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Alternative Model in Which Recovereds Are Included and  2 

Birth Rate of Infecteds Is Decreased 3 

In this section we generalize the model type by extending the categories to 4 

include, besides susceptible and infected individuals, also recovered and 5 

recovered/immune individuals.  In addition, here we allow the birth rate of infected 6 

individuals to be an arbitrary value, ainf, which can be less than the birth rate of resistant 7 

individuals, aRR, so this corresponds to Case 4 in the text.  This is done by using the 8 

following substitution to equation (2b):   9 
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These generalizations do not affect our ability to analyze the system.  The equations are 11 

generalized by allowing infecteds to recover and become immune at rate IYrr or 12 

susceptible again at rate RYrr. (Recovered/immunes are not expected in plants, so it is 13 

reasonable to set I = 0 in that case.) The differential equations for the system become: 14 

RRRRRR bXnewXdtdX −=/        (A2) 15 

RrRrRr bXnewXdtdX −=/        (A3) 16 

rrrrrrrrrr RYXYbnewXdtdX ++−= )(/ β      (A4) 17 

rrrrrrrr YIRbXYdtdY )(/ +++−= αβ      (A5) 18 

rrrrrr bZIYdtdZ −=/         (A6) 19 

where Zrr is the number of recovered immune individuals in the population.  The steady 20 

state solutions to this model are 21 
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 5 

Note that this solution, as in Case 2, is independent of the inbreeding coefficient F.  We 6 

can examine the effects of ainf alone (Case 4), by setting R = I = 0.  Then it is easy to see 7 

that reduction of the birth rate of infecteds from arr to a lower value, say ainf < aRR, causes 8 

Yrr
* to decrease. 9 

 10 
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General Expression for Infection Rate 12 

 For simplicity in the text we used a basic Lotka-Volterra function for the rate of 13 

infections, βYrrXrr.  However, this can be generalized to any function of the form f(Xrr)Yrr  14 

without affecting our ability to analyze the model.  For example, suppose f(Xrr) takes the 15 

form of a Holling Type II functional response,  16 
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Then Equation (6a) in the text becomes 18 
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and (6b) takes the form 1 
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Other steady state values are modified through the above changes in Xrr
* and Yrr

*.  Note 3 

that for the Holling Type II response, the value of Xrr
* is likely to be higher than in the 4 

case of the Lotka-Volterra interaction.  This would tend to have a negative effect on the 5 

value of XRR
* and XRr

*, due to limited carrying capacity. 6 

 The above solutions are independent of F.  But we can also consider the case 7 

where the infection rate itself depends on F.  The reason for such an assumption is that 8 

greater inbreeding would increase the probability of susceptibles coming in contact with 9 

infecteds, both being homozygous in r.  That effect could easily be incorporated into our 10 

model by generalizing the interaction function to f(Xr , F).  For interaction rates of this 11 

form, analytic solutions of the same form as Equations (B2) and (B3) are possible. One 12 

situation might be for β1 to be an increasing function of F, β1(F). In this case, Xrr
* would 13 

decrease with increasing F, but Yrr
* could increase as the denominator of Equation (B3) 14 

decreases.  The results of Cases 2 and 3 could change substantially.  We have not tried to 15 

explore this possibility numerically, but will in future work.  More complex interaction 16 

functions that involve not only F and Xrr, but also XRr, and XRR, can also be imagined, and 17 

these might be beyond the possibility of analytic solution.  18 
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Calculation of XRr
* and XRR

* 2 

It is possible, using the right hand side of equation (1b) set to zero, to solve for 3 

XRr
* , given  * *

Rr RRX X+  from equation (6b).  Let’s put the previously calculated sum of 4 

the resistant homozygote and heterozygote in parentheses to be treated as a known unit, 5 

as follows: 6 

* * * *{ }Rr RR Rr RRX X X X+ ≡ +  . 7 

Then we can show, using (1b), that 8 

* 20.5( / ) 0.5 ( / ) 4( / )RrX B A B A C A= − − −       (C1) 9 

where 10 
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 14 

From  XRr
* , it is next possible to solve for XRR

* , using the known value of  {XRr
* + XRR

*}  15 

from equation (6b); that is, 16 

* * * *{ }RR Rr RR RrX X X X= + −          (C2) 17 

In some cases, the cost of resistance may be so high that the R-allele goes to 18 

extinction (Figure E1).  However, if aRR < aRr, then when F is small (high outcrossing), 19 

the presence of the heterozygote may be able to maintain the R-allele in the population, as 20 

occurs in Figure E1.  An additional feature of the behaviour of the variables for Case 3 21 



(aRR < aRr < arr), not mentioned in the main text, is the possibility of unimodal behaviour 1 

of XRR
* as a function of F (electronic Figure E2).  This intermediate peak can occur when 2 

there is a high cost of disease resistance (i.e., the value of aRR is significantly smaller than 3 

arr), and the heterozygote reproduction rate is intermediate between the two 4 

homozygotes.  Because the RR- homozygote is a poor competitor against the rr-5 

homozygote, XRR has a small value for high rates of selfing.  For intermediate selfing 6 

rates, the presence of the heterozygote, which has higher fitness than the RR-homozygote, 7 

can help XRR maintain higher values.   8 
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Figure E1: The number of homozygous resistant, heterozygous resistant, susceptible, and 13 
infected individuals, percentage infected in the population, and total number of 14 
individuals at equilibrium for the range of complete selfing through complete 15 
outcrossing.  Parameters: aRR = 0.4, aRr = 0.6, arr = 0.8, b = 0.2, α = 0.1, β = 0.04,  16 
ρ = 0.02.  (Case 3, aRR < aRr < arr) 17 
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Figure E2: The number of homozygous resistant, heterozygous resistant, susceptible, and 3 
infected individuals, percentage infected in the population, and total number of 4 
individuals at equilibrium for the range of complete selfing through complete 5 
outcrossing.  Parameters: aRR = 0.6, aRr = 0.7, arr = 0.8, b = 0.2, α = 1.0, β = 0.04,  6 
ρ = 0.02.  (Case 3, aRR < aRr < arr) 7 
 8 
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Figure E3: The number of homozygous resistant, heterozygous resistant, susceptible, and 3 
infected individuals, percentage infected in the population, and total number of 4 
individuals at equilibrium for the range of complete selfing through complete 5 
outcrossing.  Parameters: aRR = 0.4, aRr = 0.6, arr = 0.8, b = 0.2, α = 1.0, β = 0.04,  6 
ρ = 0.02.  (Case 3, aRR < aRr < arr) 7 
  8 


