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Chromium(iII)-Induced 8-Hydroxydeoxyguanosine in DNA and Its Reduction
by Antioxidants: Comparative Effects of Melatonin, Ascorbate, and Vitamin E
Wenbo Qi, Russel J. Reiter, Dun-Xian Tan, Joaquin J. Garcia, Lucien C. Manchester, Malgorzata Karbownik, and
Juan R. Calvo
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Chromium compounds are well documented carcinogens. Cr(III) is more reactive than Cr(VI)
toward DNA under in vitro conditions. In the present study, we investigated the ability of Cr(III)
to induce oxidative DNA damage by examining the fonnation of 8-hydrorydeoxyguanosine (8-
OH-dG) in calf thymus DNA incubated with CrC13 plus H202. We measured 8-OH-dG using
HPLC with electrochemical detection. In the presence of H202, we observed that Cr(III)-induced
formation of8-OH-dG in isolated DNA was dose and time dependent. Melatonin, ascorbate, and
vitamin E (Trolox), all of which are free radical scavengers, markedly inhibited the formation of
8-OH-dG in a concentration-dependent manner. The concentrtion that reduced DNA damage
by 50% was 0.51, 30.4, and 36.2 pM for melatonin, ascorbate, and Trolox, respectively. The
results show that melatonin is 60- and 70-fold more effective than ascorbate or vitamin E, respec-
tively, in reducing idatve DNA damage in this in vitro model. These findings also are consis-
tent with the condusion that the carcinogenic mechanism of Cr(III) is possibly due to CG(III)-
mediated Fenton-type reactions and that melatonin's highly protective effects against Cr(III)
relate, at least in part, to its direct hydroxyl radical scavenging ability. Key words ascorbate,
chromium, 8-hydroxydeoxyguanosine, melatonin, vitamin E. Environ Health Perspect
108:399402 (2000). [Online 16 March 2000]
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Chromium is a widely used industrial chemi-
cal, with uses in steel, alloy cast irons, chrome,
paints, metal finishes, and wood treatments
(1). Cr causes allergic dermatitis and has other
toxic and carcinogenic effects in humans and
animals (2,3). Epidemiologic studies have
shown that industrial workers exposed to Cr
have a higher incidence of respiratory cancer
than does the unexposed population (2-5).
Dermal, renal, and hepatic toxicity have been
reported in Cr-exposed humans (5,6). Cr can
also induce tumors in experimental animals
and cause genotoxicity, i.e., chromosome
aberrations, sister chromatid exchanges, cell
transformations, and gene mutations in mam-
malian cell cultures (7-10).

Cr is found in the workplace primarily in
the valence forms Cr(VI) and Cr(III) (11).
Cr(VI) compounds are more toxic and car-
cinogenic than Cr(III) (12,13) because
Cr(VI), in contrast to Cr(III), can readily
cross cellular membranes via nonspecific
anion carriers (13-15). However, once inside
cells, Cr(VI) is reduced through reactive Cr
intermediates such as Cr(V) and Cr(IV) to
the ultimate kinetically stable Cr(III) by cel-
lular reductants including glutathione and
vitamin C (13,16). Therefore, Cr(III) or
other intermediate oxidation states probably
play an important role in Cr(VI)-induced
toxicity (16).

Cr(III), which was initially thought to be
relatively nontoxic, recently was found to be
more effective than Cr(VI) in causing

genotoxicity in cell-free systems (11). Cr(III)
interacts with DNA to induce DNA strand
breaks, DNA-protein cross-links, and oxida-
tive DNA base modifications such as the
formation of 8-hydroxydeoxyguanosine (8-
OH-dG) (17-21). 8-OH-dG is a key bio-
marker relevant to carcinogenesis because
the formation of 8-OH-dG in DNA causes
misincorporation during replication and
subsequently leads to G->T transversions
(22,23). The carcinogenic mechanisms of
Cr(III) relate to its ability to generate hydrox-
yl radicals ('OH) from H202 via a Fenton-
type reaction (20,24). The highly toxic 'OH
then targets DNA, resulting in oxidative
DNA base adducts such as 8-OH-dG.

