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Figure 1: In wvitro evidence of the spontaneous release of phage. The strain
carrying the lysogenic phage (Bb::®, open squares) outnumbers the suscepti-
ble strain (BbGm, filled circles) without exogenously added phage. The error
bars denote the standard deviation of the number of the colony forming units
(CFU) of each bacterial strain.

1 Spontaneous Phage Induction

The spontaneous induction of the phage from lysogens is inevitable, yet can
take place at different time points, which could be more than 24 hours after
co-culturing two strains. (Note that the bacteria grow in the log growth phase
for the first 24 hours.) Thus in Figure 3, 4 and 5 in the main text we added
exogenous lysogenic phage to induce phage-mediated competition at earlier
time, while bacteria grow in the log growth phase. Here we present in vitro
evidence of phage-mediated competition in the absence of exogenous phage
as shown on appendix Fig. 1. The strain (Bb::®) carrying the phage and
the susceptible strain (BbGm) are co-cultured without exogenously added
phage. The initial ratio of the strain Bb::® to the strain BbGm is reversed
around 8-12 hours, which is mediated by the lysogenic phage spontaneously



released from Bb::®. Based on this result, we use the spontaneous lysis rate
d = 5.4 x 107* in the numerical simulations.

2 Theoretical Model of a Generalized Phage-
Mediated Competition

Our primary model of phage-mediated competition depicted in Figure 1 in
the main text is limited to the case where one host is perfectly phage-resistant
and the other is phage-susceptible. However in general cases both invading
and resident hosts can be susceptible to phage infection but with differen-
tial susceptibilities. Here we model the invasion of a host A endogenously
and exogenously carrying the phage to another host B. The hosts are char-
acterized by the differential susceptibilities k4 and kp against the phage,
and the phage pathologies P4 and Pg. We rescale and non-dimensionalize
the Variables, ij = I]/SB(O), S = S]/SB(O), lj = LJ/SB(O), (b = (I)/SB(O),
Nmaz = Nmaz/S8(0), 7 = at, a« = 0/a, f = A/a and ; = k;Sg(0)/a, where
j = A, B. Then we obtain

ds;

d—TJ = (1 - n/nmam‘ - /ngb)sj (1)
di; )

drj = (1= F;)v0s; + (1 = n/Nmas — @)i;

dl;

% = x(@) i +BY 1) =D ds;
j j

where n = }.(i; + s; + ;) and j =A,B. The initial conditions for appendix
Eq. (1) are i5(0) = [4(0) = 5(0) = 0, s5(0) = 1, 54(0) > 0, i4(0) > 0 and
#(0) > 0. The above general model and appendix Eq. (1) are reduced to the
primary model depicted in Figure 1 and Equation (1) in the main text when
Py =0,v4=0and S4(0) = 0.



2.1 Derivation of the Invasion Criterion

CASE I: If ¢(0) = 0 and o = 0, then the 7-dimensional ODE system reduces
to

ds;

ar = (I- (Z 55 + 2.x‘l)/nmaz)sj’

dig

E = (1 - (Z Sj + Z'A)/nmaz)i/l-

where j = A, B and ig(7) = la(7) = lg(7) = 0 for 7 > 0. All populations
s; and i4 will grow with the same growth rate and the initial ratio i4(0) :
54(0) : sp(0) remains unchanged to be i4(7) : s4(7) : sp(7) for all 7 > 0. In
other words, there will be no pathogen-mediated competition.

