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Supplementary Material 

 

Dating of stratigraphic levels 

Uncorrected radiocarbon dates for Cueva Traful are shown in Table S1.  Capa 1 and Capa 

2 were likely bioturbated because radiocarbon dates indicate that they are older than 

strata below them (Montero et al. 1983). 

 

Ancient DNA protocol and sequence reliability   

We extracted DNA from 73 teeth from 9 stratigraphic units using the protocol outlined in 

Hadly et al (2003).  We amplified a 255 bp of cytochrome-b following strict ancient 

DNA standards, which include (1) no previous amplification of modern Ctenomys DNA 

in the building, (2) use of primers designed specifically for ctenomyid species, (3) use of 

negative controls for detection of contamination at all stages of analysis, and (4) spatial 

and temporal separation of DNA extractions and PCR set-up from PCR amplification 

(Cooper & Poinar 2000; Hadly et al. 2003).  All PCR products were sequenced in both 

directions to increase the chances of detecting random sequencing errors.  To provide 

independent confirmation of our results, five of the teeth in our sample were broken in 

half prior to extraction. DNA from three of these teeth was extracted, amplified, and 

sequenced in the laboratory of Dr. Steven Palumbi (Stanford University); the resulting 

sequences from the Palumbi lab matched exactly the sequences obtained in our lab.   

In addition to these measures, PCR products from three teeth were cloned to 

confirm the validity of our sequences and to detect nuclear pseudogenes.  For two 

samples, Pfu polymerase was used for amplification.  For these samples, 8/8 (from 2036 



ypb) and 5/6 (from 5906 ybp) cloning products matched the target sequence exactly; the 

one non-matching sequence was identified as human using a Blast search on GenBank.  

A third sample (from 3749 ybp) was amplified using Taq Gold.  Eighteen sequences were 

obtained from this sample after cloning.  Twelve of these sequences matched the target 

exactly.  One sequence was highly damaged and although it aligned with the target 

sequence and blasted as Ctenomys, it did not match the target sequence.  Four sequences 

had a single, unique base pair change and one sequence had two unique base pair 

changes; collectively, these consisted of three first position changes and three second 

position changes.  The random nature of the base pair changes in these sequences 

suggests Taq error, rather than actual variation in the sequences analyzed.   

Finally, the pattern of sequence variation detected provides additional support for 

the validity of our molecular data.  Analyses of transition:transversion ratios and the 

codon positions of mutations are both concordant with valid mitochondrial sequences.  

Further, there is no evidence that the number of PCR errors increased as a function of 

DNA degradation (age).  Due to the difficulty in distinguishing between C. sociabilis and 

C. haigi based on tooth morphology, we extracted, amplified, and sequenced both species 

concomittantly.  In contrast to the marked discrepancy between historical and modern 

variability detected in C. sociabilis, in C. haigi the level of diversity is comparable for 

modern and ancient samples.  Given the similar taphonomy and preservation in the cave 

site and similar handling of samples from both species, we can think of no reason why 

degradation and, hence, PCR and sequencing errors should be more pronounced for C. 

sociabilis.  Further, haplotypic diversity in C. sociabilis from our oldest temporal interval 

(8147-10209 ybp) is less than that in the more recent intervals (5,655-6,135 and 3,293-



3,749 ybp), suggesting that age (potential for DNA degradation) and haplotypic 

variability are not directly related. 

 
Species identification 

We used a phylogenetic approach to identify ancient Ctenomys sequences to species.  

Specifically, a neighbor-joining tree was constructed using PAUP 4.0b10 (PPC) 

(Swofford 2003) based on uncorrected p-distance for cytochrome b sequences for the 39 

species of Ctenomys (n = 129 sequences) listed in GenBank (Figure S1).  One thousand 

bootstrap replicates indicated 100% support for a monophyletic clade which includes a 

modern C. sociabilis sequence and the ancient samples from Cueva Traful identified as 

C. sociabilis. 

 

Analysis of divergent clade of ancient C. sociabilis  

Identifying Ctenomys species based solely on genetic variation is difficult and we cannot 

exclude completely the possibility that the divergent clade detected in Cueva Traful 

represents a distinct species.  However, we believe that this clade is unlikely to represent 

another species for the following reasons: 

 

1. Univariate and multivariate analyses of incisors indicate that morphology is 

similar for the modern (n = 8) and ancient (n = 20) C. sociabilis clades.  

Specifically, total length, width, and tip width of incisors did not differ 

significantly (p > 0.05) between clades.  Although initially mid-incisor diameter 

did differ significantly (p = 0.018), this result did not persist following Bonferroni 



correction of p values (α < 0.0125).  Further, a principal components analysis 

indicated extensive overlap between the modern and ancient clade (Figure S2). 

 

2.    Intraspecific sequence variation for modern ctenomyid species is comparable to 

the amount of cytochrome b polymorphism observed in the Cueva Traful C. 

sociabilis samples.  Although there have been few studies of intraspecific 

variation in cytochrome b for ctenomyids, we compared the amount of variation 

found in Cueva Traful, to that found within species of ctenomyids listed in 

GenBank.  While the sequences on GenBank are likely biased downward (i.e., 

toward reduced variability) due to insufficient sampling, the divergence between 

the ancient and modern clades is in the middle of the range of values obtained for 

modern ctenomyid species (Table S2). 

 

3.   The cytochrome b sequence divergence detected within Cueva Traful is at the low 

end of the range of divergence values found between modern sister species pairs 

of ctenomyids (Table S3).  
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Figure S1.  A neighbor-joining tree based on p-distance of 232 bp of cytochrome-b.  The 

ancient haplotypes identified here as C. sociabilis are < 4.3% sequence divergent from 

one another and form a monophyletic clade relative to other modern tuco species as well 

as ancient material attributed to C. haigi.   
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Figure S2.  Principal components analysis of modern (M) and ancient (A) clades based 

on incisor morphology. 
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Table S1.  Uncorrected radiocarbon dates for Cueva Traful.  Letters refer to the location 

of each sample on excavation grid.  * indicates samples from (Montero et al. 1983). 

