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Design of biomimetic fibrillar
interfaces: 2. Mechanics of enhanced
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This study addresses the strength and toughness of generic fibrillar structures. We show that
the stress σc required to pull a fibril out of adhesive contact with a substrate has the form
σc = σ0Φ(χ). In this equation, σ0 is the interfacial strength, Φ(χ) is a dimensionless function
satisfying 0 � Φ(χ) � 1 and χ is a dimensionless parameter that depends on the interfacial
properties, as well as the fibril stiffness and radius. Pull-off is flaw sensitive for χ � 1, but is flaw
insensitive for χ < 1. The important parameter χ also controls the stability of a homogeneously
deformed non-fibrillar (flat) interface. Using these results, we show that the work to fail a unit
area of fibrillar surface can be much higher than the intrinsic work of adhesion for a flat interface
of the same material. In addition, we show that cross-sectional fibril dimensions control the
pull-off force, which increases with decreasing fibril radius. Finally, an increase in fibril length
is shown to increase the work necessary to separate a fibrillar interface.

Besides our calculations involving a single fibril, we study the concept of equal load sharing
(ELS) for a perfect interface containing many fibrils. We obtain the practical work of adhesion
for an idealized fibrillated interface under equal load sharing. We then analyse the peeling of
a fibrillar surface from a rigid substrate and establish a criterion for ELS.

Keywords: fibril; fibrillar adhesion; biological mimic; dry adhesion; equal load sharing;
contact mechanics

1. INTRODUCTION

Adhesion in insects, spiders and lizards must satisfy two
conflicting requirements. The adherence to a substrate
must be strong when the animal wants to secure itself.
On the other hand, it must be able to move quickly
when necessary, e.g. when pursuing prey or escaping
a predator. It has been demonstrated that geckos can
adhere to both hydrophilic and hydrophobic surfaces
with varying degrees surface roughness. In addition,
the fundamental mechanism of adhesion in geckos is
reversible and the adhesive forces are believed to be of
van der Waals type (see Autumn et al. 2000; Autumn
et al. 2002).

Of particular significance are the fibrillar structures
on the feet of these animals. In the case of the beetle
Hemisphaerota cyanea, each foot has about 60 000 bris-
tles, each with two terminal pads (Eisner & Aneshansley
2000). For the tokay gecko (Gekko gecko), each foot
has nearly 500 000 bristles or setae (Autumn et al.
2000). The number density of setae is about 5000
setae mm−2. Each setae is 30–130 µm in length and
†Author for correspondence (njg22@cornell.edu).
‡Present address: Department of Chemical Engineering, Lehigh
University, 111 Research Drive, Iacocca Hall, Bethlehem,
PA 18015, USA.

contains hundreds of projections terminating in 0.1–
0.5 µm spatula shaped pads. Thus, the setae of tokay
geckos comprise highly hierarchical structures.

Because of its reliance on van der Waals forces, the
ability of geckos to adhere to substrates is primarily
controlled by mechanics rather than surface chemistry.
Hence, the geometry and material properties of the
structure must play a pivotal role in enhancing the
adhesion. At first glance, it may seem counterintu-
itive that a fibrillar interface could be stronger and
tougher than a perfectly bonded one, since the fibrils
lessen the contact area. This reasoning overlooks several
important mechanical effects, as demonstrated by the
experiment illustrated in figure 1.

In the experimental sample shown in figure 1, fibrils
are introduced midway along one side of a rectangular
sheet of poly(vinyl butyral) (PVB; Butacite r©, The
DuPont Company) by removing the polymer between
fibrils. The sheet has height, width and thickness of
30, 30 and 0.76mm, respectively, while the fibrils have
a height h of 10mm and a width 2a of 1.23mm. The
edge of the sheet containing the fibrils is bonded to a
glass substrate by heating the substrate to the glass
transition temperature of the elastomer. A small crack
is introduced at one end of the bond and the sheet
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Figure 1. (a) PVB sample bonded to glass. (b) Crack
length as a function of time (equivalently, displacement) for
constant rate pull-off of the fibrillar PVB sample.

is pulled upwards by gripping it along the opposite
edge. Figure 1 plots the crack length versus time (or,
equivalently, displacement, since the gripped edge was
pulled at a constant velocity). We see from this figure
that the crack starts to accelerate once a critical load or
energy release rate is reached. Then the crack is arrested
at the first fibril and a substantial stress increase is
needed to break that contact. This situation continues
until the last fibril is pulled off and crack growth
becomes unstable.

This experiment demonstrates that a fibrillar surface
can be used as a crack arrester. Most structures contain
stress concentrators and/or defects, from which cracks
can initiate. Once a crack initiates, it can grow by
damaging the material ahead of the crack tip because
the stress there is highly concentrated. Indeed, for an
infinitely sharp crack in an elastic solid, the crack tip
stress field has an inverse square root singularity. For
example, the normal component σyy of the crack tip
stress field in the non-fibrillar region of the sheet is

σyy(x → 0) =
KI√
2πx

, (1.1)

where x is the distance of a material point directly
ahead of the crack tip. The stress intensity factor KI

is proportional to the applied load and the square

root of the crack length. Its precise value depends on
the geometry of the sample and can be determined
numerically.

Strictly speaking, (1.1) is not valid for an interface
crack, unless the elastomer is incompressible and the
substrate is rigid. However, these conditions are met
approximately in our case, since the bulk modulus of
PVB is several orders of magnitude greater than its
shear modulus, which is much smaller than the shear
modulus of the glass substrate. Figure 2a illustrates the
situation just before the crack reaches the first fibril.
At this instant, the shaded polymer material above the
crack face carries no load so that the sharp crack can be
replaced by a notch of height h, as shown in figure 2b.
This abrupt blunting of the crack drastically reduces
the stress concentration. Indeed, the crack is no longer
a crack! In order for the interface to fail, a crack has to
reinitiate from the edge of the fibril (which is a stress
concentrator).

As a consequence of crack blunting, the concentrated
stress field at the crack tip is redistributed over a zone
of length L, which can be significantly greater than
the cross-sectional dimensions of the fibril. The load
transfer zone length L will be derived later in this
work for a peel test. Within this zone, the fibrils are
under conditions of equal load sharing (ELS). In the
ELS scenario, the stress concentration is completely
eliminated and the fibrils are subject to a homogeneous
state of strain, rather than one in which the deformation
of one fibril is coupled to the deformation of nearby
fibrils. If all the fibrils in the ELS zone make perfect
contact with the substrate and all the contacts have
the same strength, then failure of the interface involves
a simultaneous failure of all fibrils inside this zone.
This is in contrast to crack propagation, where stress
concentration favours a sequential failure of fibrils with
the fibril closest to the crack tip failing first.