CASE II: When ¢(0) > 0, we can derive the invasion criteria in Equa-
tions (2) and (3) in the main text in the limit v; — oo and § — oo.
CASE II-A: 7 = 0 Limit.
An appropriate timescale near 7 = 0 is 0 = 7/¢ where ¢ = 1/§. The effect
of the transformation ¢ = 7/€ is to magnify the neighborhood of 7 = 0,
ie., for a fixed 0 < 7 < 1, we have 0 > 1 as ¢ — 0. With the trans-
formations o = 7/e, s;(T;€) = §;(0;¢€), i;(1;€) = 1;(0;€), Ii(T5€) = [;(03¢),
oj(15€) = ¢;(o5€), & = /B, appendix Eq. (1) become

ds; a 3

d—aj = €(1- n/nmm)sj —§;95; (2)
dgj Ta i

L= (1= )i + el = n/nas — iy

di; PR

% = XZZ] — Z§j$§j+exazgj
J J J

In a regular perturbation theory (Murray 1980) the solutions are ex-
panded in order of €, 3;(o;€) = Y _,€"8;n(0), ij(0;€) = >, _,€"jn(0),
Li(o;€) =30 €"lin(0), o(os€) =D, o€ dn(0). We now set e = 0 to get



O(1) system,

o = %o )

% = (1= P)&dodj0 (4)

% = Pi&idodi0 — Lo (5)

% = X Z Lo — ijéo%‘,o (6)
J j

with the initial conditions 7z 0(0)=l4,0(0)=lge(0) = 0, 550(0) = 1, 54,0(0) >
0, 24,0(0) > 0 and ¢,(0) > 0
By integrating appendix Eq. (3) and (4), we obtain

5:0(0) = 850(0)Eap(— /0 " £.00(z)d2), (7)
i0(0) = 140(0)
£ (1= P)isl0) / Fy(y)dy ®)

where Fj(y) = &¢o(y)Ezp(— [ &do(x)dz). Appendix Eq. (5) and (6) can

be rewritten

T8~ Piasp(0)Fy (o) ~ Lialo) )
% = XZlAj,o(a)—Z%,o(O)Fj(U) (10)

Lemma 1. qﬁo(a) is strictly positive for o > 0 if qﬁo( ) >0 and xP; > 1.

Proof. Let Z(0) = ¢o(0)+x > lio(0). Z(0) > 0 because ¢o(0) > 0. Because
1;0(0), 3;0(0), l;0(c) and ¢o(c) are non-negative for o > 0, & — > (P —
1)s;(0)Fj(o) > 0 if xP; > 1. Therefore Z(o) is strictly positive and non-
decreasing for all ¢ > 0. Suppose now that there exists o, > 0 such that
¢o(0) = 0 for ¢ > 0,. Then both Fj(c) and I;o(c) will become zero for
o > 0,, resulting in Z(o) = 0 for 0 > 0,. This contradicts that Z(o) is
strictly positive for all ¢ > 0. Therefore ¢o(c) > 0 for all & > 0. O
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Lemma 2. F;(y) is strictly positive for y > 0 and Fj(y) asymptotically
approaches zero as y — oo.

Proof. Strict positiveness of Fj(y) for y > 0 follows from lemma 1. For the
second part, we divide the integration in the exponent into two parts,

\/:'1 dl‘fjéo(l') = /(;y_w dlf]&()(l') -+ /;iw d.fqug()(ﬂ?)

where y > 1 and w € (0, y) must be such that ¢o(z) is either non-decreasing
or non-increasing in the interval z € [y — w,y|. Then there exists A € [0, 1]

such that [*  dz&;do(z) =[Ade(y) + (1 — N)&;do(y — w)lw. By defining
Pmin = Ming>odo(2), [§ " dr&ido(z) > (y — w)&jdmm and [ dz&;do(z) >
[)\fj(ﬁo(y) +(1- )\)ﬁj([&mm]w. Then we can obtain

Fi(y) = &doly)Exp(~ / " 4ot 0())

< g ng (y)e—kwéjio(y) o~ W= Aw)Ej min
< Lef(ywa)gjéminfl
- Aw

where in the third line we used ze ® < e for all z > 0. As y — oo,
Fj(y) — 0. 0

Lemma 3. Let G;(0) = [, Fj(y)dy. G;(c) asymptotically approaches 1 as
0 — 0.

Proof.

