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Statistics at Square One

Ill-Standard deviation
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In addition to knowing the mean value of a series of measure-
ments it is often informative to have some idea of their range
about the mean. For example, the measurements of the urinary
concentration of lead that Dr Green obtained for 15 children
(Part I) ranged from 0 1 to 3-2 timol/24 h, with a mean of 1-5.
When he extended his study to 140 children the range was
from 0-1 to 4 2, with a mean of 2-18 tLmol/24 h.
The range is an important measurement, sometimes over-

looked in the rush to calculate a standard deviation. The figures
at the top or the bottom of it may be exceptionally important,
for they denote the findings furthest removed from the generality.
However, they do not give much indication of the spread of the
observations about the mean. This is where the standard devia-
tion comes in.
The theoretical basis of the standard deviation is complex and

need not trouble the ordinary user of it except in one particular.
This is that, whether the calculation is done on the whole "popu-
lation" of data or on a sample drawn from it, the population
itself should at least approximately fall into a so-called "normal"
(or Gaussian) distribution. When it does so the standard devia-
tion provides a useful basis for interpreting the data in terms of
probability. If the population is not normally distributed, the
standard deviation cannot be used in this way. (Some discussion
of "populations" and "samples" will appear later.) When
expressed graphically it appears symetrically bell shaped, with
most observations clustered round the mean and fewest scattered
in the tails on each side of the curve. Many biological characteris-
tics conform to it closely enough for it to be commonly used-
for example, heights of adult men and women, blood pressures
in a healthy population, random errors in many types of labora-
tory measurements and of biochemical data. Fig 3.1 shows a
normal curve calculated from the diastolic blood pressures of
500 men, mean 80 mm Hg, standard deviation 10 mm Hg. The
ranges representing 1 SD, L2 SD, and 3 SD about the
mean are marked.
The reason why the standard deviation is such a useful measure

of the scatter of the observations is this: if the observations
follow a "normal" distribution, a range covered by one standard
deviation above the mean and one standard deviation below it
(xi' 1 SD) includes about 68°, of the observations, a range of
2 standard deviations above and 2 below (x> 2 SD) about 95h0
of the observations, and of 3 standard deviations above and 3
below (x43 SD) about 99 730% of the observations. Con-
sequently if we know the mean and standard deviation of a set
of observations, we can obtain some useful information by simple
arithmetic. By putting 1, 2, or 3 standard deviations above and
below the mean we can estimate the ranges that would be
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FIG 3.1-Normal curve calculated from diastolic blood pressures of 500 men,
mean 80 mm Hg, standard deviation 10 mm Hg.

expected to include about 68%, 95%, and 9977% of the observa-
tions.

Calculation of the standard deviation

The standard deviation is a summary measure of the differ-
ences of each observation from the mean. If the differences
themselves were added up, the positive would exactly balance
the negative and so their sum would be 0. Consequently the
squares of the differences are added. The sum of the squares is
then divided by the number of observations minus one to give
the mean of the squares, and the square root is taken to bring
the measurements back to what we started with. (The division
by the number of observations minus one instead of the number
of observations itself to obtain the mean square is because
"degrees of freedom" must be used. In these circumstances
they are one less than the total. The theoretical justification for
this need not trouble the user in practice.)

This procedure is now illustrated from table 3.1 with the 15
readings obtained by Dr Green in his preliminary study of
urinary lead concentrations. The readings are set out in col (1).
In col (2) is recorded the difference between each reading and
the mean. The sum of the differences is 0. In col (3) the differ-
ences are squared, and the sum of those squares is at the bottom
of the column.
The sum of the squares of the differences (or deviations) from
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the mean, 9-96, is now divided by the total number of observa-
tions minus one, to give the variance. Thus, the variance=

n-i
Finally, the square root of the variance provides the standard

deviation:

SD = J XIR)2
This procedure illustrates the structure of the standard devia-

tion, but in practice it is calculated less laboriously. Finding all
the deviations of the observations from the mean, as in table
3.1, col (2), can be bypassed.

TABLE 3.1---Calculation of standard deviation

(1) (2) (3) (4)
Lead Differences Differences Observations in

concentration, from mean squared col (1) squared
pLmol/24 h

x x-xi Xs~)
0.1 -1-4 1-96 0.01
0-4 -11 1-21 0-16
0-6 - 09 0-81 0-36
0-8 -0-7 0-49 0-64
1-1 -0-4 0-16 1-21
1-2 -0-3 0-09 1-44
1-3 -0-2 0-04 1-69
1-5 0 0 2-25
1-7 0-2 0-04 2-89
1-9 0-4 0-16 3-61
1-9 0-4 0-16 3-61
2-0 0-5 0-25 4-00
2-2 0-7 0-49 4-84
2-6 1.1 1-21 6-76

- 3-2 1-7 2-89 10-24

Total 22-5 0 9-96 43-71

n=15, 51= 1-5.