In addition to the crack arrest behaviour, another
advantage of a fibrillar structure was pointed out by
the recent work of Jagota & Bennison (2002). For a
perfectly bonded non-fibrillar interface, assuming no
inelastic deformation, the energy needed to fail a unit
area of the interface is the work of adhesion Wad,
which for van der Waals solids is of the order of
40–80mJm−2 (see, e.g. Israelachvili 1992). However,
Jagota & Bennison find that the work required to
separate a fibrillar surface is much higher, since the
elastic strain energy stored in the fibrils is also lost
during pull-off. If this stored energy is much higher than
Wad, a fibrillar interface will be much tougher.

Actually, a similar idea was first conceived by Lake &
Thomas (1967), who noticed that the fracture toughness
of elastomers is typically two orders of magnitude higher
than the energy required to break a unit area of cova-
lent bonds. They attributed this difference in fracture
energy to the following hypothesis: the breaking of a
single bond in a chain releases all the stored energy
in the chain between cross-links and this energy is
much greater than the energy required to break a
single bond. Since the energy stored in an elastic fibril
is proportional to the square of the pull-off stress,
increasing the pull-off stress will have a significant effect
on the toughness. However, the pull-off stress is not
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Figure 2. Introducing a fibrillar region converts a sharp crack into a blunted notch with a large process zone. Furthermore,
it requires the crack to re-initiate at every fibril–substrate interface.

a material property because the edge of a fibril is a
stress concentrator. As we will demonstrate below, the
pull-off stress depends on the fibril geometry, material
properties and the surface interaction at the fibril–
substrate interface.

Several researchers have recently begun to tackle
parts of the fibrillar adhesion problem, focusing mostly
on explanations of how the biological structures work.
Persson (2003) has developed a model for fibrillar
contact that includes a description of the adhesive
mechanism, as well as arguments for the advantages
of a fibrillar system on rough surfaces. Several of his
ideas are reinforced with theory and experiments in
the companion paper to this one (Glassmaker et al.
2004), which also addresses important constraints on
fibrillar surface design, i.e. buckling and lateral collapse
of fibrils. Finally, Arzt et al. (2003) have shown, using
the Johnson–Kendall–Roberts (JKR) theory of adhesive
contact (see Johnson et al. 1971), why setal scale
reduction results in increased pull-off force. However,
Arzt et al. ignore the role of setal structure in enhancing
energy loss during decohesion.

The focus of our approach is to provide understand-
ing and design guidelines for synthetic, biologically
inspired mimics, the simplest being an array of fibrillar
posts protruding from a backing film. Our companion
paper (Glassmaker et al. 2004) examines how a fibrillar
interface achieves maximal contact with its mating
surface. As mentioned above, the chief issues there
include the flexibility, buckling and lateral collapse of
fibrils. This paper presents results on how a fibrillar
structure enhances adhesion.

The plan of this paper is as follows. We first deter-
mine the stress required to pull off of a single fibril. The
goal here is to study the dependence of the pull-off stress
on fibril geometry, material and surface interaction
forces. Knowledge of this pull-off stress allows us to
determine the maximum practical work of adhesion of
a fibrillar interface based on the assumption of ELS.
We then establish the necessary conditions for ELS
when a fibrillar structure is subjected to a peel test.
Finally, preliminary experimental results on fibrillar
poly(dimethlysiloxane) (PDMS) and polyimide samples
are compared with the theoretical models.

2. THEORETICAL RESULTS

2.1. Pull-off stress of a single fibril

In this section, we address the question, ‘What is the
force Pc needed to pull off a cylindrical fibril of radius a
attached on one of its ends to a substrate, assuming
that there is adhesion between the two surfaces?’ We
consider two different scenarios: in the first, the fibril
is much stiffer than the substrate; in the second, the
situation is reversed. In the first case the local contact
stresses can be modelled by treating the fibril as rigid.
The substrate is assumed to be linearly elastic with
Young’s modulus Es. For the sake of simplicity, we
shall assume that the substrate is an elastomer, with
Poisson’s ratio νs

∼= 0.5. In the second case, the fibril is
linearly elastic and the substrate is rigid. The Young’s
modulus of the fibril is denoted by Ef .

The surface interaction at the fibril–substrate inter-
face will be modelled using a cohesive zone model.
In this model, the normal stress σ resisting separation
of the interface is assumed to be a function of the
separation δ between the two surfaces; that is, σ = Ψ(δ),
where Ψ has the general form sketched in figure 3a.
The simplest example is the Dugdale–Barenblatt (DB)
model (see Dugdale 1960; Barenblatt 1962), shown in
figure 3b.

In the DB model, interface separation occurs when
σ reaches the interfacial strength σ0, which is the
maximum stress that the interface can withstand. The
interface can continue to open until the critical opening
δc is reached, after which the interface fails since it can
no longer support tension. The work of adhesion is the
area under the σ versus δ curve. For the DB model,
Wad = σ0δc.

Case I: Rigid fibril on elastic substrate (Ef � Es).
If one assumes the fibril and substrate are perfectly
bonded, then the normal component of the stress field
on the fibril–substrate interface z = 0 is given by Boussi-
nesq (see Johnson et al. 1971), i.e.

σzz(r) =
P

2πa2

(
1 − r2

a2

)−1/2

, r < a, (2.1)
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Figure 3. Cohesive zone models. The tensile normal stress σ = Ψ(δ) restrains an interface from separating. The distance
separating the two surfaces of the interface is denoted by δ. Note that the work of adhesion is the area under the curve.
(a) Cohesive zone model with two homogeneous solutions δ1 and δ2 for each σ∗ < σ0, the interface strength. (b) Relation
between σ and δ for the DB model. When the separation exceeds δc, the interface fails since it cannot bear load.

where r is the distance from the centre of the fibril, P
is the normal load on the fibril and 2a is its diameter.
Notice the stress has an inverse square root singularity
at the edge of the fibril. This singularity is characteristic
of an interface crack between an incompressible elastic
solid and a rigid solid. Indeed, because the fibril is rigid,
the region external to fibril can be viewed as an external
crack, as illustrated in figures 4b and 4c.