Gio) = [ vt Prnl— [ dotido(o)

0 0
= / dyH; (y)e_Hj (v)
0

— ]_ —_ e_Hj (U)

where H;(y) = [) dxgj(;ﬁ(a:) and H;(0) = 0. Using H;(0) > aqugmm,
e Hilo) < e70%i%min for ¢ > 0. As o0 — 00, e #i(®) 5 0 and Gj(0) = 1. O



Using the above lemmas, we know that both ; (o) and [; (o) approaches
zero as 0 — 0o while keeping 0 < 7 < 1. In the limit of 0 — co we obtain,
using appendix Eq. (8) and initial conditions, 556(0) = 1, 15,0(0) = 140(0) =
ZB,O = 0, and

i0(0) + 850
(1 — PA)§A,0(0) + a0 0)

- (1- Pp) (12)

where 745(0) = 14,0(0) + 54,0(0). When 54,0(0) > 74,(0), Equation (3) in
the main text is recovered, in the limit of 7; — 0o, 8 — oo and ¢ — oo while
keeping 0 < 7 < 1,

rap(0) = r48(0)(1 — Pa)/(1 — Ps) (13)

Moreover when P4 = 0, 74 = 0 and §40(0) = 0, Equation (2) in the main
text is recovered, in the limit of yg — 0o, 8 — o0 and 0 — oo while keeping
<K,

ras(o) =ra5(0)/(1 — Pp) (14)

In case II-B we will prove that these ratios in appendix Eqgs. (13) and (14)
remain unchanged in the limit of 7 = oo.

CASE II-B: 7 = oo limit.
To study the long time limit, we go back to appendix Eq. (1). Using the
quasi-steady state approximation of the third equation in appendix Eq. (1)
%% =0 = Pj¢s;v;/B — l;, in the limit ; — oo and f — oo, and xP; > 1,
we obtain % = xa) ;i + ¢, (xP — 1)ys; = 0 for 7 > 1 (Equality
holds when o = 0 and s;(7) = 0). Because ¢(7) is strictly positive and
non-decreasing for 7 > 1 and ¢y; > 1, % = (1 — n/Nmaz — ¢75)s; < 0 for
7 > 1. Therefore using [;(7) = Pj¢;s;(7)/8, sj(t) = lj(1) = 0 for 7 > 1.
In the limit of § — oo, 7; = 00 and 7 > 1, appendix Eq. (1) reduce to the
effective three dimensional ODE

% . Zjij

dr =(- Nomaz

d¢ :
% :X(X;’Lj

7

— O!)ij



Note that the first equation for i;(7) is independent of ¢(7). Now if a > 1,
% < 0for 7 > 1 and i;(co) = 0, which means that both A and B populations
go extinct. Otherwise if 0 < a < 1, both i4(7) and ip(7) will grow with the
same growth rate. Thus the ratio 7sp(c), determined in the limit of 0 — oo
while keeping 0 < 7 < 1, remains unchanged in the limit 7 > 1.

Case IIIL. If ¢(0) = 0 and « > 0, this is equivalent to case II. Suppose
that ¢(7) > 0 when 7 > 7,,;, where 7., is the earliest time when the first
phage are spontaneously induced. By defining a new time frame 7" = 7— 7,3,
and rescaling all the concentrations by Sg(7min), case III becomes equivalent
to case II.

3 Numerical Investigation of the Invasion Cri-
teria

The invasion criteria in Equations (2) and (3) in the main text are exact
in the limit of large infection-induced lysis rate § and contact rate vy with
restrictions on xF; > 1 and on the spontaneous lysis rate 0 < o < 1. In
order to investigate their validity for small 5 and 7, we perform numerical
simulations. First, the linear relationship in Equation (2) in the main text
between the phage pathology P and 745(0)/rap(c0) is validated by exten-
sive numerical calculations with 2000 parameter sets where all parameters
are selected uniformly from the biologically relevant intervals (see appendix
Fig. 2 for detailed information). Note that yP > 1 is used for numerical
calculations. When v and [ are relatively large, i.e., 0.1 < 7,8 < 10, all
data points fall into the linear line r45(0)/rap(c0) = 1 — P as illustrated in
appendix Fig. 2. When 0 < «, 8 < 0.1, the deviation from the linear rela-
tionship increases for small phage pathology P. Thus we conclude that the
linear relationship in Equation (2) in the main text, r45(0)/rap(c0) = 1—P,
is robust to parameter variations and valid for small v and 5.

