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Electronic Supplementary Material, part A
Alternative Model in Which Recovereds Are Included and
Birth Rate of Infecteds Is Decreased
In this section we generalize the model type by extending the categories to
include, besides susceptible and infected individuals, also recovered and
recovered/immune individuals. In addition, here we allow the birth rate of infected
individuals to be an arbitrary value, a;,; which can be less than the birth rate of resistant
individuals, agg, so this corresponds to Case 4 in the text. This is done by using the
following substitution to equation (2b):

aerrr + ainf}lrr + O'SaRrXRr
amX = - ) (A1)
8L 1+ pN

These generalizations do not affect our ability to analyze the system. The equations are
generalized by allowing infecteds to recover and become immune at rate /Y, or
susceptible again at rate RY,,. (Recovered/immunes are not expected in plants, so it is

reasonable to set / = 0 in that case.) The differential equations for the system become:

dX o | dt = newX p, —bX e (A2)
dX,, /dt =newX, —bX,, (A3)
dX, /dt=newX, —(b+pY, )X, +RY, (A4)
dy, /dt=pY. X, —(b+a+R+1Y, (A5)
dz /dt=1Y, —bZ, (A6)

where Z,, is the number of recovered immune individuals in the population. The steady

state solutions to this model are
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+ _ (b+a+R+1)

X (A7)
B
X;;b(“"" - 1)
v, = (A8)
(ﬂx;‘, — Rt g "”b])
Arr Arr

Z, =1Y,/b (A9)
Xop + X5 =(ag —=b)(pb)-X. =Y —Z (A10)

Note that this solution, as in Case 2, is independent of the inbreeding coefficient /. We
can examine the effects of a;,r alone (Case 4), by setting R = /= 0. Then it is easy to see
that reduction of the birth rate of infecteds from a,, to a lower value, say a;,r < agg, causes

*
Y, to decrease.

Electronic Supplementary Material, part B
General Expression for Infection Rate
For simplicity in the text we used a basic Lotka-Volterra function for the rate of
infections, £Y,,.X,,. However, this can be generalized to any function of the form f(X,,)Y,,
without affecting our ability to analyze the model. For example, suppose f(X,,) takes the

form of a Holling Type II functional response,

X
fox,)=—Like (B1)
1 + IBZ er
Then Equation (6a) in the text becomes
< _ b+« (B2)

" B =B, 0+ a)
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and (6b) takes the form

Y* — X:r X b[(arr /aRR) - 1]
! f(er) - b(arr /aRR)

(B3)
Other steady state values are modified through the above changes in XW* and Y,,*. Note
that for the Holling Type 11 response, the value of X, is likely to be higher than in the
case of the Lotka-Volterra interaction. This would tend to have a negative effect on the
value of XRR* and XR,.*, due to limited carrying capacity.

The above solutions are independent of . But we can also consider the case
where the infection rate itself depends on F. The reason for such an assumption is that
greater inbreeding would increase the probability of susceptibles coming in contact with
infecteds, both being homozygous in ». That effect could easily be incorporated into our
model by generalizing the interaction function to f(X, F). For interaction rates of this
form, analytic solutions of the same form as Equations (B2) and (B3) are possible. One
situation might be for f; to be an increasing function of F, £;(F). In this case, X,, would
decrease with increasing F, but Y, could increase as the denominator of Equation (B3)
decreases. The results of Cases 2 and 3 could change substantially. We have not tried to
explore this possibility numerically, but will in future work. More complex interaction

functions that involve not only F and X,,, but also Xx,, and Xzg, can also be imagined, and

these might be beyond the possibility of analytic solution.
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Electronic Supplementary Material, part C
Calculation of Xz, and Xggr

It is possible, using the right hand side of equation (1b) set to zero, to solve for
Xz, given X % + X, from equation (6b). Let’s put the previously calculated sum of

the resistant homozygote and heterozygote in parentheses to be treated as a known unit,

as follows:
{X;r +X]*€R} = X;r +X]*€R °

Then we can show, using (1b), that

X, ==0.5(B/ A)—0.5\(B/ A)* —4(C/ A) (C1)
where
A=b(l + pN Yaz, -az)-(1-F)(ay - 0.5a,,)a,,

B=(1-F)ag, {X;R + X;r}aRr -2(1- F)(ag, _O'SaRr)(aer:r +a
b1+ pN )i X g + X} +a, X, +a Y, ]

rr—rr

Y)

rrerr

C = 2(1 - F)aRR {X;R + X;r}(aer:r + arr)/r:)

From Xg, , it is next possible to solve for Xzz , using the known value of {Xz, + Xzz }

from equation (6b); that is,

X =X + X} = X, (€2)
In some cases, the cost of resistance may be so high that the R-allele goes to

extinction (Figure E1). However, if agg < ag,, then when F'is small (high outcrossing),

the presence of the heterozygote may be able to maintain the R-allele in the population, as

occurs in Figure E1. An additional feature of the behaviour of the variables for Case 3



(agrr < agr < a,y), not mentioned in the main text, is the possibility of unimodal behaviour
of XRR* as a function of F (electronic Figure E2). This intermediate peak can occur when
there is a high cost of disease resistance (i.e., the value of agr is significantly smaller than
a,), and the heterozygote reproduction rate is intermediate between the two
homozygotes. Because the RR- homozygote is a poor competitor against the r7-
homozygote, Xzr has a small value for high rates of selfing. For intermediate selfing
rates, the presence of the heterozygote, which has higher fitness than the RR-homozygote,

can help Xzr maintain higher values.
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Figure E1: The number of homozygous resistant, heterozygous resistant, susceptible, and
infected individuals, percentage infected in the population, and total number of

individuals at equilibrium for the range of complete selfing through complete

outcrossing. Parameters: aggr = 0.4, ag,= 0.6, a,,=0.8,b=0.2, a=0.1, = 0.04,

p=0.02. (Case 3, agr < agr < a,)
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Figure E2: The number of homozygous resistant, heterozygous resistant, susceptible, and
infected individuals, percentage infected in the population, and total number of
individuals at equilibrium for the range of complete selfing through complete
outcrossing. Parameters: azg = 0.6, ag-=0.7, a,,=0.8,b=0.2, = 1.0, f=0.04,
p=0.02. (Case 3, agr < agr < a,)
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Figure E3: The number of homozygous resistant, heterozygous resistant, susceptible, and
infected individuals, percentage infected in the population, and total number of
individuals at equilibrium for the range of complete selfing through complete
outcrossing. Parameters: agz = 0.4, ag,= 0.6, a,,=0.8,b=0.2, a=1.0, = 0.04,
p=0.02. (Case 3, agr < agr < a,)