Since the interface cannot support the infinite
stresses indicated by (2.1), a cohesive zone develops
at the edge of the fibril (see figure 4a). Within the
cohesive zone, c � r � a, there is material separation
so that perfect contact occurs only in r < c, where c
is unknown. According to the DB model, the traction
in the cohesive zone is σzz = σ0. The modified stress
field can be obtained using a solution due to Maugis
(1992). For a given fibril radius a, the relation between
the contact radius c and the applied load P is found to
be

P = 2cσ0

[√
a2 − c2 +

a2

c
cos−1 c

a

]
. (2.2)

The critical load Pc for pull-off is determined by the
condition δ(r = a) = δc (see figure 3b), which is

δc =
4σ0

πE∗
s

[
c − a +

√
a2 − c2 cos−1 c

a

]
, (2.3)

where E∗ = Es/(1 − ν2
s ) = 4Es/3, since the substrate is

assumed to be incompressible so that its Poisson’s ratio
νs = 1/2. Eliminating c in (2.2) and (2.3) determines
the critical load Pc for pull-off.

Consider the flaw insensitive regime where the cohe-
sive stress dominates. In this regime, c → 0 and (2.2)
reduces to

P = σ0πa2, (2.4)

as expected. The pull-off condition (2.3) becomes

δc =
4σ0a

πE∗
s

[π
2
− 1
]

. (2.5a)

Equation (2.5a) implies that if the dimensionless
parameter χs defined by

χs ≡ σ0a

2πE∗
s δc

<
1
8

[π
2
− 1
]−1

≈ 0.22, (2.5b)

then the pull-off condition cannot be satisfied.
The other limit corresponds to pull-off due to crack

propagation (the flaw sensitive regime). In this regime,
the cohesive zone is small compared with the contact
region, i.e. c → a and (2.2) becomes

P = 4σ0a
3/2
√

2(a − c) . (2.6)

The pull-off criterion (2.3) reduces to

δc ≈ 4σ0(a − c)
πE∗

s

. (2.7)

Thus, the critical stress σc ≡ Pc/πa2 for pull-off is

σc = 4

√
E∗

s Wad

2πa
. (2.8)

Equation (2.8) shows that, in the fracture or flaw
sensitive regime, the critical pull-off stress is inversely
proportional to the square root of the fibril radius—a
classical fracture mechanics result.

To study the transition from fracture to cohesive-
stress-dominated failure, we introduce the dimension-
less variable

η ≡ c/a. (2.9)

The average fibril stress σ = P/πa2 is determined using
(2.2), i.e.

σ =
2ησ0

π

[√
1 − η2 + η−1 cos−1 η

]
. (2.10)

At pull-off, η is given by the normalized form of equation
(2.3), which is

χ−1
s = 8

[
η − 1 +

√
1 − η2 cos−1 η

]
. (2.11)

J. R. Soc. Interface (2004)



Modelling fibrillar adhesive behaviour C.-Y. Hui and others 39

rigid
fibril

2a

elastic substrate elastic substrate

2a

rigid half-space

crack

rigid
fibril cohesive

zone

z

c

a

elastic substrate

(a) (b) (c)
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comparison with the substrate, the deformation of the substrate is unaffected if material (same as the fibril) is added to
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The critical fibril pull-off stress, σc, obtained numeri-
cally by eliminating η in (2.10) and (2.11), has the form

σc/σ0 = F (χs). (2.12)

The dimensionless function F is plotted in figure 5. The
fracture dominated or flaw sensitive regime corresponds
to large values of χs, i.e. large fibril radius, high cohesive
stress and small critical opening and substrate modulus.
As expected, the normalized form of (2.8), plotted as a
dashed line in figure 5, is correct for large values of
χs, since the cohesive zone is small in this case. On
the other hand, figure 5 shows that, when χs < 0.3,
the pull-off stress reaches the interfacial strength σ0,
which is the maximum stress the interface can support.
Because the critical pull-off stress no longer depends on
the size of the fibre when χs < 0.3, this regime is called
the flaw insensitive regime. To be explicit, failure does
not occur by crack propagation in the flaw insensitive
regime, since the entire interface must fail at once when
the critical stress is equal to the interfacial strength.

Note that the curve in figure 5 terminates at χs ≈
0.22, since by (2.5a) and (2.5b), the pull-off condition
cannot be satisfied for χs < 0.22. Practically speaking,
when χs < 0.22, the interface can no longer support
further increases in the load on the fibre. This situation
is unstable, since any slight increase in fibre load will
result in the pull-off of the fibre and loss of equilibrium.

Case II: Elastic fibril on rigid substrate (Es � Ef).
There is a difference between the first case (rigid fibril,
elastic substrate) and the second one. In the first case
the pull-off of a fibril can be viewed as the growth
of a pre-existing crack as illustrated in figure 4. This
does not apply to an elastic fibril since the exterior
of an elastic fibril is not an external crack. Indeed, if
the interface is frictionless, the edge of the elastic fibril
is not even a stress concentrator since the fibril can
contract freely there. The worst scenario is when the
fibril is perfectly bonded to the substrate (full friction).
In this case the stress near the fibril edge has a weaker
singularity given by Bogy (1971), i.e.

σzz(R → 0, z = 0) = CR−λ, (2.13a)

where R is the radial distance from the edge and λ ∼= 0.4
for νf = 0.5. Linearity and dimensional considerations
imply that

C = ασaλ, (2.13b)

where σ ≡ P/πa2 is the average fibril stress and α is a
numerical constant of order one. Since the interface can-
not support the infinite stresses indicated by (2.13a), a
cohesive zone forms at the fibril edge. The failure of
this cohesive zone, which occurs first at the edge, leads
to crack initiation. Subsequent unstable growth of this
crack results in pull-off. The size of the cohesive zone,
lc, can be estimated in the flaw sensitive regime where
lc � a. To determine lc, we set R = lc and σzz = σ0 in
(2.13a); this results in

lc/a = (ασ/σ0)1/λ. (2.14)

A detailed dimensional analysis shows that the nor-
malized average fibril stress to initiate an edge crack
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40 Modelling fibrillar adhesive behaviour C.-Y. Hui and others

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
FEM result
asymptotic solution c/ 0 = 0.83 f ,   = 0.4

10 1 100 101 102 103

f = 0 a/(2 Ef
*

c)

flaw sensitive f > 1 

flaw
insensitive

f < 0.5 

−

−

c/
0

σ
σ

σ σ

σ

χ

χ

χ

χ

λ
λ

π δ

Figure 6. Normalized pull-off stress versus dimensionless
parameter χf ≡ σ0a/(2πE∗

f δc) for an elastic fibril on a rigid
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σinit/σ0 ≡ Pinit/(πa2σ0) depends on the single dimen-
sionless constant

χf ≡ σ0a

2πE∗
f δc

, (2.15a)

that is,
σinit/σ0 = Φ(χf), (2.15b)

where Φ(χf) is a dimensionless positive function with
upper bound equal to 1. Note that χf defined by (2.15a)
is identical to χs defined by (2.9), except that the
modulus E∗

s in (2.9) is replaced by E∗
f . Details of the

solution will be reported elsewhere. Here we summarize
the key results. The analysis shows that, once a crack
initiates, it becomes unstable and pull-off occurs. Thus,
σinit = σc, the pull-off stress. In the flaw insensitive
regime lc ≈ a, σc ≈ σ0.

