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Alkalophilic Bacillus sp. Strain LG12 Has a Series of
Serine Protease Genes
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Four tandem subtilisin-like protease genes were found on a 6,854-bp DNA fragment cloned from the
alkalophilic Bacillus sp. strain LG12. The two downstream genes (sprC and sprD) appear to be transcribed
independently, while the two upstream genes (sprA and sprB) seem to be part of the same transcript.

Bacteria isolated from alkalophilic and/or thermophilic en-
vironments may produce subtilisins with the characteristics
needed in commercial applications (11, 14, 16, 18, 30, 33). In
addition, these enzymes may provide sequence and biochemi-
cal information helpful in the design of new subtilisins (5, 8, 13,
17, 27, 34). To this end, we have cloned and sequenced a series
of protease genes from Bacillus sp. strain LG1Z.
Cloning of the protease genes. An alkalophilic Bacillus sp.

strain, LG12, was isolated from an alkaline creek bed and
grown in Luria-Bertani medium with the pH adjusted to 8.5.
This organism was found to produce at least two different
alkaline proteases. Purified chromosomal DNA from Bacillus
sp. strain LG12, digested with restriction enzymes (Boehringer
Mannheim), was fractionated on 0.8% agarose gels and South-
ern blotted (29) on Nytran filters (Schleicher & Schuell). The
nick-translated (24) subtilisin BPN9 gene from Bacillus
amyloliquefaciens (35) was used as a probe. Chromosomal
DNA fragments of ca. 1 kilobase pair (kb) from a HindIII
digest were cloned into pBR322 (2) and used to transform
Escherichia coli MM294 (12), and colony hybridization was
used to detect positive clones (9). The nucleotide sequence
(25) of a 990-bp DNA insert from a positive clone was homol-
ogous to the 39 portion of the subtilisin BPN9 gene. A ca. 6-kb
BglII fragment was cloned and sequenced in order to obtain
the remaining upstream sequences of the protease gene. Three
additional subtilisin-like protease genes were discovered on
this fragment.

The protease genes. The four open reading frames coding
for subtilisin-like serine proteases have been designated sprA,
sprB, sprC, and sprD (Fig. 1). The upstream portion of the sprA
gene, coding for presumably the first 70 or so amino acids, is
missing on the cloned BglII fragment. Another downstream
open reading frame (ORF) may exist, but there is not enough
sequence on the cloned fragment to determine if it codes for
an additional protease.
The nucleotide sequence of the cloned region is shown in

Fig. 2. Inverted repeat sequences, consistent with known rho-
independent terminators (22), were found immediately down-
stream of the sprB, sprC, and sprD genes. Additional inverted
repeats were also found upstream of the sprC, sprD, and ORF
genes and may have regulatory functions. Putative promoter
sites, 210 and 235 regions (Fig. 2), were discovered upstream
of the sprC, sprD, and ORF genes by comparison with pro-
moter consensus sequences typical of B. subtilis sA recognition
sequences (19).
Possible translational start sites are shown in Fig. 2 for the

sprB, sprC, sprD, and ORF genes. The sprC coding region starts
with GUG rather than AUG, which is not unusual for Bacillus
subtilis genes (32). Two potential translational start sites were
found for the sprB gene (Fig. 2); one 27 nucleotides down-
stream of the putative sprA termination codon with a recog-
nizable ribosome binding site (RBS) (32), and the other nine
nucleotides downstream without a discernible RBS (Fig. 2).
Since there is such a small distance between the sprA and sprB

genes and there are not obvious transcriptional start or termi-
nation signals, it seems likely that they are part of the same
transcript. If this is the case, then the two genes might be
translationally coupled, avoiding the need for a good RBS (32).
Generally, the codon usage for the four protease genes from

Bacillus sp. strain LG12 (not shown), as in B. subtilis (26),
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FIG. 1. Restriction endonuclease map of the DNA fragment carrying the four serine protease genes cloned from Bacillus sp. strain LG12. E, putative terminator;
ã, promoter.
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FIG. 2. Nucleotide sequence of the 6,854-bp DNA fragment containing the four spr genes (shown schematically in Fig. 1). The putative start and stop codons for
the genes are underlined, and potential RBSs are labelled. Putative 210 and 235 promoter regions are indicated. Inverted repeats (. ,) that could function as
rho-independent terminators are labelled (Term). The beginning of another possible ORF is shown.
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favors codons with A or T in the third position (an exception is
TCC). This reflects the overall G1C content of 44%, which is
consistent with a number of Bacillus species (23). Unlike in B.
subtilis and Escherichia coli, there does not seem to be a strong
preference against ATA as an isoleucine codon. Like the other
members of the subtilisin family (4), all four of these genes use
TCN as the codon for the active-site serine.
Finding a series of four subtilisin-like protease genes was

surprising since in B. subtilis the protease genes map to very
different loci on the chromosome (21). Tandem gene duplica-
tions can arise by homologous recombination of repeated se-
quences (15), and chromosomal amplifications of antibiotic
genes can be induced in B. subtilis by increasing the selective
pressure (1, 37). However, no obvious repeated sequences,
indicative of previous recombination events, were found in the
sequenced region.
Protease expression. For protease production, the sprC and

