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Effect of cargo size on the constant force system (C1) 
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Figure S1. (a) Average dwell times and average force on the motor in a 
soft-spring system (κ = 0.001 pN/nm) as a function of β, and (b) the same 
data, plotted as dwell times against force (b). Open symbols: 1 µM ATP, 
closed symbols: 2 mM ATP. Symbols with error bars: data observed 
experimentally by Rief et al.(2000) in 1 µM (×) and 2 mM ATP (+). Solid 
lines: theoretical dependence of forward dwell time τ+ on external force on 
the motor (τ+ = (u0 + u1 + w0 + w1)/(u0⋅u1 + w0⋅w1), Kolomeisky and Fisher 
(2003)). (c) Dwell time distributions for β = 10-6 (squares), 10-5 (circles), and 
(d) for β = 10-4 kg/s (+) and 10-3 (x). Solid lines indicate the best fit of the 
data to a double exponential function (see text). 
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Figure S1. (a) Average dwell times and average force on the motor in a 
soft-spring system (κ = 0.001 pN/nm) as a function of β, and (b) the same 
data, plotted as dwell times against force (b). Open symbols: 1 µM ATP, 
closed symbols: 2 mM ATP. Symbols with error bars: data observed 
experimentally by Rief et al.(2000) in 1 µM (×) and 2 mM ATP (+). Solid 
lines: theoretical dependence of forward dwell time τ+ on external force on 
the motor (τ+ = (u0 + u1 + w0 + w1)/(u0⋅u1 + w0⋅w1), Kolomeisky and Fisher 
(2003)). (c) Dwell time distributions for β = 10-6 (squares), 10-5 (circles), and 
(d) for β = 10-4 kg/s (+) and 10-3 (x). Solid lines indicate the best fit of the 
data to a double exponential function (see text). 

 

In order to investigate whether motor-spring-cargo combinations in which the force on the 

motor is essentially constant behave in the same way as myosin-V observed in vitro under 

constant force, we simulated the behaviour of system C1 (a = 0, b = 0.001 pN/nm, p = 1, so 

that the stiffness κ is a constant 0.001 pN/nm) for a wide range of loads (β varies from 10-8 to 

10-2 kg/s). 

Figure S1a shows that, both at limiting (1 µM) and at saturating (2 mM) ATP concentrations, 

the mean forward dwell times and the average force on the motor increase with cargo size. 

Figure S1b shows the same data, but plotted as dwell times against average force. In this 

graph, we also plotted experimental observations which were obtained using an optical trap in 



which the force on the motor was kept constant by means of an electronic feedback system 

(Rief et al. 2000). The solid line indicates the theoretical dependence of forward dwell time on 

external force on the motor derived by Kolomeisky and Fisher (2003, see Methods). Thus, the 

behaviour of system C1 appears to be very similar to the experimental data, and follows the 

theoretical curve. 

Effect of spring stiffness 
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Figure S2. Effect of spring constant κ on the average steady-state motor velocity for various cargo 
sizes. Values for β (kg/s): squares: 10-7, diamonds: 10-6, triangles: 10-5, circles: 10-4. Vertical lines 
indicate the values of the critical stiffness, κC (dotted line), where the spring’s restoring force is 
equal to the motor stall force when extended over a distance equal to the largest sub-step, and the 
stalling stiffness, κ0 (dashed line), beyond which the motor stalls completely. 
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Figure S2. Effect of spring constant κ on the average steady-state motor velocity for various cargo 
sizes. Values for β (kg/s): squares: 10-7, diamonds: 10-6, triangles: 10-5, circles: 10-4. Vertical lines 
indicate the values of the critical stiffness, κC (dotted line), where the spring’s restoring force is 
equal to the motor stall force when extended over a distance equal to the largest sub-step, and the 
stalling stiffness, κ0 (dashed line), beyond which the motor stalls completely. 

 

We also studied the dependence on the spring stiffness κ of the average velocity at different 

cargo sizes for systems in which κ is constant (a = 0; p = 1). 