Melatonin, an indoleamine product of the
pineal gland, is an endogenous 'OH scav-
enger and a highly effective antioxidant
(25,26). In vitro melatonin is as effective or
more effective than either glutathione and
mannitol in reducing 'OH toxicity (25) and
is possibly more efficient than vitamin E in
reducing the toxicity of the peroxyl radical
(27). Moreover, melatonin is highly lipophilic
(28) as well as somewhat hydrophilic (29);
therefore, it easily passes all known morpho-
physiologic barriers and enters all subcellular
compartments. Melatonin has a high affinity
for cell nuclei in mammalian tissues, where
its concentration can be 5 times higher than
levels found in blood (30). By measuring a
variety of oxidative indexes (including levels
of 8-OH-dG), earlier studies have shown

that melatonin effectively protects DNA
from oxidative damage induced by a number
of free-radical-generating agents including
safrole, kainic acid, lipopolysaccharide, ferric
nitrilotriacetate, ischemia/reperfusion, and
ionizing radiation both in vitro and in vivo
(31-36).

In the present study, we investigated the
ability of melatonin to reduce Cr(III)-
induced oxidative DNA damage in vitro and
compared melatonin's efficacy to that of two
well-known antioxidants, vitamins E and C.
We examined the formation of 8-OH-dG in
calf thymus DNA with Cr3CI plus H202
using HPLC with electrochemical detection.

Materials and Methods
Reagents. We purchased calf thymus DNA,
CrCl3e6H2O, H202, and ascorbate from
Sigma (St. Louis, MO), and we obtained
Trolox from Aldrich (Milwaukee, WI). Pure
melatonin was a gift from Helssin Chemicals
SA (Biasca, Switzerland). We purchased
nuclease P1 and alkaline phosphatase from
Boehringer Mannheim (Indianapolis, IN).
We used MilliQ-purified H2O to prepare all
solutions. All other chemicals were of the
highest quality available.

Treatment. We dissolved calf thymus
DNA (500 pg) in 10 mM potassium phos-
phate buffer (pH 7.4) at a final volume of
0.45 mL. In the first study, we incubated
DNA with six concentrations of CrCl3 (10,
50, 100, 250, 500, or 750 pM) in the pres-
ence of 0.5 mM H202 for 1 hr at 37°C in a
water bath. This study was performed to
establish the concentration of Cr(III)
required to induce an appropriate amount of
8-OH-dG formation. In the second study,
we selected 500 pM CrCI3 for incubation
with DNA in the presence of 0.5 mM H202
for 0, 20, 40, 60, 80, or 100 min to deter-
mine the optimal incubation time. In the
final study, we used several concentrations of

Address correspondence to R.J. Reiter, Department
of Cellular and Structural Biology, Mail Code
7762, The University of Texas Health Science
Center, 7703 Floyd Curl Drive, San Antonio, TX
78229-3900 USA. Telephone: (210) 567-3859.
Fax: (210) 567-6948. E-mail: reiter@uthscsa.edu
This study was supported in part by the Amoun

Pharmaceutical Industries Company.
Received 27 August 1999; accepted 1 November

1999.

Environmental Health Perspectives * VOLUME 1081 NUMBER 5 May 2000 399



Articles . Qi et al.

melatonin (0.25, 0.5, 1, 2.5, 5, or 10 pM),
ascorbate (1, 10, 25, 50, 100, or 250 pM),
or Trolox (1, 10, 25, 50, 100, or 250 pM) in
combination with 500 pM CrCl3 plus 0.5
mM H202 for 60 min to test the efficacy of
these antioxidants in altering oxidative DNA
damage.