sprD genes were cloned in the replicating vector pBN2, a hy-
brid plasmid of pUC18 (36) and pUB110 (10), as ca. 1.7-kb
XbaI-HpaI and ca. 2.5-kb HindIII-XmaI fragments, respec-
tively (Fig. 1). Both the genes were expressed in B. subtilis
BG2036 (Dnpr Dapr) utilizing their own intrinsic transcrip-
tional and translational signals. Protease activity was detected
by the formation of clearing zones around colonies on skim milk
plates and assayed by using the synthetic substrate N-succinyl–
L-Ala–L-Ala–L-Pro–L-Phe–p-nitroanilide (6) (data not shown).
Protease sequence features. The predicted protein se-

quences of SprB, SprC, and SprD have typical signal sequences
indicative of secreted proteins (20), although the precise signal
peptidase cleavage sites have yet to be located (Fig. 3). All four
proteases appear to have propeptides (20), with the promature

junction in SprC and SprD most likely identical to that of
subtilisin BPN9 (35). The SprA and SprB junctions are also
likely to be near this region (Fig. 3), but as yet the N-terminal
sequences of the mature proteases have not been determined.
The propeptides of SprB, SprC, and SprD are not as highly

charged as other subtilisins (17 charged residues for SprD
versus 25 for BPN9). It has been suggested that propeptides
with a large net negative charge are indicative of subtilisins
from alkalophilic Bacillus species (31), and although the
propeptides of SprB, SprC, and SprDdo have predicted net negative
charges, the values are not very large (the most negative is24).
The predicted SprC and SprD mature proteases are closely

related to subtilisin BPN9 (Table 1). However, the SprA and
SprB proteases are not as closely related to BPN9 and also are
not as similar (,40% identity) to other subtilisins, including
the minor extracellular proteases, Epr, Bpr, and Vpr, from B.
subtilis (21). SprB has a long C-terminal extension of over 350
amino acids (Fig. 3) like Epr, Bpr, and Vpr, but there does not
appear to be any homology among the sequences of the C-
terminal extensions. The function of C-terminal extensions is

FIG. 3. Computer-generated (pileup program, Genetics Computer Group) amino acid sequence alignment of the Spr proteins, with the subtilisin BPN9 sequence
added for comparison. Numbering is based on the BPN9 sequence (35). Putative signal sequences at the beginning of the Spr proteases are underlined. The amino acid
sequence in the C-terminal extension of SprB having homology to the S-layer-like repeat sequences in the cellulosome from C. thermocellum (7) is also underlined.
The catalytic aspartate, histidine, and serine residues are indicated (z).

TABLE 1. Percent identities among mature protease sequences

Protease
% Identity with protease

BPN9 SprA SprB SprC

SprA 32
SprB 40 69
SprC 65 34 36
SprD 65 32 37 77
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unknown, but in the case of Vpr the extension may function as
a membrane anchor (28). SprB may also be associated with the
cell surface, since there is some sequence homology (ca. 35%
identity in a 43-amino-acid sequence) in the C-terminal exten-
sion (Fig. 3) to that of the S-layer-like repeat sequences in the
cellulosome from Clostridium thermocellum (7).
Besides the catalytic triad (D32, H64, and S221) and oxya-

nion-binding residue (N155), SprA, SprB, SprC, and SprD
have additional amino acids reported to be highly conserved in
subtilisins (G23, G34, H39, G65, T66, G70, G83, S125, G127,
G146, G154, G219, T220, and P225) (27). The side chains of
the calcium binding site, Q2, D41, and N77, are conserved in
SprC and SprD. Consistent with the BPN9 structure (27), SprD
would be expected to form the salt bridges K136-D140 and
R170-E195, and both SprC and SprD have the side chains
necessary for a E197-R247 salt bridge.
There are one cysteine in the signal sequence of SprB, one

cysteine in the mature sequence of SprC, and no cysteines in
SprA or SprD. Thus, as in other bacterial subtilisins (27), there
are no internal disulfide bridges in these proteases.
A number of subtilisins from thermophilic and/or alkalo-

philic bacteria have a deletion of four amino acids relative to
BPN9 at the P1 binding site in the region of amino acid 160
(31). However, SprC, SprD, and the alkaline protease from the
thermophilic species Bacillus smithii (18) do not have this de-
letion; in fact, SprD has an insertion of one amino acid at this
site (Fig. 3). Deletion of these four amino acids has been found
to lower the catalytic efficiency of BPN9 (3). The insertions in
SprA and SprB, relative to BPN9 (Fig. 3), are consistent with
the variable regions noted for other subtilisins (27).
Of the amino acid substitutions known to increase the alka-

line activity (change of Y to F at position 104 [Y104F]) or
stability (M50F, I107V, and K213R) of BPN9 (5, 34), only F50
is present in SprC and SprD (Fig. 3). Twenty-nine residues
have been found to be unique in subtilisins isolated from al-
kalophilic bacteria compared with proteases from mesophiles
(30). Of these residues, only six are conserved in both SprC
and SprD (A15, G25, P55, A108, Q109, and R170).
Nucleotide sequence accession number. The GenBank ac-

cession number for the DNA sequence identified in this study
is U39230.
We thank Sienna Yoast for critical reading of the manuscript.
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