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Clamped homogeneous electric field gel electrophoresis and a computer program for managing electro-
phoresis banding patterns (ELBAMAP) were used to analyze genomic DNA of 118 Vibrio vulnificus strains,
isolated from three oysters by direct plating. Analysis with Sfil resulted in 60 restriction endonuclease digestion
profiles (REDP), while analysis with Srfl produced 53 different REDP. Similarities between REDP ranged from
7 to 93%. Principal-component analysis showed that the strains were heterogeneous.

Vibrio vulnificus is an estuarine organism that occurs natu-
rally in temperate and tropical climates. It is commonly found
in seawater and sediment and is associated with various marine
life forms (10, 16, 18, 19, 24, 26). It is considered one of the
most invasive and rapidly lethal human bacterial pathogens
known today. Human disease can occur from ingestion of raw
seafood, mainly raw oysters (2, 13), or by infection of skin
lesions. V. vulnificus poses the greatest risk to persons who are
compromised, especially those with liver dysfunctions (2, 13,
23). The fatality rate is greater than 50% for individuals with
primary septicemia (15). Because this at-risk population is ever
growing, food safety precautions for such opportunistic patho-
gens are increasingly important. Although much is known of

the seasonal ecology of V. vulnificus and its relationship to
temperature and salinity (9, 11, 16, 17, 24), there are no meth-
ods to monitor or track specific strains. Moreover, it is not
known if a single oyster contains few or many different strains
of V. vulnificus. The infectious dose of V. vulnificus is also
unknown and is due in part to the inability to match clinical
isolates with isolates from implicated lots of oysters and the
lack of opportunities for epidemiologists to trace a human
infection back to the implicated source.

Since classification of V. vulnificus at the species level (6, 21),
various methods have been used to identify and characterize V.
vulnificus strains (8, 16, 22, 27, 29, 30). However, these meth-
ods are not adequate for tracking or typing. Therefore, other
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FIG. 1. DNA restriction patterns of V. vulnificus as determined by CHEF after cleavage with Srfl. Lane A, FRIK 236; lane B, FRIK 238; lane C, FRIK 239; lane
D, FRIK 240; lane E, FRIK 241; lane F, FRIK 242; lane G, FRIK 243; lane H, FRIK 244; lane I, FRIK 245; lane J, FRIK 246; lane K, FRIK 247; lane L, FRIK 248;
lane M, FRIK 249; lane N, FRIK 251; lane O, FRIK 252; lane P, FRIK 253; lane Q, FRIK 254; lane R, FRIK 232; lane \, DNA size standards.
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FIG. 2. DNA restriction patterns of V. vulnificus as determined by CHEF
after cleavage with Sfil. Lane A, FRIK 284; lane B, FRIK 285; lane C, FRIK 286;
lane D, FRIK 288; lane E, FRIK 289; lane F, FRIK 290; lane G, FRIK 291; lane
H, FRIK 293; lane I, FRIK 294; lane J, FRIK 251; lane K, FRIK 255; lane L,
FRIK 301; lane M, FRIK 302; lane N, FRIK 310; lane O, FRIK 333; lane P,
FRIK 334; lane Q, FRIK 232; lane \, DNA size standards.
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methods, particularly molecular techniques, have been applied
to V. vulnificus (7, 20). Because epidemiological research re-
quires methods that allow effective discrimination of strains
and a basis for determining genomic relatedness among
strains, we used clamped homogeneous electric field (CHEF)
gel electrophoresis to analyze large chromosomal DNA restric-
tion fragments of V. vulnificus strains isolated from three oys-
ters.

This study was undertaken to determine molecular charac-
teristics of V. vulnificus strains present in individual oysters
and to investigate whether a few or multiple strains were
present.

