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Current estimates of viral abundance in natural waters rely on direct counts of virus-like particles (VLPs),
using either transmission or epifluorescence microscopy. Direct counts of VLPs, while useful in studies of viral
ecology, do not indicate whether the observed VLPs are capable of infection and/or replication. Rapid decay in
bacteriophage viability under environmental conditions has been observed. However, it has not been firmly
established whether there is a corresponding degradation of the virus particles. To address this question,
viable and direct counts were carried out employing two Chesapeake Bay bacteriophages in experimental
microcosms incubated for 56 h at two depths in the York River estuary. Viruses incubated in situ in microcosms
at the surface yielded decay rates in full sunlight of 0.11 and 0.06 h21 for CB 38F and CB 7F, respectively. The
number of infective particles in microcosms in the dark and at a depth of 1 m was not significantly different
from laboratory controls, with decay rates averaging 0.052 h21 for CB 38F and 0.037 h21 for CB 7F. Direct
counts of bacteriophages decreased in the estuarine microcosms, albeit only at a rate of 0.028 h21, and were
independent of treatment. Destruction of virus particles is concluded to be a process separate from loss of
infectivity. It is also concluded that strong sunlight affects the viability of bacteriophages in surface waters, with
the result that direct counts of VLPs overestimate the number of bacteriophage capable of both infection and
replication. However, in deeper waters, where solar radiation is not a significant factor, direct counts should
more accurately estimate numbers of viable bacteriophage.

Viruses are now widely recognized as the most abundant
member of aquatic planktonic communities. Recognition of an
abundant viroplankton community was made possible through
the use of the transmission electron microscope (TEM). Elec-
tron microscopy for direct examination of aquatic microbial
communities (33, 41) or specific marine bacteriophages (42,
43) has been used for some time. However, quantitative use of
TEM for the purpose of obtaining total (direct) counts of
viruses in natural water samples is a relatively recent develop-
ment (1). Through utilization of this technique, it is now known
that numbers of viruses in natural waters can range from 104 to
108 virus-like particles per ml and are typically 3 to 10 times
greater than numbers of bacteria (1, 31, 48). Enumeration of
viruses in natural waters has also been accomplished by epi-
fluorescence microscopy (11, 14) and pulsed-field gel electro-
phoresis (19). TEM has been widely used and has the impor-
tant advantage of yielding useful morphological information
(5, 9, 36, 48).
By direct enumeration, without prefiltration of natural water

samples, it was shown that viral abundance can change over
very short time scales, e.g., during spring phytoplankton
blooms (5), over longer-term seasonal scales in estuarine (48)
and marine (17) waters, spatially along coastal to offshore
transects (7, 31), and along a trophic gradient in the northern
Adriatic Sea (45). In each study, viral numbers exceeded bac-
terial numbers by a factor of at least 3 and usually by a factor
of 10. With the recognition that large dynamic populations of
marine viruses are present in seawater, research on marine
viral ecology has begun to focus on the capacity of bacterio-
phages to limit bacterial productivity and to investigate mech-
anisms for maintaining large aquatic viral communities and

analyze the composition and stability of natural viroplankton
communities (see reference 10 for a review).
Questions concerning the ecological role of viruses in mi-

crobial communities have prompted a resurgence of interest in
the persistence of free viruses in marine waters. Traditionally,
due to public health concerns about the safety of recreational
and drinking waters, research on the fate of viruses in natural
waters has focused directly on enteroviruses or on coliphages,
which are routinely used as indicators of enteroviral pollution.
In these studies, experimental treatments have concentrated
on chemical or biological virus-inactivating agents. Possible
chemical inactivating agents examined have been salinity (21,
23, 49), sewage pollution (2, 44), filtrates of bacterial cultures
(40), and the presence of proteins and amino acids (22). Stud-
ies on biological inactivating agents have focused on the pres-
ence of specific bacteria or the natural bacterial community (6,
24, 26, 32, 39) or lysates of bacterial cultures (23). From these
studies the most significant factor associated with inactivation
of viruses in water is the presence of a natural bacterial com-
munity. The effect of bacteria on numbers of viruses has been
shown to be offset by the protective effect of viral adsorption to
sediment and particulates suspended in the water column (3, 4,
13, 20, 34). Even heat- or UV-killed bacterial cells can protect
viruses through adsorption (25).
In a comprehensive review of viral inactivation in seawater,