Multiple dates from the same interval were averaged for Figure 1. 

Interval 

14C age 

ybp   Material Lab 

capa 1 Ir 3,293 +49 jaw bone NSF-Arizona AMS laboratory 

capa 2 Ir 3,749 +94 jaw bone NSF-Arizona AMS laboratory 

capa 3 Hu 2,033 +43 jaw bone NSF-Arizona AMS laboratory 

*capa 3 Iu, Hu2,230 +40 burned log Mt. Soledad Radiocarbon Laboratory 

*capa 4 Hu 2,720 +40 carbon Mt. Soledad Radiocarbon Laboratory 

*capa 4 Hu 2,720 +40 carbon Mt. Soledad Radiocarbon Laboratory 

capa 5    tephra volcanic ash 

capa 6 Ir 5,906 +84 jaw bone NSF-Arizona AMS laboratory 

capa 8 Hu 5,655 +73 jaw bone NSF-Arizona AMS laboratory 

*capa 9 Hs, Is 6,030 +115 burned log Teledyne Isotopes 

*capa 9 Im 6,240 +60 burned log Mt. Soledad Radiocarbon Laboratory 

*capa 9 Hs, Is 6,030 +115 burned log Teledyne Isotopes 

*capa 9 Im 6,240 +60 burned log Mt. Soledad Radiocarbon Laboratory 

*capa 13 In 7,850 +70 vegetable carbonMt. Soledad Radiocarbon Laboratory 

*capa 13 In 9,285 +313 vegetable carbonLaboratorio de Tritio y Radiocarbono LATYR (La Plata)

*capa 13 In 7,308 +285 vegetable carbonLaboratorio de Tritio y Radiocarbono LATYR (La Plata)

capa 14 Ho 10,209 +96 jaw bone  NSF-Arizona AMS laboratory 

 

 

 



Table S2.  Amount of intraspecific cytochrome b sequence polymorphism (n = 232 bp 

fragment) within 30 species Ctenomys for which sufficient sequence data were available 

on GenBank (calculated using DNAsp 4.0.6; Rozas & Rozas 1999).   

 

Species 
within group average 

no. differences standard error 
within group 

average p distance
standard 

error 
C. tuconax 14.4000 2.6010 0.0621 0.0118 
C. steinbachi 13.0000 3.4059 0.0560 0.0139 
C. boliviensis 6.4000 1.7625 0.0276 0.0072 
C. porteousi 5.0000 2.3103 0.0216 0.0089 
C. mendocinus 4.6667 1.5817 0.0201 0.0075 
C. opimus 4.0000 1.4046 0.0172 0.0063 
C. punddti 4.0000 1.7192 0.0172 0.0074 
C. latro 3.8333 1.3493 0.0165 0.0062 
C. bergi 3.3333 1.3306 0.0144 0.0062 
CT C. sociabilis 2.9720 0.9910 0.0128 0.0040 
C. dorbignyi 2.5556 0.9418 0.0110 0.0044 
CT C. haigi 2.0000 0.3094 0.0086 0.0015 
C. torquatus 2.0000 1.1256 0.0086 0.0050 
C. rosenpaascuali 2.0000 1.4225 0.0086 0.0053 
C. nattereri 1.8000 0.9560 0.0078 0.0048 
C. fulvus 1.5000 0.8267 0.0065 0.0037 
C. goodfellowi 1.0000 0.9660 0.0043 0.0042 
C. haigi 1.0000 0.9289 0.0043 0.0038 
C. argentinus 0.6667 0.6348 0.0029 0.0028 
C. coyhaiquensis 0.6667 0.5971 0.0029 0.0025 
C. talarum 0.5000 0.4814 0.0022 0.0022 
C. perrensis 0.4000 0.4368 0.0017 0.0017 
C. tucomanus 0.4000 0.3704 0.0017 0.0018 
C. rionegrensis 0.3366 0.1440 0.0015 0.0007 
C. roigi 0.0000 0.0000 0.0000 0.0000 
C. conoveri 0.0000 0.0000 0.0000 0.0000 
C. frater 0.0000 0.0000 0.0000 0.0000 
C. occultus 0.0000 0.0000 0.0000 0.0000 
C. scagliai 0.0000 0.0000 0.0000 0.0000 
C. bonettoi 0.0000 0.0000 0.0000 0.0000 
C. pilarensis 0.0000 0.0000 0.0000 0.0000 
 



 

Table S3.  Amount of interspecific cyt b sequence divergence (n = 232 bp fragment) 

among sister species pairs of Ctenomys (calculated using DNAsp 4.0.6; Rozas & Rozas 

1999).  Data were obatined from GenBank; sister species were identified following 

Castillo et al. (2005).   

 

Sister taxa 

Between 
group 

average no. 
differences

Standard 
Error 

Between 
group 

average p 
distance 

Standard 
Error 

C. frater - C. lewisi 13.0000 3.5800 0.0560 0.0147 
C. pearsoni - C. torquatus 9.0000 2.7903 0.0388 0.0115 
C. boliviensis - C. steinbachi 8.5000 1.8440 0.0366 0.0073 
C. haigi - C. coyhaiquensis 6.8333 2.4294 0.0295 0.0103 
CT C. sociabilis 6.4500 2.2397 0.0278 0.0089 
C. mendocinus - C. rionegrensis 4.7073 1.6016 0.0203 0.0070 
 
 