Figure S2 shows the effect of spring stiffness on average steady state velocity and average 

force on the motor for a range of cargo sizes. Four types of behaviour can be distinguished. 

1) Very soft springs (κ < 0.01 pN/nm) allow the motor to move in an essentially random way 

at a velocity that can be calculated from the expression for the mean forward and backward 

dwell times (see main paper, Methods).  

2) Springs that are stiffer (0.01 < κ < 0.08 pN/nm), but can still extend by the full step size 

without producing a force larger than the stall force, FS, are sufficiently soft to allow the motor 

to progress relatively unhindered, but do slow it down (with respect to the velocities that are 

achieved by the very soft spring systems). Motor stepping in these systems is generally more 

regular and the motion is more uniform than the stepping and motion of the very soft spring 

systems, and the velocity is determined mostly by the time required for the cargo to move 

under the restoring force of the spring until it is sufficiently close to the motor (see main 

paper) . 



3) Springs that can only extend by a value between the largest sub-step and the full step size 

seriously hinder motor progression, even for a small cargo. The ‘critical stiffness’ constant, κC, 

is the value for κ that, according to Hooke’s Law, produces a restoring force equal to FS when 

the spring extends by exactly one full step size, here, κC = 0.08 pN/nm.  

3) Springs that are so stiff that extension by the size of the largest sub-step (22.5 nm) already 

produces a restoring force greater than the stall force, will be stalled completely by cargo of 

any size. In this system, the value for κ0, the stall stiffness, is 0.13 pN/nm.  



Effect of cargo size on uniformity and regularity of motion in 
systems C1 and C2 

Figure S3. Steady state dwell time distributions (left hand panels) and typical deviation 
from uniform motion (right hand panels) obtained with system C1 (grey lines) and 
system C2 (black lines) for β = 10-6 (a), 10-5 (b), 10-4 (c), and 10-3 kg/s (d). Solid black 
lines (left hand panels) indicate the best fit of the data for system C1 to a double 
exponential function ((exp[t/T2] - exp[t/T1])/(T2-T1), Rief et al. 2000) with T1 = 0.1, 0.2, 
1.3, and 3.6 s, and T2 = 0.0001, 0.005, 0.05, and 0.1 s, for a, b, c, and d, respectively. 
The significance of the T2 values is low; the shapes of the curves are almost entirely 
determined by T1. The deviations from uniform motion are normally distributed with a 
mean of 0 and standard deviations of 50 nm for all cargo sizes in system C1, and in 
system C2 for β = 10-3 kg/s, and a mean of 5, and standard deviations of 16 nm (system 
C2, all greater cargo sizes).
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Figure S3. Steady state dwell time distributions (left hand panels) and typical deviation 
from uniform motion (right hand panels) obtained with system C1 (grey lines) and 
system C2 (black lines) for β = 10-6 (a), 10-5 (b), 10-4 (c), and 10-3 kg/s (d). Solid black 
lines (left hand panels) indicate the best fit of the data for system C1 to a double 
exponential function ((exp[t/T2] - exp[t/T1])/(T2-T1), Rief et al. 2000) with T1 = 0.1, 0.2, 
1.3, and 3.6 s, and T2 = 0.0001, 0.005, 0.05, and 0.1 s, for a, b, c, and d, respectively. 
The significance of the T2 values is low; the shapes of the curves are almost entirely 
determined by T1. The deviations from uniform motion are normally distributed with a 
mean of 0 and standard deviations of 50 nm for all cargo sizes in system C1, and in 
system C2 for β = 10-3 kg/s, and a mean of 5, and standard deviations of 16 nm (system 
C2, all greater cargo sizes).
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At cargo sizes that have a frictional coefficient β that is greater than 10-6, the motion of system 

C2 (κ = 0.05 pN/nm) is more regular than that of system C1 (κ = 0.001 pN/nm). This is borne 

out by the dwell time distributions in the two systems, shown in Figure S3. The shapes of the 

histograms for system C1 indicate that the movement of the motor is essentially random: they 

are, as expected, satisfactorily described by a double exponential, and reveal a long lifetime 

that is one or two orders of magnitude larger than the short one. Both lifetimes increase with 