In the flaw sensitive regime σc/σ0 � 1 and crack
initiation is governed by the edge singularity (2.13).
Dimensional considerations show that the opening dis-
placement δ at the edge where R = 0 has the form

δ(R = 0) = q
lcσ0

E∗
f

, (2.16)

where q is a numerical constant of order one. Substitut-
ing (2.14) into (2.16) gives

δ(R = 0) = q
aσ0

E∗
f

(
ασ

σ0

)1/λ

. (2.17)

At crack initiation, δ = δc, (2.17) becomes

σc

σ0
= Bχ−λ

f , (2.18)

where B = α−1(2πq)−λ. This analysis shows that, in
the flaw sensitive regime, the normalized pull-off stress
should scale with χ−λ

f , whereas in the flaw insensitive
regime σc ≈ σ0. These scaling laws are verified by our
finite-element results in figure 6, where Φ(χf) is plotted

2a 2w

h

intrinsic interfacial strength 0

remote loading  

substrate

σ

σ

Figure 7. Schematic of a highly idealized scenario where a
large number of identical fibrils are in perfect contact with
the substrate. The loading is such that all the fibrils are
subject to the same load; this condition is called equal load
sharing.

against χf . Equation (2.20), which is the asymptotic
result for large χf , is plotted in figure 6 as a dashed line.
The numerical constant B is found to be 0.83. A com-
parison of figures 5 and 6 shows that the behaviours of
the two curves are very similar, despite the differences
in elastic modulus. For example, in the flaw sensitive
regime, the pull-off stress is much lower since pull off
is controlled by the growth of a crack, due the edge
singularity. As for the case of a rigid fibril, pull-off
becomes flaw sensitive when χf > 1. However, figure 6
shows that flaw insensitivity is valid for a slightly larger
range of χf for the elastic fibril, i.e. when χf < 0.5.

2.2. Energy considerations

In this section we determine the energy required to
debond the simple fibrillar structure shown in figure 7.
The fibrils in figure 7 are assumed to be circular
cylinders identical in length h and diameter 2a. Let N
be the number of fibrils per unit area and let ρ be the
area fraction that the fibrils cover, then clearly

ρ = Nπa2. (2.19)

We assume ELS in this section, which would be valid,
for example, if the structure in figure 7 is pulled
uniformly upwards. The elastic strain energy stored in
any fibril is

σ2

2Ef
πa2h, (2.20)

where σ is the tensile stress on the fibril. This energy
is lost during pull-off. In addition to this energy, an
amount of work equal to Wadπa2 must be supplied to
create new surfaces when the interface is opened. Thus,
the energy needed to pull off a single fibril is(

σ2
ch

2Ef
+ Wad

)
πa2, (2.21)

where σc is defined by (2.12) or (2.15b).
Equation (2.21) implies that, for a fibrillar interface

to be effective as an adhesion enhancer, it is necessary
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that
σ2

ch

2Ef
� Wad. (2.22)

To satisfy this condition, and thus increase the tough-
ness of a fibrillar interface, one should decrease the
modulus, increase the pull-off stress or increase the fibril
length.

From the previous section, it is clear that the max-
imum pull-off stress is the interfacial strength σ0. This
means that the maximum work to pull off a single fibril
is (

σ2
0h

2Ef
+ Wad

)
πa2. (2.23)

However, in the flaw sensitive regime, where pull-off is
dominated by the edge singularity, the necessary work
input to pull off a single fibril depends on whether case I
or II above applies. In either case, the work required
will be significantly less than the case when σc = σ0.
For case I, when the fibril has a much larger modulus
than the substrate, using (2.8) in (2.21), one obtains

Wad

(
1 +

4E∗
s h

πEfa

)
πa2 (2.24)

as the work required to pull off a single fibril. Note that,
since Es/Ef � 1, the quantity inside the parentheses is
close to one. In case II, when the substrate has a much
larger modulus than the fibril, the work to pull off a
single fibril is

Wad

(
1 +

πB2

(1 − ν2
f )

h

a
χ1−2λ

f

)
πa2, (2.25)

which results from using equations (2.15a) and (2.18)
in expression (2.21).

With these results for the work necessary to pull
off a single fibril in the three limiting cases, we now
determine the stress required to pull off a unit area of
the fibrillar interface. Assuming all fibrils are in perfect
contact, the pull-off stress is ρσc, where σc depends on
the parameter χs or χf , as described in the previous
section, and ρ is given by equation (2.19). Note that the
pull-off stress is the theoretical strength when χs < 0.3
or χf < 0.5; in these cases σc = ρσ0. Moreover, the work
required to detach a unit area of the interface is

Wf =




ρWad

(
1 +

4E∗
s h

πEfa

)
,

χs > 1, Ef � Es, (2.26a)

ρWad

(
1 +

πB2

(1 − ν2
f )

h

a
χ1−2λ

)
,

χf > 1, Es � Ef , (2.26b)

ρ

(
Wad +

σ2
0h

2Ef

)
,

χs < 0.3 or χf < 0.5. (2.26c)

In cases of fibrillar interfaces where adhesion is signifi-
cantly enhanced compared to their non-fibrillar counter-
parts, we define a practical work of adhesion WP by

WP = ρ

(
σ2

0h

2Ef
+ Wad

)
∼= ρσ2

0h

2Ef
� Wad. (2.27)

Note that the practical work of adhesion is achieved
only in cases where χs < 0.3 or χf < 0.5.

2.3. Stability of a flat interface

The results so far show that, when χf > 1, pull-off is
flaw sensitive whereas the reverse is true when χf < 0.5.
What if there were no stress concentration? In this
case, it may seem that there should be no length scale
affecting the pull-off stress σc. If that were the case,
one would have σc = σ0, independent of χf . We will
demonstrate that this is not the case. To eliminate
the stress concentration at the fibril edge, consider a
frictionless interface. The absence of interfacial shear
stresses implies that the normal interfacial stress is
uniform. As a result, the fibril is in a homogeneous stress
state of pure tension.

In the following, we show that even if the interface
is frictionless, the parameter χf still plays a key role
in determining its stability. Specifically, we show that
the homogeneous stress state of the fibril is unstable
to perturbations with wavelengths λ > πEfδc/σ0. This
instability is due to the adhesive interaction between
the fibril and substrate. If one identifies λ with the fibril
radius a, then the condition for instability is χf > 0.5.
This result shows that χf > 0.5 is truly a condition for
flaw sensitivity.