Kapuscinski and Mitchell (18) concluded that the level of solar
radiation penetrating surface waters is not important in the
degradation of enteric viruses discharged into natural waters.
In more recent studies, utilizing various indigenous marine
bacteriophages (37, 39), cyanophage (37), and a virus of Mi-
cromonas pusilla, a cosmopolitan marine phytoplankter (8),
Suttle and coworkers have examined several processes impli-
cated in the loss of infectivity of viruses in seawater. In all
studies sunlight was determined to be the dominant factor
controlling decay of viral infectivity in seawater. In light of the
conclusion by Kapuscinski and Mitchell (18), the discovery of
sunlight as a major factor in the decay of viruses in natural
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waters has been innovational (10, 38, 39). To evaluate the
effects of solar radiation on survival of viruses in surface wa-
ters, in situ effects of natural sunlight on infectivity and de-
struction of viral capsids of two estuarine bacteriophages were
examined.

MATERIALS AND METHODS
Phage host systems and preparation of bacteriophage stocks. Isolation, prop-

agation, and characteristics of the two phage host systems used in this study, CB
7 and CB 38, are described elsewhere (46, 47). Previous examination of the
carbon substrate utilization profiles of phage hosts CB 38 and CB 7, using the
Biolog system (Biolog, Hayward, Calif.), revealed that CB 38 had a weak identity
to Flavobacterium meningosepticum, while host CB 7 showed no significant rela-
tionship to any strains in the Biolog database (47). Upon retesting, with an
updated version of the Biolog database, both bacterial hosts were judged most
closely related to Aeromonas DNA group 11 (16) strains, with identities of 88%
(host CB 7) and 52% (host CB 38).
Bacteriophage were purified by elution from soft agar overlays, using sterile

four-salts buffer (1% NaCl, 3.8 mMCaCl2, 3.8 mMKCl, 18 mMMgSO4 z 7H2O).
The soft agar was separated from the phage-containing buffer by centrifugation
(3,000 rpm, 1 h), filtered through a 0.22-mm-pore-size Sterivex syringe filter
(Millipore, Bedford, Mass.), and dialyzed against sterile four-salts buffer at 48C.
The titer of the final dialyzed phage solution was determined by plaque assay,
and the solution was stored at 48C.
Preparation of estuarine microcosms and experimental conditions. Experi-

mental microcosms consisted of small (9 by 3 cm) plastic bags prepared by
sealing two sheets of plastic, Cultu-Sac (Becton-Dickenson, Baltimore, Md.)
(27), with a heat sealer. The percentages of light transmitted by the plastic film
for the following ranges of wavelengths are given in parentheses: UV-C, 200 to
290 nm (3 to 23%); UV-B, 290 to 320 nm (23 to 26%); UV-A, 320 to 400 nm (26
to 32%); and photosynthetically active radiation (PAR), 400 to 700 nm (32 to
55%). Each bag was filled with 15 ml of filtered (0.22-mm-pore-size filter) 15‰
artificial seawater containing 107 PFU of either CB 38F or CB 7F ml21. Once
filled, the bags were heat sealed so that no air bubbles were trapped in the
microcosm. At the beginning of the experiment, microcosms were attached
horizontally with rubber bands to an experimental apparatus which held the bags
at either the surface or a depth of 1 m in the York River estuary off the Virginia
Institute of Marine Science pier (378159150 N, 768309000 W). To achieve dark
incubation, microcosms were covered with black plastic. Microcosms were incu-
bated at the surface, light and dark; and at 1 m, light and dark. There was a
laboratory control incubated in the dark at 188C. Replicate samples for each
treatment were collected at selected times to 56 h. Data on total PAR were taken
from daily climate records kept at the Virginia Institute of Marine Science. PAR
was measured with an Epply model PSP Precision Spectral Pyranometer at 6-min
intervals. Available PAR in the water column was measured at noon and 1600 h
daily, using a submersible Li-Cor quantum sensor, model LI-192S (Li-Cor, Inc.,
Lincoln, Neb.).
Bacteriophage counts of estuarine microcosms. At selected intervals, two