Three oysters were collected within a 50-ft* (ca. 4.6-m?) area
in Apalachicola Bay, Fla., transported at 4°C, and examined
within 24 h of harvest. The water temperature at the time of
harvest was 23°C and the salinity was 10 ppt. Oyster shells were
scrubbed with a brush under running water, opened with a
sterile shucking knife, and transferred to a sterile blender jar.
Three single oysters weighing more than 10 g each were diluted
separately with an equal weight of sterile phosphate-buffered
saline (PBS) and were homogenized (Polytron; Brinkmann
Instruments). Serial 10-fold dilutions were prepared in sterile
PBS, and 100 pl of each dilution was plated on 10 plates of
Trypticase soy agar (Difco, Detroit, Mich.) supplemented with
1% NaCl. After 4 h of incubation at 37°C, colonies were trans-
ferred to nylon membranes (Micron Separations Inc.) by over-
laying agar plates with membranes. After approximately 2 min,
the nylon membrane was inverted, placed on modified colistin-
polymyxin B-cellobiose agar (25), and incubated at 40°C for 16
h. Typical V. vulnificus colonies were picked, and their identity
was confirmed by enzyme-linked immunosorbent assay
(ELISA) with a V. vulnificus-specific monoclonal antibody
(25). A total of 118 V. vulnificus isolates (oyster I, 36 isolates;
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FIG. 3. Diagram of 53 representative Srfl REDP of 95 V. vulnificus strains.
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011 100
02| 17100
03| 4214100

04| 451742100

05 | 36174245100

06 | 2533336025100
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08 ] 33143842333335100

09| 3213444040213374100

10 | 2918 3557 5727 3052 50100

11 ] 24292124471838 423038100

12 | 30 20 36 60 50 29 21 55 52 84 40 100

13 ] 2918 43 3838 27 50 70 67 60 38 63 100

14 | 261540354324 4548 4655445773100

15 | 3818 26 2929 27 30 52 50 40 38 42 50 36 100

16 | 2413 3024 3232 25 52 36 42 40 35 33 31 67 100

17 § 3314 46 50 50 33 26 46 52 52 32 55 43 40 26 37 100

18 | 43152426 3512 36 40 31 27 2219 36 33 36 31 16 100

19| 2514 3833 423326 6244 3553 45 43 40 52 62 38 40 100

20 | 322229423215 33 57 45 33 57 35 44 40 33 36 38 30 38 100

21| 202036305014 3245363267333238426245295671 100

22 | 4020 2740 30 14 21 45 35 53 53 56 42 48 32 26 36 29 55 35 33 100
23| 431524433512 9322345334827 25181524 4240301967100
24| 15132123 82032362824 1917 241524 28 14222917 17 25 22100
25} 401344564032 859434230524246425044 3874 55524346 28100

26 | 2918 3538 48 27 20 35 33 40 38 32 30 27 50 50 35 36 52 33 42 32 45 32 68 100
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27 | 1817 17 4527 25 10 50 40 48 35 60 38 43 29 32 25 17 60 32 30 50 43 23 56 29 100

28 | 4517 2536 3625 1942 48 57 47 50 48 43 57 48 4217 42 32 30 60 52 31 40 57 36 100

29 | 3818 35484813 20 36 33 40 50 42 30 27 50 42 43 36 43 44 53 53 45 16 42 50 29 57 100
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51 8132216 811502221251017332325292215 72726 9 8412125161617193318313826142124183021101617 818254317 33100
52 | 222520 222217 47 40 38 35 31 25 35 32 47 48 20 53 30 53 38 25 21 27 29 35 22 22 35 29 35 27 32 32 25 29 38 22 27 30 19 29 22 25 33 27 47 7547 35 38 100
53 8142317171143232235212735322630312415193618 83622 26 17 25 26 20 26 2940 24 27 302226 10 23 15 30 26 18 17 1917 27 17 4374 20 100

12346678 91011121314151617 181920212223 24 252627 28 2930 31 3233 34 35 36 37 38 3940 41 4243 44 465 46 47 48 49 50 51 52 53

FIG. 4. Similarities (percent) of 53 representative REDP of 95 V. vulnificus isolates generated with Srfl and calculated with Dice’s index.

oyster II, 42 isolates; and oyster III, 40 isolates) were obtained
from a 0.5-g sample of each oyster.