Assay for 8-OH-dG. After incubation,
we added 50 1.L sodium acetate (3 M, pH
5.0) and two volumes of -200C to each sam-
ple to terminate the reaction. DNA was pre-
cipitated and washed once with 70%
ethanol. The DNA sample was dried and
dissolved in 200-pL 20 mM sodium acetate
(pH 5.0); the samples were denatured by
heating at 95°C for 5 min and then cooled
on ice. The DNA samples were digested to
nucleotides by incubation with 8 U nudease
P1 at 37°C for 30 min. Next, we added 20
pL 1-M Tris-HCl (pH 8.0) to the samples
and they were treated with 4 U alkaline
phosphatase at 370C for 1 hr. We filtered the
resulting deoxynudeoside mixture through a
Millipore filter (0.22 pm; Millipore) and
analyzed it using HPLC with an electro-
chemical detection system. We used an ESA
HPLC system (ESA, Chelmsford, MA)
equipped with an eight-channel CoulArray
5600 electrochemical detector: YMC-BD
(4.6 mm x 250 mm, Partisil 5 p OD53;
Waters, Milford, MA) column (3 pm, 150 x
4.6 mm i.d.). The eluent was a 10% aqueous
methanol containing 12.5 mM citric acid,
25 mM sodium acetic acid, 30 mM sodium
hydroxide, and 10-mM acetic acid at a flow
rate of 1 mL/min. We measured the quanti-
ties of 8-OH-dG and 2-deoxyguanosine (2-
dG) using different channels and two
oxidative potentials (300 and 900 mV,
respectively). The level of 8-OH-dG in each
sample was expressed as the ratio of 8-OH-
dG to 105 2-dG (37).

Statstical analysis. We analyzed all data
by a one-way analysis of variance followed
by the Tukey test.

Results
The levels of 8-OH-dG increased in a dose-
dependent manner with increasing con-
centrations of CrCl3 (Figure 1). All concen-
trations of Cr(III) from 10 pM to 0.75 mM
caused significant increases in 8-OH-dG
levels in DNA. We selected a concentration
of 0.5 mM Cr(III) for the subsequent studies
because it yielded high levels of 8-OH-dG.
In the second study, 8-OH-dG levels
increased essentially in a linear manner dur-
ing the incubation period when 0.5 mM
CrCl3 plus 0.5 mM H202 were incubated
with DNA (Figure 2). We selected an
intermediate time of 60 min for the subse-
quent studies because this incubation time
produced optimal levels of 8-OH-dG.
Figure 3 shows that melatonin inhibited

Cr(III)-induced formation of 8-OH-dG in a
dose-dependent manner. All melatonin
concentrations > 0.25 pM significantly
reduced 8-OH-dG formation in DNA
induced by 0.5 mM Cr(III) plus 0.5 mM
H202 (p < 0.05). Figure 4 shows that ascor-
bate inhibited Cr(III)-induced formation of
8-OH-dG in a dose-dependent manner. The
effective concentrations of ascorbate against
Cr(III)-induced formation of 8-OH-dG in
DNA were between 1 and 250 pM. Figure 5
shows that the formation of 8-OH-dG in
DNA was also inhibited by Trolox in a dose-
dependent manner. The effective concentra-
tions of Trolox ranged from 10 to 250 pM.
To compare the efficacy of melatonin, ascor-
bate, and Trolox, we calculated the percent-
age-inhibition curves (Figure 6). The IC50 is
the concentration of a particular agent that
inhibits the formation of 8-OH-dG in DNA
by 50%. The IC50 for melatonin was 0.51
pM; this value is much less than for ascor-
bate (IC50 = 30.4 pM) or Trolox (IC50 =
36.2 pM).

Discussion
H202 is a normal metabolite in the cell; its
steady-state concentrations range from 10-9
to 10-8 M (38). The concentrations of H202
may markedly increase in tissues when they
are subjected to ionizing radiation, during
the metabolism of carcinogens, and at sites
of inflammation (39-41). Although H202
may not cause DNA damage under physio-
logic conditions, it participates in the metal
ion-catalyzed Haber-Weiss reaction and gen-
erates the highly reactive 'OH, which can
target DNA, resulting in oxidative DNA
damage (42). Electron spin resonance
spectroscopy studies have shown that 'OH
are generated in a DNA-free solution con-
taining Cr(III) and H202 (43). The present
study demonstrates that Cr(III) plus H202
is capable of inducing oxidative DNA dam-
age. When we incubated calf thymus DNA
with CrCl3 + H202, the levels of 8-OH-dG
detected were approximately 40 times higher
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Figure 1. The effect of Cr(II1) concentrations on
the levels of 8-OH-dG in DNA incubated with 0.5
mM H202. Con, control. The incubation time was
60 min. Values are given as means ± SE (n = 5).
*p < 0.05 as compared to the Con group.

than those in the untreated controls.
Furthermore, the formation of 8-OH-dG
increases in a dose- and time-dependent
manner in the presence of 0.5 mM H202.
Melatonin, ascorbate, and vitamin E
(Trolox) all function as free radical scav-
engers and markedly inhibited the formation
of 8-OH-dG in a concentration-dependent
manner but, dearly, with different efficacies.

