are the Models Applicable to Other
Regions?

One test of the potential generality of
the models developed in this paper is
whether model-based estimates are accu-
rate in geographic areas that differ in terms
of demography, outcome rates, or both
from the geographic areas in which the
models were developed.

To determine the extent of differ-
ences among the fourboroughs used in the
model validation process, we performed a
series of one-way analyses of variance to
compare mean values of site-specific mor-
tality late-stage rates and each of the cen-
sus-based predictors in the four boroughs
ofNewYork City, using health area as the
unit of analysis. The results indicate that
the four boroughs differed substantially in
terms of key demographic and outcome
characteristics. All pairs of boroughs ex-
cept Manhattan and Brooklyn differed sig-
nificantly in terms of mean values of at
least one late-stage rate. Four of the six
pairs differed in terms of at least one site-
specific mortality rate, and all six pairs
differed in terms of mean value of at least
one demographic characteristic.

Discusion
The results indicate that a quantita-

tive model developed in one geographi-
cally defined area on the basis of available
census data can be used to obtain good
estimates of late-stage rates for breast,
colon/rectum, and cervical cancer in an-
other geographic area. The accuracy of
estimation is improved for all three cancer
sites when the site-specific mortality rate
is included as a predictor. Because disease
that has progressed to a late stage at the
time of detection is likely to result in
death, it is not surprising that mortality
data considerably enhance the power of
the model to estimate late-stage rates.
More unexpected is the finding that with-
out mortality rate as a predictor, and using
only four variables derived from census
data, the models can account for a sub-
stantial proportion of geographic variabil-
ity in late-stage rates of all three cancer
sites. Therefore, even in localities without
ready access to population-based mortal-
ity data, it should be possible to estimate
late-stage rates accurately and to success-
fully target screening programs to high-
risk communities. However, all of the ar-
eas used in developing and testing of the
models presented in this paper are located
in New York City. Ultimately, these mod-
els will be useful only if they can be ap-
plied in targeting community-based
screening programs in other regions of the
United States and the world. Thorough
testing will require comparison of model-
based estimates with actual rates in other
regions of the countly where cancer reg-
istry data are available.

There are a number of indications
that these models will work well in other
geographical regions. First, the results
demonstrate that the four boroughs of
New York City differ substantially along
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the dimensions ofdemography and cancer
outcome examined in this paper. This in-
dicates that the models are robust with
respect to demographic and disease char-
acteristics of the region for which esti-
mates of late-stage cancer are required.

An examination of the predictors
used to estimate late-stage rates also sug-
gests that the models will be widely appli-
cable. Site-specific mortality rates would
be expected tobe strongly associated with
late-stage incidence in any community.
For breast and colorectal cancer, an in-
crease m overall incidence as well as late-
stage disease with advancing age has been
well documented,4,5 so the percentage of
an area's population that is 65 years old or
older would be expected to predict late-
stage rates for these two sites in any lo-
cality. Similarly, invasive cervical cancer
and late-stage colorectal cancer are
known to be more prevalent in poor pop-
ulations,4,6 so the association of low in-
come and socioeconomic factors with
late-stage incidence that is quantified in
the models developed in New York City
should apply in other areas as well.

However, the relationship between
predictors and cancer outcomes will no
doubt be attenuated if the models are ap-
plied to regions inwhich there is little vari-
ability, as would be the case in, say, a
region made up of middle-income subur-
ban communities. The models developed
in this paper are therefore most appropri-
ate in areas that contain substantial demo-
graphic variability among the communi-
ties under consideration for targeting.

The finding that performance of the
models was poorest for breast cancer is
consistent with the results of a previous
analysis,2which indicated that ofthe three
cancer sites examined, the year-to-year
reliability oflate-stage rateswas lowest for
breast cancer. When the reliability of any
outcome measure is relatively low, the
ability to account for variability in the out-
come on the basis of other measures will
be limited.7 However, the results indicate
that even for breast cancer, the models
correctly identified high-risk geographic
areas at considerably better than twice the
level that would be expected by chance.

Methods used in some small-area
analyses involving health outcomes have

been criticized for failing to adequately
test the null hypothesis that observed dif-
ferences between late-stage rates are due
to random variation.8'9 When data from
multiple years are available, the method
we have developed to quantify year-to-
year rate stability2 and that was applied to
the outcomes examined in this paper can
be used to directly test the null hypothesis
of random between-area variation.

Can the estimation models be im-
proved? Some ofthe unexplainedvariabil-
ity in each model may reflect measure-
ment error or factors that are specific to
particular geographic regions. However,
it maybe possible to improve theR2 value
of the models by including additional de-
mographic factors. The finding that low
population is related to high rates of late-
stage disease, after controlling for socio-
demographic factors, suggests one direc-
tion for future research. In New York
City, health area boundaries were origi-
nally defined in such a way that each area
had a total population of approximately
20 000. Health areas with low population
have resulted from loss of housing in cer-
tain areas.10 The impact of loss of housing
and social disintegration on the health sta-
tus of individuals who remain in these ar-
eas is well documented."1 It may be that
census-based measures of housing loss or
other indicators of deterioration over time
will improve the ability ofestimation mod-
els to identify appropriate sites for target-
ing community-based cancer screening
and other health-related intervention pro-
grams.

In conclusion, there is good reason to
believe that the relationships among late-
stage cancer incidence, mortality, and de-
mographic characteristics that have been
quantified in the models presented in this
paperwill applyinmany urban and nonur-
ban regions. If this hypothesis can be con-
firmed in future research, geographically
based targeting of cancer screening pro-
grams will no longer be limited to areas in
which population-based cancer registries
have been established. 0
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