Since the stress state of the fibril is homogeneous,
one can consider the problem of an infinitely large
fibril loaded by uniform tension σ at infinity, as shown
in figure 8. The interface is the plane z = 0 and the
substrate is rigid. To simplify the analysis, we consider
plane strain deformation, that is, the out of plane dis-
placement is zero. The adhesive interaction is modelled
by the cohesive zone model shown in figure 3a, where
there are two homogeneous solutions for each value of
the applied stress σ = σ∗. Figure 3a shows that these
homogeneous solutions correspond to uniform interface
displacements δ1 and δ2, respectively. We will show
that the homogeneous equilibrium state with σ = σ∗

and δ = δ2 is unstable and will evolve into one of the
infinitely many possible equilibrium states illustrated in
figure 8c. These equilibrium states are possible because
the interface model allows solutions in the forms of
cracks and cohesive zones that can support normal
stress on the interface.

To find the conditions under which the instability
occurs, proceed by imposing a small sinusoidal pertur-
bation of the form

δp(x, t) = γ sin(2πx/λ)v(t) (2.28)

on the homogeneous equilibrium interfacial displace-
ment δ2, as shown in figure 8b. The magnitude of the
perturbation γ is chosen to be infinitesimally small
in comparison with the homogeneous interfacial dis-
placement δ2 and t represents time. The evolution
of the unknown function v(t) is determined by the
cohesive zone model and the governing equations of
linear elasticity. For example, time evolution of the
interface can be studied by including a damping term
βδ̇ in the interface model, i.e.

σ = Ψ(δ) + βδ̇, (2.29)

J. R. Soc. Interface (2004)



42 Modelling fibrillar adhesive behaviour C.-Y. Hui and others

(a) homogeneous state

rigid substrate rigid substrate

elastic fibril elastic fibril

(b) perturbed state

 = 2  =  2 +   p

if > c:
instability

cðd

cohesive zone still activated

cracks

= *

(c)

σ σ = *σ σ

= *σ σ

λ λ

λδ δ δ δ δ

Figure 8. (a) An elastic fibril in a state of uniform tension has a homogeneous solution δ = δ2, for the cohesive zone model
shown in figure 3a. Assuming no friction and a perfect interface, this solution is valid for a fibril with infinite diameter.
(b) Cartoon of the perturbed homogeneous solution. (c) The interfacial deformation is unstable when the wavelength of
perturbation is substantially large. The instability is due to the interface softening, which allows cracks to develop randomly
on the interface. The cracks are separated by cohesive zones.

where β > 0 is a material constant and δ̇ ≡ ∂δ/∂t (see
Hui et al. (1987) for a more detailed physical interpre-
tation). The behaviour of Ψ(δ) is shown schematically
in figure 3a.

The homogeneous equilibrium solution δ2 satisfies
σ∗ = Ψ(δ2) with δ̇2 = 0. Since the method of analysing
the stability of the perturbed elastic fields is analysed
by Hui et al. (1987), we state the results here without
proof. The key result is that the perturbed elastic fields
are also sinusoidal, with exactly the same wavelength as
in equation (2.28). When using (2.29) as the interface
model, the perturbed interfacial displacement v(t) in
(2.28) satisfies

−E∗
f π

λ
v(t) = −Y v(t) + β

dv(t)
dt

, (2.30)

where E∗
f ≡ Ef/(1 − v2

f ) and Y ≡−(∂Ψ/∂δ)
∣∣
δ2

> 0 (see
figure 3a). The solution of (2.30) is

v(t) = A exp
[
(−πE∗

f λ−1 + Y )
t

β

]
, (2.31)

where A is an integration constant. Equation (2.31)
shows that the homogeneous solution is unstable if the
wavelength of the perturbation exceeds

λ >
πE∗

f

Y
, (2.32)

since v(t) grows exponentially when (2.32) is satisfied.

Without specifying a particular form of interface
model, the magnitude of Y can be estimated from
dimensional considerations, that is

Y ≡ ∂Ψ
∂δ

∣∣∣∣
δ2

∼= O
(

σ0

δc

)
. (2.33)

Thus, according to (2.32), the homogeneous solution
becomes unstable when

πE∗
f

λ
<

σ0

δc
or

λσ0

E∗
f δc

> π. (2.34)

This is analogous to our earlier result χf > 0.5 if λ is
identified with the fibril radius a.

2.4. Condition for equal load sharing

The results in §§2.2 and 2.3 imply that the maximum
stress a fibrillar interface can withstand is ρσ0, where
ρ is the area fraction of fibrils. This result gives the
maximum practical work of adhesion stated in equation
(2.26c). To achieve these maximum strength and tough-
ness characteristics, a fibrillar interface must satisfy the
condition of ELS; that is, all fibrils must be subject to
the same load.

The ELS condition depends on the manner of loading
and the geometry of the fibrillated structure. As an
illustrative example, consider an adhesive tape fabri-
cated to have a large number of fibrils attached to a
flexible backing. Peeling of this tape from a substrate
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Figure 9. (a) Schematic of a 180◦ peel test of a fibrillated surface from a rigid substrate. (b) Free-body diagram of the region
near the peel edge. (c) Free-body diagram of a section of the fibrillar backing still in contact showing variation of normal
stress due to shear on the lower edge.

introduces a stress concentration at the peel edge.
In order for the fibrils near the peel edge to share the
load equally, the characteristic distance of stress decay
from the peel edge must be substantially larger than the
characteristic fibril spacing 2w, which is of the order of
the fibril radius (see figure 7).

Let us establish the conditions for ELS for a 180◦ peel
test, as shown schematically in figure 9a. The backing
or peel arm is assumed to be elastic with Young’s
modulus and Poisson’s ratio EB and νB, respectively.
The width of the backing perpendicular to the page
is much greater than its thickness, H . This condition
implies that the deformation will be independent of the
thickness coordinate. The fibrils have identical heights h
and radii a and are equally spaced. These dimensions
are assumed to be small in comparison with H so that
the presence of fibrils has little effect on the deformation
of the backing and is confined to a region that is small
compared with H . Thus, at distances of order H away
from the peel edge, the deformation of the backing can
be modelled as an elastica. For a 180◦ peel test, the
relation between L, the peel height and the peel force F
per unit width is given by Kendall (1973), i.e.