Next, we also validate the generalized invasion criterion from Equation (3)
in the main text numerically with diverse sets of parameters. Appendix Fig. 3
shows that the linear relationship in Equation (4) between r45(0)/r45(c0)
and (1 — P4)/(1 — Pp) is robust against parameter variations. Note that
we impose restrictions on xP; > 1 and s4(0) > i4(0) in the numerical
calculations. However the linear relationship in Equation (3) in the main
text becomes inaccurate when the pathogen is more virulent on the invading



population A than on the resident population B, i.e., when P, is large and
Pg is small.

4 Two phage-mediated competition between
two bacterial strains

In this section we investigate the steady state outcome of a general two-
phage-mediated competition between two bacterial strains. We show that
the invasion criterion obtained for the single lysogenic phage-mediated com-
petition remains unchanged when competition is mediated by two phage
strains. We also demonstrate that all the detailed kinetic interactions of a
two-phage-mediated competition can be condensed into a single parameter,
the effective phage pathology.

We consider a model system where bacterial strains A and B are sensi-
tive to infection by either of two homologous phage strains 1 and 2. Bacteria
carrying one phage are immune against infection by another. A small frac-
tion of the population of bacterial strain A carry the phage strain 1 and
another small fraction of that population bear the phage strain 2, and thus
the bacterial strain A is the source of two phage. A phage strain m € {1, 2},

(m) (m)

denoted by ®(™) has contact rate k; , infection-induced lysis rate A",

spontaneous lysis rate 5](-m), and pathology Pj(m), when acting on bacterial

strain j € {A, B}. We define, rescale and non-dimensionalize the variables

as in section 2; susceptible bacterial density s; = S;/Sg(0), lysogenic bac-

terial density ig-m) = ](_m) /Sg(0), latent bacterial density lj(-m) = L;m) /Sg(0),

phage density ¢(™ = ®(™) /S5 (0). Other parameters are the maximum car-

rying capacity Nmaz = Nmaz/S5(0), the non-dimensionalized time 7 = at,
(m)

the spontaneous lysis rate «; " = (5§m) /a, the infection-induced lysis rate
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Figure 2: Numerical verification of the invasion criterion in Equation (2) in
the main text. A thick solid line is the prediction from Equation (2) in the
main text. 745(0)/rap(co) was numerically evaluated by solving appendix
Eq. (1) with 2000 sets of parameters chosen uniformly in the intervals 0 <
P < 1 for phage pathology, 1/P < x < 100 for burst size, 0 < «a < 0.5 for
normalized spontaneous induction rate, 0 < I4(0),#(0) < 10Sg(0) for the
initial concentrations of infected bacteria A and phage with respect to the
initial concentration of susceptible bacteria B. Filled circles represent the data
from 1000 sets of parameters with relatively large v and 8 (0.1 < v, 5 < 10).
Open circles are from another 1000 sets of parameters with small v and g
(0<7v,8<0.1).
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Figure 3: Numerical verification of the generalized invasion criterion in Equa-
tion (3) in the main text. 745(0)/rap(0c0) was numerically evaluated by
solving appendix Eq. (1) with 2000 sets of parameters chosen uniformly
in the intervals 0 < P4, Pg < 1 for phage pathologies on the host A
and B, 1/min{Pa, Pg} < x < 100 for burst size, 0 < « < 0.5 for nor-
malized spontaneous induction rate, 1071S5(0) < S4(0) < 10Sp(0) and
0 < I4(0),4(0) < 1072S5(0) for the initial concentrations of susceptible
and infected bacteria A and phage. Filled circles represent the data from
1000 sets of parameters with relatively large v; and g (0.1 < 4,8 < 10).
Open circles are from another 1000 sets of parameters with small v; and 3
(0 < 75,8 <0.1).

