
Supporting Text

Derivation of the Governing Model Equations. The chemical reactions describ-

ing the autocatalytic network are naturally divided into two categories: fast and slow.

The fast reactions have rate constants of order seconds and are therefore assumed to

be in equilibrium with respect to the slowly changing variables, which evolve on time

scales of order minutes. If we let X, X2, and Di denote the repressor, repressor dimer,

and DNA promoter sites with i dimers bound, then we may write the fast reactions

as
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where the volume dependence is explicit in the reaction rates because the volume is

a slowly evolving function of time due to the growth of the host cell.

The slow irreversible reactions are transcription, translation, and protein denat-

uration or destabilization. If no repressor is bound to the operator region or if a

single repressor dimer is bound to the first right operator site (OR1), transcription

proceeds at a basal rate. If, however, a repressor dimer is bound to OR2, the binding

affinity of RNA polymerase to the promoter region is enhanced by a factor α, leading

to an amplification of transcription. Denaturation is due to the temperature-induced



destabilization of CI monomers. We write the reactions governing these processes as
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where transcription and translation are modeled as a single reaction with rate constant

kt.

The cellular volume increase and division are modeled as follows. For time just

after cell division to just before, we let the volume increase as

V = V0 eln(2) T/τ0 , [3]

where V0 is the volume of the host cell at the beginning of its growth phase, and τ0

is the cell-division time. At times T = qτ0, where q is an integer, we let V → V/2

and n → n/2 for each of the protein species. This operation represents the halving

of the volume at division along with the redistribution of molecules to one daughter

cell. Defining the dimensionless variables v = V/V0 and t = T/τ0, we have

v = eln(2) t [4]

so that, in these units, time is measured in terms of the cell-division time (t ε [0, 1]),

and the volume oscillates between 1 and 2.

We seek to write a dynamical equation for the slowest process described by the

reactions in Eqs. 1 and 2. The association and dissociation rates for dimerization and

protein–DNA binding are fast compared with transcription and degradation. Thus,

although cI monomers are transcribed and degraded at a slow rate, they are not a

slowly changing quantity because they quickly equilibrate with cI dimers (1). The

slowly changing variable is the total number of cI molecules (in any form), and is

defined as

z = x + 2x2 + 2d1 + 4d2 + 6d3, [5]



where x, x2, and di are the numbers of cI monomers, dimers, and dimer–DNA com-

plexes. The temporal evolution of the total number of cI molecules is given by the

rate equation
dz

dt
= β(d0 + d1) + αβd2 − γxx, [6]

where β ≡ ktτ0 and γx ≡ kdτ0 are dimensionless parameters representing the number

of cI monomers produced (basally) and destabilized over the course of one cell-division

time.

With respect to the slowly evolving process described by Eq. 6, the fast reactions

given by Eq. 1 can be considered to be in equilibrium. This gives the following

algebraic relations,
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Defining dimensionless equilibrium constants∗ as ci ≡ ki/(k−iV0A), where A is the

Avogadro number, and letting c ≡ c1c2, we have

x2 = c1x
2/v [8]
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2d0x

4/v4
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6/v6,

where the σi prefactors denote the relative affinities for dimer binding to OR1 versus

that of binding to OR2 (σ1) and OR3 (σ2).

We can eliminate the number of unbound operator sites d0 by taking the copy-

number m as constant,

m = d0 + d1 + d2 + d3. [9]



This leads to an equation for d0:

d0(x, v) =
m
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. [10]

Now, utilizing Eqs. 8 and 10, we can rewrite Eq. 6 as
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The last step is to write ż in terms of ẋ. Utilizing Eqs. 5 and 8, we obtain
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where we have assumed that the volume increases adiabatically so that v̇ terms can be

ignored with respect to the time derivative of x. Additionally, provided the number

of monomers is not too small†, the number of operator states d0 without bound

dimers will be small and rarely changing. We thus can approximate Eq. 12 by letting

ḋ0(x, v) = 0. This leads to the governing equation for the evolution of the number of

cI monomers,

ẋ =
1

h(x, v)
(βf(x, v)− γx x), [13]

where
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2x4/v4)
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[14]
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The equation describing the evolution of the number of GFP molecules can be

deduced by noting that, because GFP proteins are translated in tandem with cI

proteins, the governing equation is analogous to Eq. 6,

dg

dt
= ηβ(d0 + d1) + αβd2 − γgg, [16]

where the parameter η is the relative efficiency of production of GFP compared with

that of cI. The reduction of this equation follows the same route as that described

above and leads to

ġ = ηβf(x, v)− γg g. [17]