replicate bags were collected and transported to the laboratory for processing.
Each bag was wiped with 80% ethanol and aseptically opened. Two milliliters of
the phage suspension was taken from each bag for plaque assay, and the remain-
ing 13 ml was fixed with glutaraldehyde (2% [wt/vol] final concentration) and
stored at 48C. Direct phage counts of the glutaraldehyde-fixed water samples was
done with a TEM (47).
The titers of viable bacteriophages in the microcosms were determined from

the number of PFU in microcosm samples. Host cells were prepared by inocu-
lating 50 ml of LBES broth (45) with a bacterial host picked from an LBES agar
plate with a sterile loop. Broth cultures were grown overnight at 258C with
shaking (250 rpm). For determining titers, 100 ml of phage suspension was added
to 100 ml of susceptible host cells in a 13-ml disposable culture tube. The mixture
was incubated at 258C in the dark for 30 min. After the attachment period, 3 ml
of molten (45 to 478C) LBES agar (0.6% agar) was added to the phage-host
mixture, the tube was vortexed, and the contents were poured onto a solid LBES
agar plate. Plaques were counted after incubation for 16 to 24 h at 258C. For CB
7F, plating efficiency had been determined to be maximum on exponential
growth stage cells (46); therefore, a 1:100 dilution of overnight cells was added
to 50 ml of fresh LBES broth, and the mixture was incubated for 4 to 5 h prior
to determination of titers. Viable counts of CB 38F were obtained with cells
from a culture inoculated overnight.

RESULTS AND DISCUSSION
Bacteriophage viability. Experiments were conducted over a

56-h period from 0800 h on 17 October 1994 to 1600 h on 19
October 1994. The water temperature was 188C, and weather
conditions were clear and sunny on 17 and 18 October with
noon irradiance values of 720 and 690 W m22, respectively. On
19 October, conditions were partly sunny and noon irradiance

was 380 W m22, with high cirrus clouds. Sunlight conditions
are shown in Fig. 1A and B in which solar data have been
provided along with corresponding plaque count data. Atten-
uation of PAR through the water column was measured at
noon on 18 and 19 October. Light levels at 1-m depth were 10
and 38% of surface sunlight, respectively, on those days.
Viable phage counts declined with time in all experimental

treatments (Fig. 1). Analysis of variance indicated that both
treatment and time elapsed had a significant effect on viable
counts of CB 38F and CB 7F in estuarine microcosms (P ,
0.01). The combined effect of treatment and time elapsed had
a significant effect only on viable counts of CB 7F (P , 0.05).
Retesting of the effects of treatment and time elapsed after
removal of viable counts from the surface light treatment
showed a significant effect of time elapsed (P , 0.01), indicat-
ing that compared with results for the laboratory control, only
the surface light treatment had a significant effect on the viable
counts of both CB 38F and CB 7F in the estuarine micro-
cosms.

