Effects of prostacyclin (PGI₂), PGI₁ and 6-oxo-PGF_{1a} on the rat gastric mucosa

N.K. BOUGHTON-SMITH, J.R. VANE & B.J.R. WHITTLE

Wellcome Research Laboratories, Langley Court, Beckenham, Kent BR3 3BS

Prostacyclin (PGI₂) is an unstable potent vasodilator, which can be formed by vascular tissue and the rat stomach (Gryglewski, Bunting, Moncada, Flower & Vane, 1976). We have now investigated the effects of PGI₂, its stable degradation product 6-oxo-PGF_{1 α} and 6 β -PGI₁, a 5,6-dihydro prostacyclin (Johnson, Lincoln, Thompson, Nidy, Mizsak & Axen, 1977) on the rat gastric mucosa.

The inhibition of pentagastrin (0.5 μ g kg⁻¹min⁻¹)induced gastric acid secretion and the change in mucosal blood flow (MBF) in the urethaneanaesthetised rat was determined as previously described (Main & Whittle, 1973). PGI, (0.25-5 µg kg-1min-1 i.v.) caused a dose-dependant fall in systemic arterial blood pressure and inhibition of acid output; the ID₅₀ (dose causing 50% inhibition) was 0.5 μg kg⁻¹min⁻¹ (infused i.v. for 30 min) compared with an ID₅₀ of 1 µg kg⁻¹min⁻¹ for PGE₂. Subcutaneous administration of PGI₂ (50-200 µg/kg) likewise inhibited acid output (ID₅₀, 100 µg/kg, s.c.). 6-oxo-PGF_{1a} had little effect on acid output in doses up to 50 μg⁻¹kg⁻¹min i.v. for 30 minutes. However, the stable prostacyclin analogue, PGI₁ inhibited acid secretion (ID₅₀, 4 μg kg⁻¹min⁻¹ i.v.) and in these antisecretory doses, it was less active than PGI₂ as a vasodepressor.

During the inhibition of acid secretion by PGI_2 , the ratio of MBF to acid output increased. Furthermore, PGI_2 (0.5 $\mu g^{-1}kg^{-1}min$, i.v.) increased resting MBF, indicating a direct vasodilator action on the mucosa.

In the isolated perfused whole rat-stomach preparation (Bunce & Parsons, 1976), PGI_2 added to the serosal solution (pH 7.6, 37°C) inhibited histamine (5 × 10⁻⁵ M)-induced acid output with an ID_{50} of 6 × 10⁻⁶M. Although PGI_2 appeared less active than PGE_2 (ID_{50} , 10^{-6} M) in this preparation, this may well result from the rapid breakdown of PGI_2 under these

in vitro conditions; the stable analogue, PGI_1 , showed marked antisecretory activity (ID_{50} , 1.0×10^{-6} M).

The inhibition of gastric mucosal erosions was assessed 3 h after administration of indomethacin (20 mg/kg s.c.) as previously described (Whittle, 1976). Repeated subcutaneous administration of PGI₂, PGI₁ and 6-oxo-PGF_{1 α} reduced the incidence and severity of the lesions, with an ID₅₀ of 35, 30 and 500 µg kg⁻¹h⁻¹ respectively. Likewise, a single subcutaneous injection of PGI₂ and PGI₁ immediately prior to indomethacin, inhibited the erosions, with an ID₅₀ of 350 and 200 µg/kg s.c. respectively compared to 450 µg/kg s.c. for PGE₂. 6-oxo-PGF_{1 α} had little activity in single doses up to 500 µg/kg s.c.

The present findings indicate that prostacyclin exhibits many of the actions previously ascribed to PGE₂, being a potent mucosal vasodilator, an inhibitor of gastric acid secretion and an inhibitor of erosion formation in the rat. The interaction and relative roles of PGI₂ and PGE₂ in the gastric mucosa remains to be clarified.

References

BUNCE, K.T. & PARSONS, M.E. (1976). A quantitative study of metiamide, a histamine H₂-antagonist, on the isolated whole rat stomach. *J. Physiol.* (Lond.), 258, 453–465.

GRYGLEWSKI, R.J., BUNTING, S., MONCADA, S., FLOWER, R.J. & VANE, J.R. (1976). Arterial walls are protected against deposition of platelet thrombi by a substance (prostaglandin X) which they make from prostaglandin endoperoxides. *Prostaglandins*, 12, 685-713.

JOHNSON, R.A., LINCOLN, F.H., THOMPSON, J.L., NIDY, E.G., MIZSAK, S.A. & AXEN, U. (1977). Synthesis and stereochemistry of prostacyclin and synthesis of 6-keto prostaglandin F_{1a}. J. Am. Chem. Soc., 99, 3182-4184.

MAIN, I.H.M. & WHITTLE, B.J.R. (1973). The effects of E and A prostaglandins on gastric mucosal blood flow and acid secretion in the rat. *Br. J. Pharmac.*, 49, 428-436.

WHITTLE, B.J.R. (1976). Relationship between the prevention of rat gastric erosions and the inhibition of acid secretion by prostaglandins. *Eur. J. Pharmac.*, 40, 233-239.

The renal haemodynamic and excretory actions of prostacyclin (PGI₂) in anaesthetized dogs

T.W.K. HILL & S. MONCADA

Wellcome Research Laboratories, Langley Court, Beckenham, Kent BR3 3BS

Prostacyclin (PGI₂) is a newly discovered arachidonic acid metabolite synthesized in vascular walls of

different species including man. PGI₂ relaxes a variety of vascular muscle strips in vitro (Bunting, Gryglewski, Moncada & Vane, 1976) and is a strong hypotensive in rabbits and rats (Armstrong, Lattimer, Moncada & Vane, 1977).

As prostaglandins have profound stimulatory actions on renal haemodynamics and excretion in a variety of species (McGiff & Itskovitz, 1973) we have measured the renal actions of PGI₂ in anaesthetized dogs.