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1. Selection of proteins and interactions 

Protein functional annotations were obtained from the Gene Ontology (GO) 
Consortium (Ashburner et al., 2000). We used both GO terms and GO-Slims in the 
Biological Process ontology. The complete yeast GO annotation as of 05/25/04 was 
obtained by FTP from the Gene Ontology Consortium at 
ftp://ftp.geneontology.org/pub/go/gene-associations/gene_association.sgd.gz. A mapping 
of yeast GO process terms to GO-Slim categories as of 05/18/04 was obtained by FTP 
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from the Saccharomyces Genome Database at ftp://genome-
ftp.stanford.edu/pub/yeast/data_download/literature_curation/. At the time of our 
classification, there were 1,002 Cellular Process GO terms and 33 Cellular Process GO-
Slims annotated to yeast. We used Perl scripts to import, parse and store the annotations 
in a Microsoft SQL Server database. 

 
 Each annotation term for a gene product is accompanied by one or more 
“evidence codes” that indicate the origin of the data supporting the annotation 
(definitions available on the GO website at 
http://www.geneontology.org/GO.evidence.shtml). Annotations evidenced solely by the 
evidence codes “Inferred from Physical Interaction” (IPI) and “Inferred from Genetic 
Interaction” (IGI) were treated separately in order to avoid circularity from overlap with 
interaction data input for this study.  
 

The set of 1,002 terms in the GO yeast cellular process annotation was screened 
to identify 85 terms pertinent to gene expression. These were grouped into nine 
categories corresponding to sub-processes of gene expression (Suppl. Table 1a) using a 
keyword-identification SQL query to search GO term definitions and descriptions. Terms 
specific to PolI or PolIII transcription or to the processing of RNAs other than mRNA 
were excluded. Sub-process #1, transcription initiation, encompassed the most GO terms 
because it included any annotation related to the regulation of transcription (positive or 
negative) and chromatin modification. A tenth category was added for terms related to 
mRNA (such as “mRNA localization”) not directly involved with any of the previously 
defined sub-processes, yielding 107 total terms. An eleventh category was made for terms 
corresponding to all other cellular roles. A twelfth category included the term 
“cellular_process_unknown.”  

 
The set of yeast proteins used in this study was selected to include only those with 

GO-annotated roles in gene expression or their direct interaction partners. First, 980 gene 
products annotated to one of the 85 select GO terms in the Categories #1-10 with an 
evidence code other than IPI/IGI were identified as the core network (Suppl. Table 1a). 
The most numerous group of proteins corresponded to Category #1, because it includes 
all basal transcription factors, transcriptional activators and repressors, and chromatin-
modifying factors. 

 
Second, the network was expanded to include all proteins in Categories #11 and 

#12 (“other cell roles” and “unknown”) shown to interact with one of the core 980 
proteins based on evidence in the interaction database at the Munich Information Center 
for Protein Sequences (MIPS) (Mewes et al., 2002). We did this in order to gain insight 
into the potential gene expression-associated roles of previously uncharacterized ORFs, 
and proteins currently annotated in GO to other cell functions. With similar aim, we 
include proteins regardless of annotated localization in order to enable identification of 
potential shuttling proteins that had not previously been reported in the nucleus.  
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Third, the 267 proteins annotated to Categories #1-10 only by the IPI/IGI 
evidence codes were grouped into a separate category, Category #13, and added to the 
final network to arrive at 2100 members. 
   
Supplementary Table 1. Functional classification of proteins in the network. (a) 
Categories corresponding to sub-processes of gene expression. Shown are the number of 
GO terms mapped to the category and represented by at least one protein in the network, 
and the number of proteins included in the network based on their membership in the 
category. Protein counts total more than 2,100 because some proteins have multiple 
annotations. The GO-term count for Category #11 marked by (*) indicates “other,” non-
gene expression GO term annotations in the yeast proteome and represented among 
proteins in our network, respectively. Categories #1-10 are used for functional 
enrichment calculations shown in Fig. 2a. (b) GO-Slim categories. Shown are the number 
of proteins in the network annotated to each GO-Slim. GO-Slim categories were used to 
evaluate clusters formed when different values of k, RDQ scores, and CC calculations are 
used (see Suppl. 11). 
 
2. Collection of protein interaction data 

Complete yeast protein interaction data were obtained from sources described 
below in more detail. Data from each raw dataset was imported and stored in a SQL 
Server database as a binary list of interacting proteins. SQL queries were used to filter 
each dataset to include only pairwise interactions among our subset of 2,100 proteins. 
Among these 2,100 proteins, 42,666 pairs were linked by an interaction in at least one 
dataset. 