FIG. 1. Viable counts of CB 38F (A) and CB 7F (B) in microcosms in full
sunlight at the surface (E) and at 1 m (h); in the dark at the surface (F) and at
1 m (■); and of a laboratory control (ç). Irradiance data (shaded) have been
superimposed over viable count data. Error bars are standard errors of duplicate
determinations.
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Examination of the surface light treatment alone indicated
that viable counts of CB 38F and CB 7F in the microcosms
were significantly different from one another (P , 0.01), while
initial concentrations of viable CB 38F and CB 7F were iden-
tical (P . 0.01). The differential responses of CB 38F and CB
7F to surface light were evident by comparison of their decay
rates (see Table 2). The decline in viable count of CB 38F was
greater than that of CB 7F (P , 0.05). Comparisons of exper-
imental treatments indicated that the decline in viable count
was most rapid for the surface light treatment (P , 0.01),
whereas decay rates from dark and control treatments were
identical (P . 0.01).
Virus particle persistence. Direct counts of virus particles in

estuarine microcosms were conducted at five of the eight time
points of the experiment. Summary data of direct counts of CB
38F and CB7F phage particles are given in Table 1. Direct
counts of CB 38F and CB 7F declined over the course of the
experiment. This decline can be entirely attributed to the sin-
gular effect of time elapsed (P, 0.001). Neither treatment nor
the combined effect of treatment and time had a significant
effect on the loss of phage particles (P . 0.05).
Direct counts of viruses in water have been made by most

investigators by counting virus-like particles, using a TEM,
sedimented via ultracentrifugation onto an electron micros-
copy grid. In order to test if sampling error contributes signif-
icantly to experimental error estimated from replicate micro-
cosms, replicate electron microscopy grids were placed at the
bottom of the ultracentrifuge tube. It is important to note that
electron microscope grids were placed at nearly the same dis-
tances relative to the center of the centrifuge tube. This avoids
possible sampling errors due to the taper effect, which causes
greater deposition of viruses at the edges of the centrifuge tube
(35). No significant difference was observed in direct counts of
CB 38F or CB 7F obtained from replicate grids (P . 0.05).
However, in the case of CB 38F, mean squares obtained in
analysis of variance test results indicated that precision was
gained through the counting of replicate grids for a single
water sample.
Phage viability and virus particle counts. Direct counts of

virus-like particles were greater than or equal to the corre-
sponding viable count (P, 0.001) (Fig. 2). Direct counts were,
with the exception of those obtained at time zero, significantly
greater than corresponding viable counts for microcosms in-
cubated at the surface and in the light. The difference between
decrease in numbers of the viral capsids and loss of infectivity

was demonstrated also by the difference between the loss rates
of phage viability and virions (Table 2). For CB 38F, the decay
rate of infectivity was significantly greater than the loss of virus
particles for each treatment (P , 0.001). For CB 7F, only the
surface light treatment caused a significantly greater rate of
decay of phage infectivity than loss of virus particles (P ,
0.001).
Previous studies with radiolabeled enteroviruses have exam-

ined destruction of viral particles and loss of infectivity. De-
struction of viruses in experimental microcosms has been in-
ferred from loss of radiolabel within the virus fraction (29, 44).
From these studies, it was concluded that inactivation of en-
teroviruses coincides with the cleavage or damage of viral
RNA. With this approach, neither study could implicate the
destruction of virus particles in the decay process.
Rates of decline in the number of phage particles ranged

from 0.016 to 0.031 h21, with an average value of 0.028 h21,
and were statistically identical regardless of experimental treat-
ment (Table 2). This range compares well with results of other

FIG. 2. Viable (E) and direct counts (bars) of CB 38F (A) and CB 7F (B)
in estuarine microcosms exposed only to surface light conditions. Error bars are
standard errors of duplicate determinations.