Vitamin E, a well-known antioxidant
and inhibitor of lipid peroxidation in biolog-
ic membranes, has protective effects against
the carcinogenic or mutagenic activity of
chemical agents and ionizing radiation (16).
We found that Trolox, a water-soluble vita-
min E analogue, successfully inhibited the
Cr(III)-induced formation of 8-OH-dG in
isolated DNA in a concentration-dependent
manner. Trolox concentrations > 10 mM
significantly reduced 8-OH-dG levels. The
IC50 value for Trolox was 36.2 pM.

In this in vitro system, we also found that
ascorbate, a water-soluble physiologic antioxi-
dant, had a protective effect, with an IC50
value of 30.4 pM calculated from its percent-
inhibition curve. Vitamin C has antiviral,
anticancer, and antimutagenic activity (16).
However, under certain conditions, vitamin
C acts as prooxidant, generating free radicals
(44). In a number of studies, ascorbate
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Figure 2. A time course of Cr(ll)-induced forma-
tion of 8-OH-dG in DNA incubated with 0.5 mM
H202. Results are given as means ± SE (n= 5). The
concentration of Cr(lll) was 0.5 mM.
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Figure 3. The effect of melatonin concentrations
on Cr(lll) (0.5 mM) plus H202 (0.5 mM)-induced 8-
OH-dG levels in DNA. The incubation time was 60
min. Results are given as means ± SE (n = 5).
*p < 0.05 as compared to the Cr(III) + H202 treatment
group.
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potenti.tea the production of reactive oxy-
gen species, DNA strand breaks, and 8-OH-
dG formation induced by Cr(VI) plus H202
(45-47). Thus, although ascorbate functions
as an free radical scavenger in the Cr(III) plus
H202 system, the utility of ascorbate in Cr
detoxification in vivo should be cautiously
considered.

As compared to ascorbate (IC50 = 30.4
gM) and vitamin E (IC50 = 36.2 PM), mela-
tonin was more effective in reducing the
formation of 8-OH-dG in this system (IC50
= 0.51 PM). Thus, melatonin was roughly
60- and 70-fold more effective in reducing
oxidative damage to DNA than ascorbate
and vitamin E, respectively. Also, the mini-
mal concentration of melatonin required to
significantly reduce 8-OH-dG formation
was much less than that of either vitamin.
A melatonin concentration of 0.25 pM
significantly reduced the 8-OH-dG forma-
tion, and a 10-pM concentration of the
indole essentially reduced 8-OH-dG levels
to control levels.

In the present study, melatonin's highly
effective protection against Cr(III)-induced
formation of 8-OH-dG in DNA may relate
to several actions of the indoleamine. First,
melatonin is a direct free radical scavenger
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Figure 4. The effect of ascorbate on Cr(lIl) (0.5
mM) plus H202 (0.5 mM)-induced 8-OH-dG levels
in DNA. The incubation time was 60 min. Results
are given as means ± SE (n= 5).
*p < 0.05 as compared to-the Cr(lIl) + H202 group.
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Figure 5. The effect of Trolox concentrations on
Cr(lHl) (0.5 mM) plus H202 (0.5 mM)ninduced 8-OH-
dG levels in DNA. The incubation time was 60 min.
Results are given as means + SE (n= 5).
*p < 0.05 as compared to the Cr(IIt) plus H202 group.