Internal Fluctuations. Internal fluctuations arise from the small number of reac-

tant molecules. Within the context of gene regulation, one recently employed tech-

nique for incorporating such fluctuations is through the direct numerical simulation

of the reactions given by Eqs. 1 and 2 (2,3). In the present work we adopt an alter-

native approach. This approach amounts to the generalization of the deterministic

equations to include stochastic terms describing the internal fluctuations. Within

this framework, Eqs. 13 and 17 describe the evolution of the mean number of cI and

GFP proteins, and the stochastic terms can be viewed as perturbations away from

the steady states characterized by the mean values. The result is a generalization of

Eqs. 13 and 17 to the following Langevin equations,

ẋ =
1

h(x, v)
{βf(x, v)− γx x}+

√
1

h(x, v)
{βf(x, v) + γx x} ξx(t)

ġ = ηβf(x, v)− γg g +
√

ηβf(x, v) + γg g ξg(t),

where the ξi(t) are rapidly fluctuating random terms with zero mean (< ξi(t) >= 0),

and the statistics of the ξi(t) are such that < ξi(t)ξj(t
′) >= δi,j(t− t′).

Our simulation of these equations follows the recipe given in ref. 4. Generally,

consider a set of M chemical species, with ni(t) denoting the number of molecules of

species i at time t. Setting n =
[

n1 n2 · · · nM

]
, the evolution equation may be

written in the form

ṅ = F (n)−G(n) +
√

F (n) + G(n)ξ(t) [18]

= P (n) + Q(n)ξ(t) , [19]

where F (n) =
[

F1(n) F2(n) · · · FM(n)
]

[similarly for G(n), P (n), and Q(n)],

P (n) ≡ F (n)−G(n), and Q(n) ≡
√

F (n) + G(n).

For an individual species we have

ṅi = Pi(n) + Qi(n)ξ(t). [20]

Updates are computed by using



ni(t + ∆t) = ni(t) + Pi(n)∆t + Qi(n)Ξ(t) +
1

2
[Ξ(t)]2

M∑
j=1

Qj(n)
∂Qi

∂nj

(n) , [21]

where Ξ(t) is a Gaussian random variable with zero mean and standard deviation

σ2 =
√

∆t, and n = n(t).

GFP Fluorescence and Molecule Number. To directly compare the modeling

results with the experiment, we needed to convert the GFP molecule number g ob-

tained from Eq. 18 to a corresponding fluorescence value F . It is known that GFP

fluorescence is temperature-dependent (4); therefore we assumed a destabilization-

dependent proportionality between the number of GFP molecules and the correspond-

ing fluorescence,

F = c(γx) (g + b0), [22]

where b0 is a fixed constant and c(γx) is chosen for each destabilization value.

Results

Simulation results are obtained by numerically integrating Eq. 18 and using Eq. 22 to

transform to fluorescence values. Because the experiment makes use of the PRM pro-

moter region of λ phage, many of the parameters are known from the literature, and

in Table 1 we give an extensive list of all parameters used in the simulations. In Fig. 2,

we plot the simulated distributions for the GFP fluorescence and cI monomer number

alongside of those obtained from the experiment for the entire destabilization (model)

and temperature (experiment) sweep.

It is important to note that only two parameters are adjusted in generating the

agreement between model and experimental distributions over the entire tempera-

ture range (Fig. 2). These adjustable parameters are the destabilization γx and the

fluorescence proportionality constant c(γx). As noted in the main text of the arti-

cle, the fits allow the deduction of the destabilization as a function of temperature,

and an exponential fit of these data is in excellent agreement with results reported

elsewhere (5). Along these same lines, the results can be taken as a prediction for



the temperature dependence of GFP fluorescence. In Fig. 7 we plot the fluorescence

proportionality constant c(γ) as a function of both the destabilization and temper-

ature, respectively. Although future experiments are needed to test this prediction,

it is interesting to note that the relative values of the proportionality constant for

temperatures of 37 and 42◦C is c(37◦C)/c(42◦C) = 2.5, which is in agreement with

the value of 2.78 reported for the GFP mutant GFP-A (4). This effect is observed

in the control experiments containing the wild–type cI gene, presented in Fig. 1D. In

additional control experiments, the maturation rate of GFP was observed to occur

on the order of tens of minutes, consistent with previously reported studies (6,7).

∗ Since the number of proteins is typically of order 103 or less, these equilibrium

constants are the natural units.

† This assumption is consistent with the validity of the rate equation approach. Indeed

if the number of monomers is too small, then the rate equation approach is not valid,

and techniques originating from the general master equation must be employed (see

ref. 1).
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