β.They are in good agreement with experimentally observed data obtained under constant 

force (Rief et al. 2000), demonstrating the validity of model and simulations. The dwell time 

distribution at the smallest cargo size (10-6 kg/s) for system C2 is similar to that obtained with 

system C1. However, for larger cargo sizes, the maxima of the distributions are clearly shifted 

to higher values compared to those for system C2, and their shapes are very different. For β 

= 0.01 g/s, 90% of the steps have dwell times between 0.1 and 0.5 s in system C1, and hardly 

any steps have dwell times below 0.08 s. The mode is at 0.23 s. For β = 10-4 and 10-3 kg/s, 

similar modes are observed at 1.9 and 14s, with a spread (full width at half maximum) of 0.9 

and 5 s, respectively. Thus, the dwell time distributions for β ≥ 10 mg/s indicate that there is a 

delay of roughly equal duration between the steps of the stiff spring system, and that stepping 

is indeed significantly more regular. 

The distributions for the two largest cargo sizes are bimodal, for the following reason. In both 

systems, full backward stepping is rare for cargo with drag coefficients up to about 10-5 kg/s, 

although the backward sub-steps of 22.5 nm are observed more and more frequently when β 

increases. The forward rates are virtually independent of the force on the motor, so that 

forward stepping continues to occur at the same frequency when the load increases. 

However, any ‘overambitious’ forward step in system C2 will result in the force on the motor 

immediately becoming very high, so that such a step will very rapidly be followed by a 

backward step. Only when the force has reduced enough will one forward sub-step be 

followed by another forward sub-step. Premature forward steps and their compensating 

backward steps tend to occur more often when the spring is almost sufficiently relaxed, and 

are usually followed relatively quickly by a new attempt to step forward. Therefore, the 

distributions in Figure S3c and d also show a number of (exponentially distributed) short dwell 

times. In addition, full backward steps also shorten the observed average forward stepping 

dwell time somewhat, as they count as a new full step. 

In system C1, on the other hand, a forward step may be followed rapidly by several further 

forward steps, without a very large change in force on the motor. As a result, the motion of 

system C2 is more uniform than that of system C1, and this effect becomes more pronounced 

as the load size increases. The right hand panels in Figure S3 illustrate the extent to which 

the motor deviates from uniform motion for both systems and for various cargo sizes. At β = 

10-6 kg/s, where the cargo hardly affects motor motion, the deviations from uniformity are the 

same in both systems. The deviations are normally distributed with a standard deviation of 50 

nm, so that excursions of over 100 nm are frequently observed. The distribution of the 

deviations is the same over the whole range of cargo sizes for system C1. The data for 

system C2 at the larger cargo sizes (β ≥ 10-5 kg/s) are also normally distributed around a 

mean of 5 nm, and with a standard deviation of only 16 nm. This means that excursions of 50 

nm are extremely rare. The non-zero mean reflects the fact that the frequent ‘unsuccessful’ 

S1↔S0 oscillations are superposed on the overall trajectory, which is determined by the 

successful full forward steps (S1→S0→S1). 



Effect of contour length on force 

Figure S4. Average force on the motor and duration of 
oscillatory period as a function of the spring parameter b. 
Plusses (left ordinate): oscillatory periods; circles (right 
ordinate): average force.
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Figure S4. Average force on the motor and duration of 
oscillatory period as a function of the spring parameter b. 
Plusses (left ordinate): oscillatory periods; circles (right 
ordinate): average force.
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We have investigated the effect of variation in the value of a (in the equation F = ax + (bx)p; 

see main paper), which roughly corresponds to the reciprocal of the contour length, LC, in the 

WLC model. The value of b was varied between 0.009 pN1/10/nm (corresponding to LC ≈ 140 

nm) to 0.044 (LC ≈ 29 nm). The results are shown in Figure S4. The oscillatory period 

increases from 2.7 (b = 0.009) to 44 s (b = 0.044), whereas the average force on the motor 

decreases from 2.1 pN to 0.15 pN. 
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