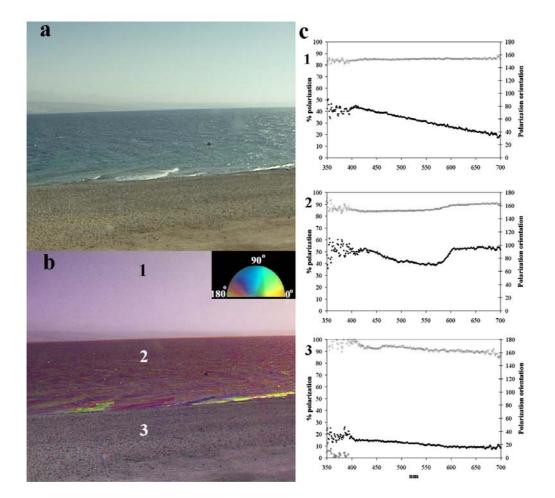
ELECTRONIC APPENDIX

This is the Electronic Appendix to the article

Migrating locusts can detect polarized reflections to avoid flying over the sea

by

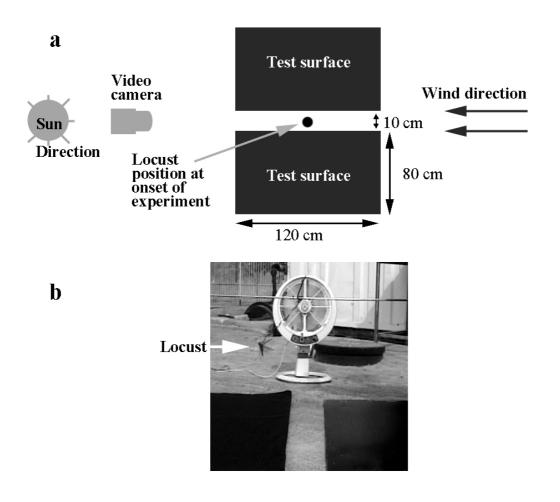
N. Shashar, S. Sabbah and N. Aharoni


Biol. Lett. (doi:10.1098/rsbl.2005.0334)

Electronic appendices are refereed with the text; however, no attempt is made to impose a uniform editorial style on the electronic appendices.

Supplemental information

1) Light reflection of seawater measured at 11:30 AM with a wind coming from the North- East (left side of the images) . a) A color image of the Gulf of Aqaba. b) A false color polarization image of the same scene taken with an imaging polarimeter (Wolff & Andreow 1995; Shashar *et al.* 2004) where polarization orientation is coded into hue (insert), % polarization is coded into color saturation, and intensity remains unaffected (Wolff & Andreow 1995). c) Polarization orientation (o- gray) and % polarization (\bullet -black) across the 350-700 nm range at representative areas in the sky (1), water (2) and the beach (3), measured with a spectral polarimeter (Shashar *et al.* 2004).


Wolff, L.B. & Andreou, A.G. 1995 Polarization camera sensors. *Image and Vision Computing* **13**, 497-510.

2) Setup for flight over black surfaces experiment.

a) A schematic drawing of the setup. b) An image of a tethered locust during an experiment, flying towards the left surface.

Animals were tested in the following setup (a): Two 1.2 x 0.8 m squares of flat black material were placed on the ground with an exposed gap between them. The test materials were made of a linearly polarized light reflecting plastic and of felt that reflected much less polarized light. A fan generated a light wind along the central gap, towards the sun, symmetrical on both sides of the gap. Animals were tethered to a pre set bar positioned 50 cm with a small hock above the center of the gap, and were manually released directly underneath it by dropping the holding hand; such they were 5-7 cm above the ground at release. A digital video camera, placed at the height of the holding bar recorded the animals' flight direction (b). The image presented is a single frame out of a recorded experiment.