L2 = 4E∗
BI/F, (2.35)

where I = H3/12. Thus, the peel edge is subject to both
a moment

M = FL = 2
√

E∗
BIF (2.36)

and a horizontal force F .
The elastica solution fails in a small zone near

the peel edge, which can be viewed as the tip of
a propagating crack. Locally, the deformation of the
backing can be modelled as a semi-infinite elastic plate
resting on an elastic foundation. The edge of the plate,
located at x = 0, is subject to a bending moment M
and a horizontal force F given by (2.35) and (2.36),
respectively. The moment M creates bending whereas
the horizontal force F causes shear. The foundation
stiffness for bending is determined by the stretching of

the fibrils, i.e.

kB = ρ
Ef

h
. (2.37)

The deflection of the backing due to bending, uz, is
governed by

E∗
BI

d4uz

dx4
= −kBuz (2.38a)

(see Den Hartog (1987) for a derivation). Again, this
linearized version of the Euler–Bernoulli equation for
plate deflection on elastic foundation is valid since we
are now considering the local region just to the right of
the peel edge (see figure 9b). Equation (2.38a) is subject
to the boundary conditions

E∗
BI

d2uz

dx2

∣∣∣∣
x=0

= −M,
duz

dx

∣∣∣∣
x=0

= 0,

uz(x →∞) → 0.


 (2.38b)

The solution of (2.38) is

uz =
M√

E∗
BIkB

e−η(cos η + sin η), (2.39)

where η = x(4E∗
BI/kB)−1/4. The characteristic decay

distance is (4E∗
BI/kB)1/4 = (E∗

BH3h)1/4(3ρEf)−1/4.
Thus, for ELS to be valid in the bending mode, a
necessary condition is

(
E∗

BH3h

3ρEf

)1/4

� a, w. (2.40)

For the shearing mode, the ends of the fibrils
attached to the backing are subjected to a shear stress τ .
Specifically, the shear force acting on a typical fibril
in this region is πa2τ/ρ. This shear force causes a
horizontal displacement of the upper edge of the fibril
relative to the lower edge, which is attached to the
substrate. This horizontal displacement, denoted by ux,
is estimated by treating the fibril as a beam clamped at
the lower edge. The relation between the shearing stress
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and ux is found to be

τ =
3ρEfa

2

4h3
ux. (2.41)

Thus, the foundation stiffness for the shearing mode
is ks = 3ρEfa

2(4h3)−1. A simple force balance of a
material element in the backing sheet gives

dσ

dx
=

τ

H
=

ksux

H
, (2.42)

where σ is the tension in the backing (see figure 9b).
Linear elasticity implies that

σ = EB
dux

dx
. (2.43)

Combining (2.42) and (2.43) gives

EB
d2ux

dx2
=

ksux

H
. (2.44a)

Equation (2.44a) is subject to the boundary conditions

EB
dux

dx

∣∣∣∣
x=0

= −F/H, (2.44b)

ux(x →∞) = 0. (2.44c)

The solution is

ux =
F√

EBksH
exp

(
−
√

ks

EBH
x

)
. (2.45)

Thus, the characteristic stress decay distance in the
shear mode is (4EBHh3)1/2(3Efρa2)−1/2. This result
shows that a necessary condition for ELS to occur in
the shear mode is√

4EBHh3

3Efρa2
� a, w. (2.46)

In truly mixed mode loading situations, such as the
180◦ peel used in this derivation, both (2.40) and (2.46)
must be satisfied for ELS to occur near the crack tip.
When H � h, as we have assumed above, satisfaction
of (2.46) implies satisfaction of (2.40). However, we have
observed empirically in several non-peel experiments
that most fibrils fail in tension, implying that the
bending mode condition is often sufficient.

The peel force can be determined by enforcing the
failure condition

uz(x = 0) = σ0h/Ef . (2.47)

This condition implies that the fibrils near the peel edge
fail at the interface strength, which is valid if ELS holds
and the parameter χf , from above, is less than 1/2.
Then, the peel force is obtained by combining (2.36),
(2.37), (2.39) and (2.47), which is

F =
ρσ2

0h

4Ef
=

1
2
WP. (2.48)

Note that the peel force is exactly one-half of the
practical work of adhesion given by (2.27). This result
can also be obtained from an energy balance.

Table 1. Pull-off force for the membrane experiment per-
formed on PDMS samples (circular cross section, 2a = 1 µm,
h/2a = 10). Note that 3 µm fibril spacing is the largest spac-
ing (smallest area fraction ρ) for the samples we fabricated.

Sample Pull-off force (mN)

Flat control 105
3 µm spacing columns 83

3. EXPERIMENTAL RESULTS

PDMS was moulded into raised columns on a PDMS
backing, as described in the companion paper to this
one (see Glassmaker et al. 2004). Fibrils had circular
or square cross sections with 1 µm diameter and sides,
respectively. The minimum distance separating fibrils
was one, two or three times the fibril’s cross-sectional
dimension. Fibrils were fabricated with various aspect
ratios h/2a ranging from 3 to 10. In another series of
experiments, polyimide fibrils with the same dimension
ranges were fabricated by direct patterning and deep
reactive ion etching of a 10 µm polyimide film on a
silicon wafer, as described in Geim et al. (2003).

3.1. PDMS samples

We performed two adhesion experiments on the PDMS
samples. The first involved compressing an entire sam-
ple’s fibrillar side (5 × 5 mm−2 macroscopic sample
size) into contact with a stretched saran r© membrane.
The flexibility of the saran r© membrane allowed slow
ramping up of the compressive load. An inverted optical
microscope was used to determine when the fibrils came
into intimate contact. Once contact was achieved, the
sample was pulled off and the maximum tensile force
was recorded as a measure of adhesion. The results are
shown in Table 1 for circular cross-section fibrils with
h/2a = 10. The second experiment was to introduce a
crack between the structured surface and an opposing
adherend. In this case the opposing adherend was a
glass cover slip and the crack was introduced by placing
a thin wire (12.7 µm diameter) between the sample and
glass slip. When the sample and slip are compressed
together and released, the length of the non-contact
crack region at equilibrium is approximately inversely
proportional to the work of adhesion.

The results of the second experiment are shown in
figure 10 and Table 2, again for circular cross-section
fibrils with h/2a = 10. Notice in figure 10 that the wire
introduces a well-defined crack length, as the contrast
between the contact and non-contact regions is quite
distinct. From the data in both Tables 1 and 2, we see
that the adhesion of the fibrillar samples is a significant
percentage (about 80%) of that for the flat control.
This result clearly shows that there is an advantage for
adhesion to have fibrils at the interface. In terms of
actual area of contact, the fibrillar sample has a 16-fold
increase in work of adhesion (Wf/ρWad = 16). Based on
observations of how the PDMS samples failed during
pull-off, we expect them to be in the flaw sensitive
fibril pull-off regime, so that equation (2.26b) applies.
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L

wire contact regionnon-contact region

Figure 10. Experiment to determine work of adhesion by
inserting a wire at the interface.