 
High-throughput screens 
Sources 1-3 and 8-13 were obtained from the Munich Protein Information Server (MIPS) 
interaction database (Mewes et al., 2002) by FTP at ftp://ftpmips.gsf.de/yeast/PPI/ on 
5/24/04. Sources 1-3 were culled from other MIPS entries by PubMed ID.  
1. Ito-core Y2H. The set of interactions demonstrated  and triply verified by high-
throughput yeast two-hybrid screen (Ito et al., 2001). PubMed ID: 11283351. 
2. Ito-full Y2H. The set of interactions demonstrated by high-throughput yeast two-
hybrid screen, excluding the triply-verified interactions already included in (1) (Ito et al., 
2001). PubMed ID: 11283351. 
3. Uetz Y2H. The set of interactions demonstrated by high-throughput yeast-two-hybrid 
screen (Uetz et al., 2000). PubMed ID: 10688190. 
4. Complex. Data from bait-prey complex precipitation experiments (Gavin et al., 2002); 
(Ho et al., 2002) were downloaded by FTP from MIPS at 
ftp://ftpmips.gsf.de/yeast/catalogues/complexes/ on 5/24/04. SQL queries were used to 
transform the complex data into binary interaction data. Following the example of 
previous analysis (Bader and Hogue, 2002), data was interpreted according to the 
“spoke” model to include only links between bait proteins and each of their co-
precipitated preys, rather than between each protein in a precipitated complex. 
 
In-silico predictions 
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5. Rosetta fusion. This dataset assigns a link to any pair of proteins for which a single 
“fusion protein” gene exists in another organism on the assumption that a component of 
the protein machinery may evolve either as a single protein or as a pair of interacting 
proteins (Enright et al., 1999). Downloaded from http://predictome.bu.edu/ on 5/06/03.  
6. Paralog. This dataset implies an interaction between gene products and paralogs of 
their known interactors (Deane et al., 2002). The set of yeast protein paralogs used in 
previous studies was obtained (L. Salwinski, personal communication, 4/23/2003) and 
used in conjunction with protein interaction data in the MIPS interaction set as of 5/24/04 
7. Phylogenetic. This dataset assigns a link to any pair of proteins that are co-inherited 
across the proteomes of many different organisms (Deane et al., 2002; Enright et al., 
1999; Marcotte et al., 1999; Wu et al., 2003). The set of yeast gene pairs with 
significantly similar phylogenetic profiles according to the Clusters of Orthologous 
Genes (COG) database provided by the National Center for Biotechnology Information 
(Tatusov et al., 2001) was downloaded from http://predictome.bu.edu/ on 5/05/03.  
 
Hypothesis-driven experimental results 
Sources 8-12 represent results from individual experiments deposited into the MIPS 
repository by individual research groups. SQL queries were used to categorize data 
according to the description of the experiment performed to demonstrate the interaction. 
8. MIPS-affinity. Affinity column precipitation, affinity chromatography. 
9. MIPS-co-precipitation. Co-immunoprecipitation, GST pull-down. 
10. MIPS-co-purification. Co-sedimentation, in-vitro binding assay, gel shift assay, 
crosslink.  
11. MIPS-synthetic. Synthetic lethal, suppression of mutant phenotype  
12. MIPS-Y2H. Non-high-throughput yeast-two-hybrid experiments. The high-
throughput screens already included in sources 1-3 were excluded from this category.  
13. MIPS-other. All other hypothesis-driven experiments in MIPS. This category 
includes all interactions in MIPS that did not match the search terms used to select 
sources 8-12. 
   
3. Adjacency matrix representation  
 Manipulations were performed using MATLAB 6.5 (Mathworks). Data from each 
dataset were imported from SQL Server databases as adjacency matrices Si. For any pair 
of proteins x and y, , where n gives the number of independent interactions 
between x and y in dataset i. Self-interactions were removed from the adjacency matrix 
yielding a diagonal of zeros. The complete interaction map S integrating data from all 

datasets is a weighted sum of the thirteen source matrices: S = , where w

nyxSi =),(

∑
=

n

i
ii Sw
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i gives 

the weight assigned to all interactions in adjacency matrix .  iS
 
4. Hypergeometric p-value 

The hypergeometric p-value (Tavazoie et al., 1999; Wu et al., 2002), used 
independently in several different parts of our method, is given by the formula 
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In general, the p-value quantifies the likelihood that out of G total elements divided into 
overlapping groups, a group GrC of size C will share k elements with a group Grn of size 
n. In other words, the p-value quantifies the extent to which GrC is enriched or dis-
enriched in members of Grn, with p-values close to zero representing statistically 
significant enrichment or dis-enrichment. In our applications of p-value, we wished to 
reflect statistically significant enrichment only. Thus, for each pair of groups, we 
calculated the expected value E of the number of elements shared between the groups. 
When the actual number of elements shared between the groups was less than the 
expected value (k<E), the calculated p-value instead reflected the statistically significant 
lack of enrichment and was replaced by 1-p to correct for this fact. In addition, we 
omitted applying the Bonferroni correction for multiple independent categories because 
only relative p-values were needed in our applications.  
 
5. Development and comparison of dataset quality calculation algorithms 

In contrast to existing methods that attempt to calculate absolute reliability for 
each dataset based on an independent evaluative metric, we calculate a relative reliability 
for each set which allows the data itself to dictate the relative dataset weights, free of 
subjective bias introduced by external evaluation. We call this the relative dataset quality 
(RDQ) score. We present three novel computational methods, described below, to 
calculate the RDQ score for each of our thirteen protein interaction datasets.  

