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Appendix B. Derivation of Endothelial Surface Layer (ESL) Compression Due to

Red Cell Arrest

1. Governing Equations

The draining of fluid from the ESL due to red cell arrest is modeled in the following

figure.

Fig. B1. Model for compaction of ESL beneath planar RBC membrane

In the above figure ( )yvy is the local velocity of fluid in the ESL; W is the width of red

cell; cP  is compression pressure of the red cell membrane on the ESL; and fL  is the

height of the ESL. For a flexible membrane, fL  is a function of both y and t [see Wu and

Weinbaum (1)]. However, for present purposes, where we are primarily interested in the

characteristic time for the fluid drainage, we treat fL as a rigid planar surface. In the

absence of membrane curvature, cP is equal to the internal cell pressure. As described in

the text, the process is governed by Darcy’s law,
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and continuity,
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Combining the above two equations, one obtains the pressure distribution beneath the red

cell membrane,
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where op is the ambient pressure at the edge of the compression zone. The average

compression pressure on the ESL must equal the cell pressure. Thus,

( )








−=

−
= ∫

dt
dL

LK
W

W

dypp
P f

fp

W

c 12

2 22
0 0 µ  . [B4]

Assuming cP  and W  are constant, one obtains 
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where Lf0 is the initial ESL thickness. If pK is constant, then

( )τtLL ff −= exp0  , [B6a]

with 
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However, for the large compressions of the ESL considered herein, Kp is a function of the

instantaneous solid fraction c.

2. Estimation of Kp

In ref. 2, the expression for the drag force on a single spherical scattering center along the

core protein is

yrKF νµπ6= , [B7]

where r is the radius of the scattering center and K is the drag force coefficient. Sangani

and Acrivos (2) showed that for a face-centered cubic array of spheres,
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where 74.0max =c is the maximum solid fraction for the face-centered array, and the sq

are coefficients given in ref. 2. From Darcy’s law, one can show that Kp is related to K by
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where
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3. Estimation of other parameters

To solve the above equations, we have to estimate two other parameters: the solid

fraction c and the width W of the red cell compression along the ESL. Mass conservation

within the solid phase requires that
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where c0 = 0.13 for the initial array of spherical scattering centers depicted in Fig.1. For a

red cell volume of 90 µm3, a capillary diameter of 5 µm and Lf = 0.4 µm, W = 4.6 µm

initially and increases to 6.5 µm after maximum crushing of the ESL if the assumed

shape is that of a circular cylindrical pellet. In our calculation, we let W be the mean of

these two values.

4. Calculation

a. Constant Kp

Substituting t = 0.5 s into Eq. B6a,
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Therefore,

29.0=τ s.

Substituting τ into Eq. B6b and rearranging, one obtains

Pc = 2,421 dyn/cm2.

b. Variable Kp

Combining Eqs. B7, B8, and B9, one finds Kp is only a function of Lf. Thus, the integrand

of the integral in Eq. B5 is only a function of Lf. The integral in Eq. B5 has been
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evaluated numerically. For Pc = 2,421 dyn/cm2, the relationship between t and Lf is given

in the following table and plotted in Fig. 6.

Table 1. Time-dependent compaction of ESL for variable KP

t(s) Lf/Lf0 t(s) Lf/Lf0
0 1 0.28 0.55

0.015 0.95 0.36 0.50

0.033 0.90 0.47 0.45

0.053 0.85 0.62 0.40

0.076 0.80 0.86 0.35

0.10 0.75 1.29 0.30

0.14 0.70 2.29 0.25

0.17 0.65 7.03 0.20

0.22 0.60 25.5 0.176

Note that the time for maximum compaction has been extended by a factor of 50 from 0.5

s to 25 s.
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