Table 2. Crack length for wire crack experiments performed
on PDMS samples (circular cross section, 2a = 1 µm, h/2a =
10) adhering to glass.

Sample Crack length, L (µm)

Flat control 89
3 µm spacing columns 116

The difficulty in applying (2.26b) to this experiment is
that the cohesive stress σ0 is unknown.

Israelachvili (1992) states that van der Waals solids
may have a cohesive stress as large as 100MPa. How-
ever, the cohesive stress is likely to be much smaller
for PDMS because of its low modulus (see Hui et al.
2003); a more conservative estimate is σ0 = 5 MPa. For
the large cohesive stress, (2.26b) predicts an adhesion
enhancement Wf/ρWad of 262, while for the smaller
cohesive stress Wf/ρWad = 80. One way to reconcile
the difference between these estimates and the exper-
imental value is to note that (2.26b) is derived under
the assumption that all fibrils are in perfect contact.
In the experiment, however, we observed that this is
certainly not the case. In a discussion in the companion
paper (Glassmaker et al. 2004), it is noted that the
presence of imperfect contact significantly decreases
the adhesion and hence the pull-off stress. Since the
estimates in equation (2.26) are proportional to σ2

c ,
the effective adhesion estimate will decrease by an even
larger amount.

Whatever theoretical prediction one deems most
appropriate, it is evident from the experimental data
that the advantage gained by having a fibrillar interface
is overwhelmed by loss of contact area for these samples
(small ρ in equation (2.26b). That is, from Tables 1
and 2, the flat control interface performed better than
the fibrillar samples, if one forgets about the difference
in actual contact area. It is expected that samples
with increased area fraction ρ will perform better than
the corresponding flat controls. However, the PDMS
samples we made with smaller fibril spacing did not

make good contact or adhere well due to lateral collapse
(see the companion paper, Glassmaker et al. (2004), for
more on lateral collapse).

3.2. Polyimide samples

The wire experiment to introduce a crack at the
interface was also performed on the polyimide fibril-
lar samples. However, the adherend for the polyimide
samples was a flat sheet of PDMS rather than glass.
In figure 11a a scanning electron microscope (SEM)
micrograph of one of the samples shows well-formed
polyimide fibrils with an aspect ratio greater than 5.
Figure 11b shows results of measured adhesion in this
system. Observation of the data in figure 11b shows
that there is a significant decrease in adhesion energy
with increased fibril separation. However, on an actual
contact area basis, we again observe an increase in
adhesion due to fibril formation. (If the fibrils had
no effect on adhesion, Wf/Wad would equal ρ (see
equations (2.21) and (2.26)). Figure 11b shows that
the measured Wf/Wad increases faster than ρ, so that
the fibrillar interface enhances adhesion on the basis
of actual contact area.) In spite of the slight adhesion
increase that we observe, our results differ significantly
from those reported by Geim et al. (2003) on a very sim-
ilar system. Specifically, we found that, overall, adhesion
was reduced rather than increased for fibrillar interfaces
with these dimensions and features, when compared
to corresponding flat polyimide control interfaces (see
figure 11b).

Although our samples and those of Geim et al. both
consisted of the polyimide fibrils attached to a thin
(∼5 µm thick) film of polyimide, one difference is that
Geim et al. backed the polyimide film with a viscoelastic
layer (scotch tape) during adhesion experiments. For
the data shown in figure 11b, we backed the polyimide
film with an approximately 1mm thick sheet of PDMS,
which is nearly ideally elastic. It is possible that some of
the additional adhesion energy measured by Geim et al.
was dissipated in the viscoelastic layer. We repeated
experiments on our polyimide film with a double stick
viscoelastic tape layer between the polyimide film and
PDMS backing. Adhesion was improved by 20% for the
flat control interface and by as much as a factor of two
for the fibrillar samples, but the adhesion of the fibrillar
interface remained significantly lower than that of the
flat control.

Although the discrepancy between our results and
those of Geim et al. (2003) remains unresolved, it is
clear that loss of contact area is the most important
factor affecting adhesion in our fibrillar polyimide sam-
ples. As with the fibrillar PDMS samples, the decrease
in overall adhesion due to lost contact area more than
offsets any gain due to fibrillar enhancement. To over-
come this difficulty, in ongoing work, we seek to increase
the area fraction ρ by constructing fibrils with spatula
at their ends, again mimicking the natural structure
used by geckos (see Autumn et al. 2000). Additionally,
taking note of our model in equation (2.26), we hope
to increase adhesion by making samples with smaller
fibrillar diameter and modulus and larger fibrillar height
and interfacial strength.
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Figure 11. (a) SEM micrograph of patterned polyimide. The scale bar is 5 µm. (b) Measured work of adhesion decreases
linearly with decreasing ρ for the fibrillar samples, as predicted by equation (2.26), but adhesion is enhanced on the basis
of actual area of contact (i.e. Wf/Wad > ρ). Note that all parameters other than the area fraction (i.e. h, a, E∗

s and Ef) are
kept fixed for this set of samples.

4. DISCUSSION

Our results in §§2.1 and 2.2 determine the strength
and effective work of adhesion (§2.2, (2.26a–c)) of an
idealized fibrillar interface. Note that the effective work
of adhesion Wf consists of two terms. The first term,
ρWad, is the intrinsic work required to separate two
surfaces. The second term in each of (2.26a–c) is due to
the loss of stored elastic energy in the fibrils. We gave
detailed theoretical arguments to support our claim
that, to maximize adhesion, fibrils must be designed
to satisfy the condition χs < 0.3 or χf < 0.5. The first
condition holds for situations where the fibril is rigid
and substrate elastic, while the second holds in the
opposite situation.

One way to make the result more general is to
introduce an effective modulus, E∗, where 1/E∗ ≡
1/E∗

f + 1/E∗
s . This definition is consistent with the

contact mechanics convention used in the JKR theory
(see Johnson et al. 1971), and reduces to our results in
the proper circumstances. For example, if the substrate
is much stiffer than the fibril, 1/E∗ = 1/E∗

f . Conversely,
if the substrate is much softer than the fibril, then
1/E∗ = 1/E∗

s . For the DB cohesive zone model, Wad =
σ0δc and the conditions on χs and χf can be combined
into a single condition using the effective modulus E∗,
i.e.

χeff ≡ σ2
0a

2πE∗Wad
� 1. (4.1)

An important assumption we have made throughout
our theoretical development is that the fibrils are in
perfect contact with the substrate. The assumption that
every fibril is in perfect contact with the substrate is
practically impossible to achieve, as demonstrated by
the experiments in our companion paper (Glassmaker
et al. 2004). In reality, many fibrils are often in partial
contact or are not in contact at all. For example, as
mentioned above, Geim et al. (2003) showed recently

that a fibrillar film of relatively stiff polymer (poly-
imide) yields enhanced adhesion. However, they note
that, in most of their experiments, only a small fraction
of the total number of fibrils attained contact.

