References

- GRYGLEWSKI, R.J. (1976). Steroid hormones, antiinflammatory steroids and prostaglandins. *Pharmac. Res. Commun.*, **8**, 337–348.
- LEWIS, A.J., NELSON, D.S. & SUGRUE, M.F. (1975). On the ability of prostaglandin E_1 and arachidonic acid to modulate experimentally induced oedema in the rat paw. *Br. J. Pharmac.*, **55**, 51–57.
- MONCADA, S., FERREIRA, S.H. & VANE, J.R. (1973).

Phospholipase A₂ activity of guinea-pig perfused lungs: stimulation and inhibition by anti-inflammatory steroids

G.J. BLACKWELL, R.J. FLOWER, F.P. NIJKAMP & J.R. VANE

Dept. of Pharmacology, Wellcome Research Laboratories, Langley Court, Beckenham, Kent BR3 3BS

Guinea-pig isolated lungs release prostaglandin (PG) endoperoxides and thromboxane A₂ (TXA₂) into the perfusion fluid in response to stimuli including antigen challenge (Piper & Vane, 1969), mechanical trauma (Palmer, Piper & Vane, 1973), bradykinin or arachidonic acid (Vargaftig & Dao Hai, 1972) and rabbit aorta contracting substance - releasing factor (RCS-RF; Piper & Vane, 1969; Nijkamp, Flower, Moncada & Vane, 1976). Nijkamp et al. (1976) demonstrated that in relation to their antiinflammatory potency, corticosteroids inhibited the generation of TXA₂ induced by RCS-RF, but not that due to the precursor arachidonic acid. Thus, inhibition of the release of arachidonic acid could be related to the therapeutic action of these steroids. Flower & Blackwell (1976) demonstrated that arachidonic acid was released from cellular phosphatides in response to similar stimuli, and this led us to speculate that agents which release TXA₂ from lungs do so by "activating" phospholipase A₂.

For these experiments, the guinea-pig perfused lungs and cascade superfusion apparatus were prepared and TXA₂ generation was measured as previously described (Nijkamp *et al.*, 1976). For assay of phospholipase A₂ activity, a mixture of 18.0 nmoles 2-acyl ([³H]-oleoyl) phosphatidylcholine and 1.8 nmoles [¹⁴C] oleic acid was injected into the pulmonary artery. The perfusate was collected for 7 min and the labelled fatty acids selectively extracted at pH 8.0 with 10 ml *n*-hexane. The solvent was evaporated to dryness and the ³H/¹⁴C ratio estimated by conventional liquid scintillation counting techniques.

When injected into the pulmonary artery, histamine

Prostaglandins, aspirin-like drugs and the oedema of inflammation. *Nature (Lond.)*, **246**, 217–218.

- THOMAS, R.U. & WHITTLE, B.J.R. (1976). Prostaglandins and the release of histamine from rat peritoneal mast cells. *Br. J. Pharmac.*, **57**, 474–475P.
- VAN ARMAN, C.G., BEGANY, A.J., MILLER, L.M. & PLESS, H.H. (1965). Some details of the inflammations caused by yeast and carrageenin. J. Pharmac. exp. Ther., 150, 328-334.

 $(2-5 \ \mu g)$, RCS-RF $(5-10 \ u)$, bradykinin $(1-5 \ \mu g)$ and arachidonic acid $(1-5 \ \mu g)$ caused a release of PG endoperoxides and TXA₂. Release of TXA₂ was blocked by indomethacin $(1 \ \mu g/ml)$. The release induced by histamine or RCS-RF was also blocked by dexamethasone (ID₅₀ 1.5 $\mu g/ml$) and hydrocortisone (ID₅₀ 33 $\mu g/ml$).

There was a small (1-3%) basal hydrolysis of the labelled phosphatide by the perfused lung, which increased gradually with time. This hydrolysis was inhibited by mepacrine $(20 \ \mu g/ml)$, procaine $(40 \ \mu g/ml)$, betamethasone $(2 \ \mu g/ml)$, dexamethasone $(2 \ \mu g/ml)$ and hydrocortisone $(50 \ \mu g/ml)$. The steroids exhibited a time-dependent inhibition, the maximum effect occurring after 30 min infusion. Histamine $(2 \ \mu g)$, RCS-RF $(5 \ u)$ and bradykinin $(1 \ \mu g)$ stimulated phospholipid hydrolysis by 150–300%. Steroids and mepacrine blocked (60-90%) the stimulation due to histamine and RCS-RF but had only a small effect (10-20%) on the bradykinin stimulation.

In homogenates of guinea-pig lung, phospholipase A_2 activity was inhibited by mepacrine and procaine. Steroids were without effect, indicating that these agents require intact cells to function effectively.

References

- FLOWER, R.J. & BLACKWELL, G.J. (1976). The importance of phospholipase A₂ in prostaglandin biosynthesis. *Biochem. Pharmac.*, **25**, 285-291.
- NIJKAMP, F.P., FLOWER, R.J., MONCADA, S. & VANE, J.R. (1976). Partial purification of rabbit aorta contracting substance-releasing factor and inhibition of its activity by anti-inflammatory steroids. *Nature, Lond.*, **263**, 479–482.
- PALMER, M.A., PIPER, P.J. & VANE, J.R. (1973). Release of rabbit aorta contracting substance (RCS) and prostaglandins induced by chemical stimulation of guineapig lungs. Br. J. Pharmac., 49, 226-242.
- PIPER, P.J. & VANE, J.R. (1969). Release of additional factors in anaphylaxis and its antagonism by antiinflammatory drugs. *Nature, Lond.*, 233, 29-35.
- VARGAFTIG, B.B. & DAO HAI, N. (1972). Selective inhibition by mepacrine of the release of "rabbit aorta contracting substance" evoked by the administration of bradykinin. J. Pharm. Pharmac., 24, 159-161.