If the number of observations is not too manym-say, up to
100-they are set out in one or more columns as shown in table
3.1, col (1). Their sum is put at the bottom and their mean
calculated as before. Each observation is then squared, as shown
in table 3.1, col (4), and the sum of the squares set down (=
43-71). We now square the'sum of the observations (foot of
col (1) ), divide that by the number of observations, and subtract
the result from the sum of the squares of the observations (foot
of col (4) ). Dr Green's figures are treated as follows:

22.52
43-71---j- This equals 9-96.

The figure thus obtained is the same as the 996 at the foot of
the table 31, col (3). The reason for this is that

* ZX2 (EX)2 = (-)
(~~X)2

X
n

We now find the variance by dividing 9-96 by 14 (which is
n-1), and so obtain 0-714. The square root of this is the standard
deviation, 084.
The procedure may be summarised as follows:

Tabulate the observed figures in a column
and add them .. .. .. .. ..

Square this total .. .. .. .. .. ..

Divide by the number of observations .. .. (1)

Square each observed figure .. .. .. .. X2

Add the squares 2.. .. .. .. .. Ex (2)

Subtract (1) from (2) .. .. .. .X
n

Z2 -(X)2

Divide by the number of observations minus one n
n-1

Take the square root n. ... ..
n-1

This is the standard deviation.

A calculator with a memory and keys for squares and square
roots makes light work of this procedure. All that need be set
on paper is the column of figures. Each is squared in turn on the
calculator, and the squares are accumulated in the memory
The sum of the figures is then added up on the calculator,
squared, and divided by the number of observations. This total
is subtracted from the sum of squares in the memory. The
resulting difference is extracted from the memory on to the
display screen, and divided by the number of observations minus
one. The square root then gives the standard deviation.

Exercise 3. Dr Green obtained a further series of lead concentrations
in urine as follows: 02, 0 8, 3-1, 1i9, 0 3, 1i8, 1-7, 1-5, 3.4, 2*0, 2-1,
06, 1.9, 2-8, 2.0, 0.7 tmol/24 h. What is their mean and standard
deviation ?
Answer: Mean= 1-675, SD = 0-96.

How does the food value of beef protein compare with that of soya bean
protein ?

The food (biological) value of protein depends on its content of the
essential amino-acids, and the extent to which these are present in the
proportion required by man. The protein with the highest biological
value is egg protein, and this is given an empirical score of 100. Beef
then has a score of about 80, and the best soya protein a score almost
as high at about 70. But the process of preparing the dry powder may
decrease the value of soya to as low as 30. In practice, these values for
protein from individual foods usually do not mean very much, since
other foods in the diet will contain protein that supplements the
essential amino-acids-for example, the limiting amino-acids in both
beef protein and soya protein are the sulphur-containing amino-acids
cystine and methionine, which are plentifully supplied by the proteins
in bread; on the other hand, bread is short of lysine, but this is
plentiful in both beef and soya.

Do the newer automatic sphygmomanometers have any advantages over
the traditional ones?

The ideal sphygmomanometer should be cheap, light, robust, and
accurate; it should also eliminate or reduce the well-known tendency

for observer error and bias. The traditional mercury sphygmomano-
meter is cheap, relatively light, and very robust; it is as accurate as
the newer instruments,' but measurements made with it are exposed
to observer error and bias.2 This is of little consequence in clinical
management as the decision to treat or to modify treatment in hyper-
tension is based on much larger changes of blood pressure. For
clinical practice, therefore, the standard sphygmomanometer is
perfectly adequate. For the epidemiologist or for a clinical trial it is not.
Comparison ofblood pressure in two groups ofpeople may show small,
highly significant differences within a range in which bias could
account for the difference. There is no alternative but to use either
double-blind recording with a standard sphygmomanometer or,
preferably, double-blind recording with a special sphygmomanometer
capable of eliminating or reducing observer bias.' Such machines
operate on mechanical or electronic principles'-3; some produce a
written print-out of blood pressure and some take regular measure-
ments automatically. These may be useful for serial observations in
anaesthesia, intensive care units, or medical research. Portable machines
recording intra-arterial pressure through an indwelling catheter can
record blood pressure continuously for prolonged periods.4
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