11



ﬁj(.m) = )\;m) /a and the contact rate 7](-7") = /fg'm)SB(O)/ a. We obtain

ds.; m) s

= L/ mma =38 ™)s; (15)
diy™ (m)y . (m) (m)r ()

dJT = (1—Pj )yj qﬁ(m)sj—k(l—n/nmax—aj )ij

di™ . e

07— b, e

dd)(m) m (m - —

T = 20 4 B — Mo}

j
where n = 37.(s; + 3, ( )+ l(m ), j € {A,B} and m € {1,2}. The
initial conditions for appendix Eq. (15) are zg”)(o) = lgm)(O) = lgn)(O) =0,
sp(0) =1, 54(0) > 0, < (0) > 0 and ¢(™ (0) > 0.

When ¢™(0) = f4m) = 0, there will be no phage-mediated competition.
Thus in this section we consider Y ¢™)(0) > 0. We will derive the invasion
criterion in the limit of a fast infection process (i.e., ’y](-m) — 0o and ﬁj(.m) —
o0). An appropriate time-scale near 7 = 0 is 0 = 7/e where ¢ = 1/5,
B = maxj,m{ﬁj(-m)}, fj(m) = ’yj(-m)/ﬂ, and njm) = ﬁ](-m)/ﬂ. Just as in section 2,
we use a regular perturbation theory [1] and the solutions are expanded in
order of €, §;(o5€) =3, _,€"8;.(0), ggm) (o5€) =3, o€ zgn (o), [(jm) (o;€) =
> o e”lyz) (@), $™(03€) = 3. _ "¢ (). We now set € = 0 to get the
O(1) system,

ds;o
do
diy)
do
iy
do

dqg(m) m m m) 7(m) ~
ﬁ = Z{XJ )77] ﬂ —53( o )Sj,o} (19)

= (Mo + P35, (16)
= (1= P™emglmg. | (17)

J J

= PMemgima;, — i) (18)

with the initial conditions 2§ (0)=1'{ (0)=I%5 (0) = 0, 85,(0) = 1, 84,(0) >
0,79 (0) > 0 and 3, 6™ (0) > 0

12



By integrating appendix Eq. (16) and (17), we obtain

$5000) = S0 Bapl [ do(e"6() + €757 @) (20
0

fole) = 2 500) (21)

~(m) 17 da(éM 3D (2) 46D 3 (g

- Zzgo )+ 3;0(0 / dy(EP 0 (y) + EDFD () B e 3 @757 @)

. - - 7 da(eD3D () 1@ 3P (5
— 3;0(0) / dy(JJJ.(l)gJ(l)¢gl)(y)+ P]@)gj(.?) @) (y))e I a8 @)+ @)
0

= %j,o(o) +(1—e " — P 1)3;0(0)

where H(o) = — [/ d f(l)qﬁ )—f-fj(-?) Agz) (x)). We define the effective phage
pathology on the bacterlal straln j as

Py = [ dn(POE5 )+ PRI e i i),

(22)
As shown in lemma 3 in section 2.1, if either 5](_1) Agl) (x) or {-“](-2)(/3(()2) (x) is zero
forx > 0, Pejf  becomes either Pj(2) or Pj(l) in the limit of ¢ — o0o. This means
that when either phage strain 1 cannot infect the bacterial strain j or if phage
strain 1 is absent, the effective phage pathology on the bacterial strain j is
solely determined by the pathology of phage strain 2. Otherwise, the effective
phage pathology on the bacterial strain (7 depends on the values of the kinetic
parameters, namely the contact rate £, the initial concentration ®(™)(0)

and the replication rate of phage straln m (1.e., the phage burst size X; ™ and

the infection-induced lysis rate n](m)).