In experimental systems, surface roughness and the
fact that not all fibrils have the same geometrical
dimensions (e.g. length) can have a dramatic effect on
the force required to pull off a single fibril. Indeed,
since the range of van der Waals interactions is at most
10 nm, even the slightest deviation from perfect contact
can have a detrimental effect on the pull-off force.
As pointed out by the analysis of Persson and Gorb
(2003), thin plate-like structures (i.e. spatula) at the
terminal ends of setae allow geckos and other animals
to achieve better contact on rough surfaces. Because
of the important role played by roughness in fibrillar
systems, we note that the results in this work give a
theoretical upper bound for the strength and work of
adhesion of a fibrillar surface.

However, the dimensionless parameter χeff intro-
duced in this work is of relevance, even to systems
not in perfect contact. Specifically, surface roughness in
natural and experimental systems generally contains a
spectrum of wavelengths and asperity heights. However,
a fibrillar structure has sufficient compliance so that the
model we have presented, an ideally flat fibril contacting
an ideally flat substrate, should be valid, especially
at large roughness wavelengths. In the case when the
surface is locally non-flat on length scales comparable to
the fibril radius, our results and those of JKR theory do
not differ greatly. For example, if one assumes that the
fibril end is a spherical lens with radius of curvature R
in contact with a flat rigid substrate (see, e.g. Arzt et al.
(2003) and Autumn et al. (2002)), then the JKR theory
predicts that the pull-off force for a single fibril PJKR is
given by

PJKR = 3πRWad/2. (4.2)
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It is important to note that the JKR theory is based
on linear elastic fracture mechanics; that is, the air
gap between the surface of a spherical lens and the
substrate just outside the contact zone is treated as
an external crack. Indeed, in the JKR theory, the
normal stress at the edge of the contact zone has an
inverse square root singularity. Thus, one can interpret
(4.2) as the pull-off force in the flaw sensitive regime.
(See figures 5 and 6 and explanations thereof in §2.1.)
On the other hand, Maugis (1992) has demonstrated,
using a surface interaction model, that there is a regime
where the stress concentration is completely eliminated
and the surface interaction forces dominate. This regime
is the Derjaguin–Muller–Toporov (DMT) limit; in this
regime, the pull-off force is

PDMT = 2πRWad, (4.3)

which is 25% higher than the prediction of the JKR
theory.

Maugis (1992) showed that the transition from the
JKR to the DMT limit depends on the single dimen-
sionless parameter

λM ≡ 2
(

9Rσ0

16πE∗δc

)1/3

, (4.4)

where σ0 and δc are the same as those defined in this
paper and E∗ is the plane-strain Young’s modulus of
the spherical lens. Maugis showed that large values
of λM correspond to the JKR limit. In addition, the
transition from the JKR to the DMT limit occurs at
approximately λM ≈ 1 or

1/9 ≈ Rσ0

2πE∗δc
. (4.5)

If one identifies R with the fibril radius a, then this
condition corresponds to the condition χeff < 0.1. Our
results in §2.1 are slightly different (χs < 0.3 or χf < 0.5)
because we consider a flat-ended fibril, rather than
a spherical lens. Because the two results are nearly
identical, we see that the parameter χeff is just as
important when local roughness is a factor as when the
surfaces are perfectly flat.

To conclude, we note that the JKR theory will give a
reasonable prediction for the pull-off force (and, hence,
the work of adhesion) when the diameter of the fibril
is large in comparison with the size of the cohesive
zone and the radius of curvature of the fibril end is
of the order of the fibril radius. However, when χeff

is small, the first condition is violated and the JKR
prediction of pull-off force can be substantially flawed.
Specifically, note that when the radius of curvature R
in equation (4.2) approaches infinity (the limit of a
flat-ended fibril), the JKR theory predicts an infinite
pull-off force. Thus, for small χeff and nearly flat-ended
fibrils, the theory presented in §2.1 is required to obtain
accurate results. (Effectively, our theory is valid when
the size of the cohesive zone is small compared with the
size of the contact region and when the finite geometry
of the sample becomes important. In contrast, the JKR
theory assumes that small-scale yielding is satisfied and
that the bodies have smooth surface profiles so that

the finite geometry can be replaced with a half-space
locally.) We note that, for a fixed material and interface
model, small χeff corresponds to small fibril radius,
which is precisely the limit of interest in the case of
biological fibrillar adhesion and mimics thereof.

5. CONCLUSION

To maximize pull-off stress of a single fibril, it was
shown that fibrils must be designed to satisfy the condi-
tion χ ≡ σ0a(2πE∗δc)−1 < 1. This result was obtained
for situations where the fibril is rigid and the substrate
elastic, but is expected also to hold in cases where
fibril and substrate have comparable elastic moduli, as
long as one uses the effective modulus E∗, defined by
1/E∗ ≡ 1/E∗

f + 1/E∗
s .

It was demonstrated that choosing χ < 1 is also
advantageous from an energy point of view, since fib-
rillar interfaces with small χ have the largest effective
works of adhesion. This line of reasoning relies on the
assumptions that elastic energy stored in fibrils is dissi-
pated upon fibril failure, that perfect contact with the
substrate is attained and that the fibrils are in a state
of equal load sharing when failure occurs. Qualitative
arguments and observations were given in support of the
first assumption. Quantitative expressions were derived
to show when conditions of equal load sharing are
satisfied for a common adhesion measurement geometry
(180◦ peel test). Moreover, it was shown in the discus-
sion section that reducing χ increases adhesion, even in
rough systems where perfect contact is impossible.

The importance of the parameter χ was emphasized
by showing its relation to the wavelength of sinusoidal
perturbations that give rise to instabilities in adhering
flat interfaces modelled using a cohesive zone force
separation law. By equating this wavelength to the fibril
radius, the results for maximization of single fibril pull-
off stress were verified.

Finally, experimental results for simple fibrillar mim-
ics to biological systems showed enhanced adhesion on
a per actual contact area basis and provided partial
verification of the theoretical results.

We are grateful for the technical assistance provided by
Rick Bender and to Jinsoo Kim for fabricating synthetic
PDMS fibrillar samples for indentation measurements. We
also acknowledge Nancy Rizzo for gathering all SEM image
data included in this paper. Finally, we thank D. Hallahan
for helpful discussions regarding the design of synthetic
fibrillar systems.
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