A five-tube most-probable-number technique using alkaline
peptone water enrichment (28) was also employed to deter-
mine the number of V. vulnificus organisms in each of the
oyster homogenates. The alkaline peptone water was inocu-
lated with 1.0 ml of the appropriate dilution and incubated for
16 h at 35°C. Turbid alkaline peptone water tubes were
streaked on modified colistin-polymyxin B-cellobiose. Two V.
vulnificus-like colonies were picked from each plate, and their
identities were confirmed by ELISA.

For analysis by CHEF, a single colony of each isolate was
inoculated into 10 ml of Trypticase soy broth supplemented
with 1% NaCl and incubated for 5 h at 37°C. Cells were
harvested, washed, and suspended in agarose plugs as previ-
ously described (3). The agarose plugs were incubated for up
to 48 h in a proteinase K solution (EM Science, Cherry Hill,
N.J.; 2 mg/ml in 0.5 M EDTA and 0.5% N-lauryl sarcosine;
Sigma Chemical Co., St. Louis, Mo.) at 50°C. The plugs were

then treated with phenylmethylsulfonyl fluoride (Sigma) and
washed with 0.1 M Tris-0.1 M EDTA buffer. The genomic
DNA embedded within the agarose plugs was digested with
restriction endonucleases obtained from New England Biolabs
(Beverly, Mass.), Stratagene (La Jolla, Calif.), or Promega
(Madison, Wis.), as recommended by the manufacturer. High-
molecular-weight restriction fragments were resolved by a
CHEF (CHEF-DR II; Bio-Rad Laboratories, Richmond, Ca-
lif.) pulsed-field system with 1.0% electrophoresis-grade aga-
rose (GIBCO-Bethesda Research Laboratories, Gaithersburg,
Md.). An electrophoretic regimen of 200 V for 24 h at a
temperature of 18°C and a switching time from 1 to 40 s (SfiI)
or 20 to 90 s (SrfI) were employed to fractionate fragments. As
DNA size standards, a low-range lambda (New England Bio-
labs) and lambda concatemers (Promega) were used. In addi-
tion, V. vulnificus FRIK 232 (Food Research Institute—Kaspar
culture collection strain 232), isolated from oyster I, was in-
cluded on each gel as a standard profile for gel-to-gel compar-
isons and alignment. Furthermore, at least two common strains
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PRINCIPAL COMPONENT 1

FIG. 5. Plot of the first and the second principal components obtained by principal-component analysis of Dice similarity data of 53 representative Srfl REDP of
95 V. vulnificus isolates. REDP numbers correspond with numbers given in Fig. 3 and 4. REDP were from strains isolated from oyster I (OJ), oyster II (O), and oyster

III ().

on each gel were overlapped to normalize band positions on
gels. The gels were stained in ethidium bromide (Sigma) solu-
tion and photographed under short-wave UV light.

The genomic patterns of all strains were visually compared,
and the presence or absence of bands was recorded in binary
scores for calculating similarity indices and diagraming restric-
tion endonuclease digestion profiles (REDP) by using a com-
puter program for managing electrophoresis banding patterns,
ELBAMAP 2.2 (12). The program plots REDP on the basis of
the entered database in which the highest- and lowest-molec-
ular-weight bands set the limits for plotting. In addition, a
similarity index was calculated from the REDP patterns by
pairwise comparisons. The similarities of the profiles were
calculated by using Dice’s coincidence index (5): DNA finger-
print similarity for strains x and y (S,,) is the number of com-
mon bands in their DNA profiles (n,, ) divided by the average
number of bands exhibited by both strains [Sy = 2n,/(n, +
n)].

yTo more clearly visualize genomic relationships among the
V. vulnificus strains, principal-component analysis of the simi-

larity coefficients was performed by using the Statistical Anal-
ysis System (SAS Institute, Cary, N.C.), essentially as described
by Chen et al. (4).