TABLE 1. Direct counts of CB 38F and CB 7F for
each microcosm

Phage Time (h)

Counts (106) ml21 6 SDa

Control Surface
light

Surface
dark 1 m dark

CB 38F 0 35 6 5.1
2 NDb ND ND 45 6 5.8
12 46 6 6.3 17 6 5.4 14 6 6.3 15 6 6.3
34 12 6 6.3 6.2 6 5.0 7.1 6 6.3 17 6 5.2
56 7.4 6 5.1 8.4 6 5.1 7.4 6 5.2 8.9 6 8.0

CB 7F 0 51 6 4.6
2 ND ND ND 84 6 8.7
12 42 6 3.9 40 6 4.9 33 6 4.5 35 6 3.1
34 6.7 6 1.0 12.8 6 0.9 17 6 2.8 37 6 3.0
56 6.0 6 0.4 9.4 6 0.8 9.9 6 1.3 15 6 1.6

a Standard deviations of duplicate determinations are given.
b ND, not determined.
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studies done to examine reduction in phage viability in the
absence of sunlight. Suttle and Chen (39) found that without
sunlight the range of decay rates for viable phage counts of two
marine bacteriophages tested was 0.008 to 0.028 h21. Similarly,
in studies examining viral inactivation using coliphages, re-
ported ranges of phage decay under no-sunlight conditions
have been 0.01 to 0.086 h21 for bacteriophage T2 (2, 12) and
0.01 to 0.03 h21 for T7 (4). The close correlation of loss rates
of CB 38F and CB 7F phage particles in experimental micro-
cosms and decay rates of infectivity for coliphages and other
marine bacteriophages suggests that similar processes are re-
sponsible for the loss of infectivity and destruction of virus
particles in the absence of sunlight. Further evidence is
achieved by comparison of average direct counts from all treat-
ments, except the surface light treatment, and average viable
counts (Fig. 3). At low levels of sunlight or no sunlight, direct
and viable counts were in close agreement. This observation
indicates that in the absence of strong sunlight direct counts
more closely estimate the actual number of infective viruses in
natural waters.
Using an in situ experimental approach, Heldal and Bratbak

(15) monitored viral abundance in bottle incubations of coastal
seawater which had been treated with cellular poisons to halt
virus production. This approach allowed assessment of viral
decay through changes in direct counts of virus-like particles.
From these experiments an average viral loss rate of 0.5 h21,
with a high value of 1.1 h21, was detected (15). These loss rates
are 18 to 39 times the loss rates of CB 38F and CB 7F phage
particles in estuarine microcosms and are generally inconsis-
tent with those observed in other studies of marine viruses (10,
39). The large discrepancy between our observed rates of loss
of phage particles and those of Heldal and Bratbak (15) could
be a result of differences in experimental approach. It is pos-
sible that through the use of artificial seawater and controlled
experimental conditions we have eliminated other factors re-
sponsible for the destruction of virus particles in natural wa-
ters. Despite the disparity of actual rates, both studies demon-
strate that virus particles are labile in natural waters.
Suttle and coworkers (38) incubated suspensions of a natural

bacteriophage isolate, LB1VL (39), in UV transparent bags.
After a 12-h incubation at various depths, direct and viable
counts of LB1VL in the experimental microcosms were as-
sayed. As in the present study, viable counts declined much
faster than direct counts at each treatment depth. However,
from the data presented, reductions in direct counts were in-
versely related to in situ incubation depth (vis-à-vis sunlight
levels) of the microcosm. Although no statistical analysis was
performed, it appears that the level of sunlight had an effect on
the loss (destruction) of LB1VL virions in experimental mi-
crocosms (38). In the present study, low levels (ca. 25 to 55%

of ambient) of sunlight appeared to have no significant effect
on the loss of virus particles, suggesting that natural destruc-
tion of CB 38F and CB 7F viral capsids occurs through other
mechanisms.
By demonstrating a strong effect of sunlight on the survival