Using Eq. (18)—(20) and lemma 1-3 in section 2.1 of the electronic ap-
pendix, we know that §;(0) — 0, ﬂjg (6) = 0, and e 7 — 0 as 0 — oo.
In the limit of 0 — oo, we obtain the ratio of the concentration of the two
strains, using initial conditions §54(0) = 1 and i5,(0) = 0,

ZAO(O) (1 P;}cf)gAyo(O)

TAB( ) (1 —_ Peljcf) (23)
where T’AB(O) = %A,O(O) —+ §A,0(0). When §A,0(0) > %A,O(O),
rap(0) = ras(0)(1 = Pjp)/(1 = Pjjy) (24)

13



Eq. (24) has the same form as Eq. (3) in the main text for the single-phage-
mediated competition between two bacterial strains. The phage pathology
parameters P4, and Pp in Eq. (3) are replaced with the effective phage
pathologies Pe‘;‘e s and Peljc s in Eq. (24) for two-phage-mediated competition
between two bacterial strains A and B. Thus the two-phage-induced total
damage on the bacterial strain j can be condensed into a single parameter,
represented as the effective phage pathology Pf3 e

Next, we show that the effective phage pathology ngf is bounded be-
tween the two individual phage pathology values. This indicates that the
two phage-induced damage on a bacterial strain j cannot be greater than the
maximum damage induced by one of the two phage and cannot be smaller

than the minimum harm induced by one of the two phage. We also demon-
tratc that Pl — PPt €260 (y) > €6 (y) for y > 0 and P, = P17 if
«Sj ¢0 (y) = 0 for y > 0. This implies the following: (a) if phage strain 2 has
greater contact rate on bacterial strain j and the higher replication rate than
phage strain 1 does, the effective phage pathology ng s is mainly determined
by the pathology value of phage strain 2. (b) If phage strain 1 is absent or
if the bacterial strain j is immune against infection by phage strain 1, the
effective phage pathology P’ . 1s only determined by the pathology value of
phage strain 2.

Lemma 4. Suppose 0 < Pj(l) < PJ-(Q) < 1 for a given bacterial strain j. Then
P!, is bounded by P and P, ie., P < P/, P<2) Pef — P
i E290() > €V40() for y > 0. and Py - PV if €960() >

&0 (y) fory > 0.
Proof. Using 0 < Pj(l) < P]-(Q) < 1, we obtain a simple inequality,

(2

6§90 ) + pmf‘? W 20w %00 @)

where the equality holds if §j(-2)gz§(()2)(y) =0 or fj(-l)gz;(()l)(y) > SJ(-Q)QAS(?) (y) for

y > 0. In similar manner,

Py ) ) .
e () + P (y) < M8 (y) + €2 () (26)

@
b
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where the equality holds if §§1)</§él)(y) =0 or §§2)q382) (y) > 5j(_1)q3(()1) (y) for
y > 0. By using the first inequality, we obtain

(2)

. “ A P
Py =0 [ e i w + Z5ela et en

J

where H(y) = — fog(fj(-l)qg(()l)(x) +£](-2) 5 (z))dz. By using the second inequal-
ity, we obtain

. o P
Py, =P / Ay (€907 ) + 7 W)e "V (28)

Using lemma 3 in section 2.1 of the electronic appendix, we reduce Pj(l)(l —
e H0O)) < Py < PJ-(Z)(I e H) to P() < Py Pj(2) in the limit of
o — oo. We also use the condition for the equahty in appendix Eq. (25)
to obtain that Pory — P17 if €765 (y) > €4 (y) for y > 0. Similarly,
we use the condition for the equality in appendix Eq. (26) to obtain that
Peyy — P lff Vo (y) > 53(2)(%5(()2) (y) for y > 0. O

Analysis similar to case II-B in section 2.1 indicates that the steady state
ratio of the concentration of two strains remains the same as Eq. (24) in the
limit of 7 — oo (which is not shown here).