A total of 118 V. vulnificus isolates from three oysters was
examined. The most probable number for each oyster was
310/g for oyster I, 220/g for oyster 11, and 3,300/g for oyster III.
DNA from V. vulnificus isolates was subjected to CHEF gel
electrophoresis after digestion with restriction endonucleases
possessing 8-base recognition sequences (Notl, Sfil, Ascl, and
SrfI) or 6-pair recognition sequences (Smal, Apal, and Xbal)
that are likely rare in bacterial genomes (14) having GC con-
tents of 46 to 48%, as does the V. vulnificus genome (1).
Among the enzymes tested, Sfil (GGCCNNNNNGGCC) and
Srfl1 (GCCCGGGC) were selected because they generated the
most appropriate number and best distribution of restriction
fragments in V. vulnificus. Sfil and Srfl digests yielded up to 28
and 14 visible bands, respectively (Fig. 1 and 2).

CHEEF gel electrophoresis was a highly discriminatory and
reproducible method for V. vulnificus; however, the DNA of
some of the isolates consistently produced smears when exam-
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ined by CHEF, and no REDP could be determined (Fig. 2,
lanes E, G, and O). Although the utmost care was taken in
DNA preparation, 23 (19.5%) of the 118 isolates could not be
typed in repeated (up to seven times) trials. The degradation of
DNA might have been caused by nucleases or other properties
specific to these strains. Further studies to overcome this prob-
lem are underway. The analysis of the 118 isolates resulted in
95 typeable isolates which could be divided into 60 different
REDP types with Sfil and 53 different REDP types with Srfl.
Thirty-six isolates (five nontypeable) from oyster I yielded 12
different REDP with Sfil and 11 REDP with Srfl. Forty-two
isolates (12 nontypeable) from oyster II yielded 28 and 24
REDP, and 40 V. vulnificus isolates (6 nontypeable) from oys-
ter III yielded 19 and 20 REDP with Sfil and Srf1, respectively.
No REDP was common among isolates from the three oysters.
On the basis of the test of undiscovered proportion (singletons
divided by sample size), the upper limits of different strains per
oyster could be 660 (Sfil) or 600 (S7f1) for oyster I, 660 (Sfil) or
570 (SH1) for oyster II, and 940 (SfiI) or 1,000 (SrfI) for oyster
III.

Visual comparisons of Sfil and Srfl gels revealed that no
specific grouping of strains was possible. For more precise
comparisons, a computer program for managing banding pat-
terns was applied to Srfl genomic patterns. SrfI REDP were
selected for this analysis because the average number of bands
was relatively small and easy to manage (Fig. 3). To define
genetic relatedness among strains, similarity matrices were cal-
culated (Fig. 4) by pairwise comparison of the REDP data
from V. vulnificus strains representing the 53 Srfl REDP with
the Dice coincidence index. The results showed that the profile
similarities ranged from 7 to 93% for all the REDP analyzed.
The REDP similarities were 10 to 57% for strains isolated
from oyster I, 8 to 71% for strains isolated from oyster II, and
between 7 and 93% for strains isolated from oyster III. The
strains isolated from one oyster did not show higher similarity
indices than the strains isolated from different oysters. Only
0.7% of the Dice coincidence indices was between 70 and 93%.
For example, profiles 36 and 37 had a similarity of 93%, and
REDP 12 and 13 had a Dice coefficient of 84%. Eighty-nine
percent of the similarity coefficients were 50% or less (Fig.
4).

In addition, principal component analysis for detection of
strain clusters was conducted. The first component of the prin-
cipal-component analysis accounted for 23% and the second
component accounted for 15% of the total variance (Fig. 5).
The observation that the first two principal components ac-
count for only 38% of the total variance indicates the hetero-
geneity within the REDP. Again, no specific clustering of
strains was detected. Also, strains from an individual oyster did
not cluster (Fig. 5).

These data indicate that great genomic diversity exists
among V. vulnificus organisms in individual oysters. These re-
sults support two hypotheses related to human V. vulnificus
infections: (i) infections are caused by mixed populations of V.
vulnificus, or (ii) only a few of these different V. vulnificus
strains are pathogenic. Further studies to determine whether a
correlation exists between certain profiles and strain virulence
are underway.

These results further emphasize the need for refined molec-
ular typing methods in epidemiological and ecological investi-
gations of phenotypically similar V. vulnificus strains and for
implicating a specific source in infections.
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