of bacteriophage in water, we support the contention of Suttle
and Chen (39) that natural solar radiation is the principal
factor responsible for the decay of viral infectivity in surface
waters. In an extensive study involving 10 marine bacterio-
phage host systems, Moebus (26) found no appreciable effects
of sunlight on loss of phage infectivity. However, in his exper-
imental system, phage suspensions were incubated in glass
containers not transparent to UV-B, the most biologically
damaging wavelengths of solar radiation (30, 39). In examining
survival of coliphage T2 in seawater, Berry and Norton (2)
found that sunlight enhanced phage decay; however, because
phage suspensions were held in dialysis bags and incubated
directly in situ in coastal waters, the authors could not separate
the effect of sunlight from possible effects of dialyzable viru-
cidal substances in seawater. Use of dialysis bags to assay the in
situ effects of the chemical environment on virus suspensions is
also problematic as the cellulose dialysis membrane can pro-
mote bacterial growth, thus altering diffusion through the
membrane (18).
Despite attenuation from the plastic film, the strong effect of

sunlight on viral decay, even at low levels of UV-B, is clearly
shown. In a theoretical model simulating the interaction of UV
and virus survival in seawater, Murray and Jackson (28) pro-
pose a range of decay rates for viruses from sensitive (4.6 h21)
to tolerant (#0.51 h21). The few marine bacteriophages stud-
ied to date have all been sunlight tolerant. In their experiments
utilizing a natural marine phage host system, PWH3a-P1,
Suttle and Chen (39) found decay rates of infectivity in full
sunlight of 0.4 to 0.8 h21. These rates are 3.5 to 7 times greater
than our fastest decay rate of 0.11 h21 for CB 38F in the
surface light treatment; however, our rates compare well with
the decay rate of 0.17 h21 for PWH3a-P1 found in the absence
of UV-B (39) and compiled from sunlight decay data on five
different marine viruses (37). Multiplying the decay rates of CB
38F and CB 7F by a factor of 4 to account for UV-B absor-
bance by the plastic film would give rates of 0.44 and 0.25 h21,
respectively. These adjusted rates are probably a closer esti-
mate of the actual sensitivities of CB 38F and CB 7F to solar
radiation and demonstrate that the sunlight tolerance of CB
38F and CB 7F falls between that of PWH3a-P1 at ca. 0.6 h21

(39) and that of the extremely tolerant North Sea bacterio-
phage H40/1 (9), with a full-sunlight decay rate of 0.05 to 0.11
h21 (10).
As data on the sunlight-mediated decay of specific marine

viruses have become available, it is increasingly evident that

TABLE 2. Decay rates of viable and direct counts of CB 38F and CB 7F in estuarine microcosms

Phage Counting method
Decay rate (1022 h21 6 SD) for each treatmenta

Surface light Surface dark 1 m light 1 m dark Control

CB 38F Viable countb 211.4 6 0.02 25.1 6 0.34 24.2 6 3.4 25.3 6 0.0 26.1 6 1.1
Direct countc 22.6 6 0.1 22.8 6 0.1 NDd 22.7 6 0.3 22.6 6 0.9

CB 7F Viable count 26.3 6 0.42 23.8 6 0.13 22.8 6 0.44 23.3 6 0.2 24.8 6 0.42
Direct count 23.1 6 0.54 22.9 6 0.17 ND 21.6 6 0.9 23.8 6 0.7

a Decay rates were determined according to the following formula: (lnCt 2 lnC0)/t, where Ct is the cell concentration at time t; C0 is the cell concentration at time
0; and t is the number of hours elapsed between Ct and C0. Standard deviations of duplicate determinations are given.
b Determined as PFU per milliliter 6 standard deviation.
c Determined as virus-like particles per milliliter 6 standard deviation.
d ND, not determined.
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within viroplankton communities there may exist a wide range
of susceptibilities to the destructive effects of natural sunlight
on viral infectivity (8, 10). Our study has shown that two ma-
rine bacteriophages having substantially different tolerances to
the effects of sunlight on infectivity have similar rates of de-
struction of viral capsid structure. This suggests that natural
destruction of viral capsids in the aquatic environment may be
more consistent between different viral taxa than is the loss of
viability. A more thorough understanding of the factors re-
sponsible for the loss of virus particles in natural waters will
assist in the interpretation of viral direct counts from natural
water samples.
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