SPECIAL EXAMPLE OF TWO-PHAGE-MEDIATED COM-
PETITION: 54(0) = 0, i4(0) = ®® > 0 and &1 = 0. We consider com-
petition between resistant (Bb::®™)) and sensitive (BbGm) bacterial strains
mediated by exogenously added lytic phage (®® = ®Acl, see Table 1 in
the main text) and by lysogenic phage spontaneously released from lyso-
gens (Bb:®(")). We use Eq. (15) to describe the dynamics of this specific
system. The bacterial strain A corresponds to Bb::®() (lysogens) and the

15



strain B =BbGm (the strain with the Gm marker). The phage pathology
of the lysogenic phage (®™)) is set to Pg) = 0.98, that of the lytic phage
(@) is Pl(f) = 1. Because the lytic phage are derived from the lysogenic
phage, they are homologous and strain A (Bb::®()) and lysogenic bacteria
of strain B (BbGm::®()) are immune to infection by either of the two phage,
®M and ®@. We also assume that the contact rate &, the infection induced
lysis rate A, the spontaneous lysis rate  and the phage burst size y are the
same for both the lytic and the lysogenic phage. For numerical simulations
of mixed phage-mediated competition, we used the same parameter values
used for the numerial simulations in Figure 3(a) in the main text.

Appendix Fig. 4(a) shows that the steady state outcome of the bacterial
competition strongly depends on the initial concentration of the lytic phage
(). No exogenous lysogenic phage were added to the system, yet they
are spontaneously induced from the lysis of lysogens (Bb::®™)). The sen-
sitive bacteria are exposed to both the lysogenic and the lytic phage, and
disappear rapidly from the system, a fraction of them transforming into re-
sistant lysogenic phage-carrying bacteria. If both the contact rate x and
the spontaneous lysis rate § (or the initial concentration of lysogenic phage
®1)(0)) are non-zero, the effective phage pathology P, is smaller than one
and the bacteria of strain B never go extinct, and survive as lysogenic phage-
carriers. (Note that in our mixed phage-mediated competition experiment
depicted in Figure 5(b) in the main text, x = 1.08 x 10™° ml/hour/CFU,
§ = 0.00054/hour/bacterium and ®1)(0) = 0.) However as the initial con-
centration of lytic phage increases, the effective phage pathology Peljcf ap-
proaches one, thus an order of magnitude increase in the initial concentration
of the lytic phage ®®(0) leads to a dramatic decrease in the steady state
concentration of the bacterial strain B.

It is also shown in appendix Fig. 4(b) that the effective phage pathology
on the sensitive BbGm depends on the infection-induced lysis rate, one of the
kinetic parameters of the system. The effective phage pathology in Eq. (22)
depends implicitly on the infection-induced lysis rate A; a higher infection-
induced lysis rate is related to a higher replication rate of the lytic phage.
Correspondingly, as the infection-induced lysis rate increases, the effective
phage pathology Peljcf approaches the phage pathology of the lytic phage

(Pg) = 1), leading to a decrease in the steady state concentration of the
bacterial strain B. Thus the stationary outcome of the two-phage-mediated
competition is determined by the effective phage pathology, which depends
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on the values of the kinetic parameters.
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Figure 4: Dependence of the stationary outcome of mixed phage-mediated
competition on the details of kinetic parameters. The bacterial strain with a
Gm marker (filled circles) and the lysogens (open squares) were co-cultured
with exogenously added lytic phage; the experimental data are the same as on
Figure 5(a) in the main text. (a) The normalized initial concentration of the
lytic phage, ®®(0)/14(0), varies from 0.1 (dashed line), 1 (long-dashed line)
and 10 (dot-dashed line). (b) The infection-induced lysis rate A changes from
0.0081 (dashed line), 0.081 (long-dashed line) and 0.81 (dot-dashed line). The
other parameters used for the numerical simulations are the same as in Fig.

3(a).
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