and is a particularly efficient scavenger of the
highly toxic OH (25,48,49). Melatonin
neutralizes two OH for each melatonin
molecule, resulting in the formation of the
product cyclic 3-hydroxymelatonin (50). In
the present study, the formation of 8-OH-
dG was thought to be due to a Cr(III)-medi-
ated Fenton-type reaction that generates
OH, which in turn attacked DNA, result-
ing in the accumulation of the oxidative
DNA base adduct 8-OH-dG (20,24).
Second, melatonin not only detoxifies the
highly toxic 'OH, but also scavenges its
precursor, H202. We recently uncovered a
new pathway in which melatonin interacts
with H202 to yield Nl-acetyl-N2-formyl-5-
methoxykynuramine (51). The structure of
the product was confirmed using mass
spectrometry, proton nuclear magnetic
resonance, and carbon nuclear magnetic
resonance. By lowering the concentration of
H202, 'OH generation in this system would
also be proportionally reduced. Such a dual
strategy of antioxidant protection would be
much more efficient than simply scavenging
OH. Third, because melatonin is highly

lipophilic (28) as well as somewhat hydro-
philic (29, it easily enters cells and sub-cellu-
lar compartments. Intracellularly, the highest
radioimmuoassayable concentrations of mela-
tonin are measured in the nudei of brain cells
after its peripheral administration to animals
(30). Melatonin has a high affinity for the
nucleus (and possibly DNA itself), which
may contribute to its protective effect against
Cr-induced formation of 8-OH-dG. Cr(III)
accumulates in nuclei and has a high affinity
for DNA (52). Melatonin may prevent the
formation of 8-OH-dG by displacing Cr(III)
from the Cr-DNA binding complex and
thereby reduce H202-mediated 'OH genera-
tion in the vicinity of DNA. Fourth, mela-
tonin and its precursors reportedly have a
high metal-binding affinity (53). Limson et
al. (53) showed that melatonin chelated alu-
minum, cadmium, iron, copper, and lead,
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Figure 6. Percent-inhibition curves of concentra-
tions of melatonin, ascorbate, and Trolox in reduc-
ing Cr(III)-induced 8-OH-dG formation in DNA. The
incubation time was 60 min with 0.5 mM H202.
Results are given as means ± SE (n = 5).

etc. Although the authors did not investigate
Cr, melatonin may also chelate this
transition metal ion to prevent the forma-
tion of the 'OH via the Cr-mediated
Fenton-type reaction: Cr(III) + H202 -
Cr(IV) + 'OH + OH-.

Susa et al. (54) used different end points
and cultured primary rat hepatocytes and
found that melatonin markedly reduced
nuclear DNA single-strand breaks induced by
K2Cr207 [Cr(VI)]. They speculated that
melatonin protected cells from free radical
toxicity by one of several means, including
melatonin's ability to preserve intracellular
levels of vitamins E and C, stimulation of
catalase activity, and/or by directly scavenging
the 'OH. In current studies, two of the
options proposed by Susa et al. (54), i.e.,
maintenance of Vitamin E and C levels and
the stimulation of catalase activity, were
clearly not involved in melatonin's protec-
tion of DNA from oxidative damage. Thus,
the most likely explanation for the current
findings is that melatonin's effects were a
consequence of its ability to scavenge the
'OH and possibly also H202.

In the current in vitro study, which used
purified DNA, the curves for the inhibition of
DNA damage by each of the three antioxi-
dants, i.e., melatonin, ascorbate, and Trolox
(Figure 6), were quite different. The relevance
of these curves to the pharmacologic utility of
these molecules in protecting nuclear DNA
from oxidative damage in vivo remains to be
investigated. However, in in vivo studies
where other free-radical-generating agents
were used, melatonin also proved highly effec-
tive in reducing DNA damage consistent with
its ability to enter the nucleus with ease
(55,56). There have been no in vivo studies
where vitamin E, ascorbate, and melatonin
were compared for their relative efficacies in
protecting DNA from oxidative destruction.

Melatonin as an antioxidant is effective in
protecting membrane lipids, nuclear DNA,
and protein from oxidative damage induced
by a variety of free-radical-generating agents
and processes both in vitro as well as in vivo
(26,55-58). Considering the apparent virtual
absence of acute or chronic toxicity, mela-
tonin's clinical application against Cr-
induced genotoxicity in occupational and
environmental situation where this metal is a
problem should be considered.
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