 
Our automated RDQ scoring methods rely on quantitative comparison using the 

extent of pairwise overlap of each dataset with every other. It was desired that the 
influence of any test set j on a tested set i be appropriately weighted by its own calculated 
weight so that poor quality datasets would not penalize other sets for a lack of overlap 
with them. We approached this inductive requirement by applying a fixpoint solution. We 
accomplished this by solving the equation MXR = λRXR, where M is the matrix such 
that M(g, h) gives the extent of overlap between datasets g and h, and λR and XR are the 
dominant eigenvalue and the corresponding (principal) eigenvector, respectively, of M. 
The existence of λR and XR, where λR has multiplicity one and XR is non-negative, is 
guaranteed by the Perron-Frobenius theorem for all non-negative, irreducible square 
matrices M. The matrix M is irreducible if it is strongly connected (Meyer, 2000), i.e. if 
there exists a path of nonzero overlaps from any dataset g to any other dataset h. This was 
the case for our 13 datasets. The RDQ values thus obtained are given by the entries in the 
vector XR. 

 
Three different measures of pairwise dataset overlap were developed, yielding 

three variants of the overlap matrix R. The first measure, called “percent-covering,” 
defines Rpercent-covering(g, h) as the percentage of links in dataset h included in, or “covered 
by,” dataset g. Thus, it penalizes datasets g for false negatives. This approach assigns a 
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high quality for comprehensive datasets g that cover other datasets h extensively. 
However, it does not discriminate against large, noisy datasets that include data contained 
in other datasets but also include a large number of false positives. The second, “percent-
covered” measure addresses this problem by defining Rpercent-covered(g, h) as the percentage 
of dataset g covered by dataset h. Thus, it assigns the quality of g in terms of the extent to 
which its data is corroborated in other datasets, penalizing false positives. However, it 
does not penalize for false negatives.  Note that Rpercent-covered is simply the transpose of 
Rpercent-covering. The third, “p-value” measure attempts to address both false positives and 
negatives, defining Rp-value = -1/log P, where P(g, h) gives the nonzero hypergeometric p-
value of overlap between datasets g and h. If P=0, we define Rp-value= 0; if P=1, we define 
Rp-value= 1. Here, the p-value gives the likelihood that the overlap of two datasets, or the 
number of links appearing in both, is greater than that expected by chance. The p-value is 
obtained using Formula (1), with G = the number of possible pairwise protein 
interactions between all proteins in our network, C =  the size of the dataset being tested 
(the number of distinct links it contains), n = the size of the dataset tested against, and k = 
the number of links they have in common.  

 
The scores assigned to the datasets using each of the RDQ scoring methods are 

listed in Suppl. Table 2.  
 

Supplementary Table 2: RDQ scores and properties of protein interaction datasets used 
in this study. Dataset (1) is a high-confidence dataset based on a high-throughput assay. 
(2-4) are lower-confidence high-throughput datasets. Datasets (5-7) are generated by in 
silico predictions. Datasets (8-13) include all the interactions verified by small-scale 
experiments and deposited in the MIPS database, categorized by experimental method. 
Columns C-E indicate calculated RDQ scores, scaled to sum to 1 over all datasets. 
Columns F-H indicate independent dataset properties described in Suppl. 7. Columns I-M 
indicate the number of distinct (i.e. without repeating the same pair of proteins within the 
same dataset) and reiterated (i.e. the number of times the dataset repeated a listed 
interaction, including swapping the order in which the proteins were reported) 
interactions in each dataset and the counts of total and essential proteins involved. 
 
6. Comparing RDQ methods based on FP/FN rate prediction 

To assess the ability of RDQ measurement methods to correctly penalize datasets 
with noisy data, a series of trials were performed to calculate the RDQ score of datasets 
in which a known proportion of interactions were corrupted. Data was corrupted in three 
ways. First, links were removed at random to simulate false negatives. Second, spurious 
links were added at random to simulate false positives. Third, the network was scrambled 
by rewiring one member of a pair of linked nodes to a random new neighbor. To maintain 
connectivity properties of each network upon corruption, links were added and removed 
with a probability proportional to node degree. 

 
Results are shown in Suppl. Fig. 1. RDQ calculations using the “percent-

covering” and the “percent-covered” overlap matrices both penalize rewired links. The 
former implementation also penalized false negatives, while the latter penalized false 

 6



positives. To our surprise, we found that RDQ scores generated using the “p-value” 
overlap matrix did not correlate with any type of dataset corruption.  
 
7. Comparing RDQ methods based on independent dataset quality indicators 
 RDQ score calculations based on the three different dataset overlap matrices were 
compared against two independent dataset metrics. The functional conservation metric 
indicates the proportion of interactions in a dataset linking proteins annotated to the same 
GO process term (Suppl. Fig. 2a). The functional conservation of each dataset was 
plotted against the rank of that dataset when using each of the three RDQ calculations. 
While RDQ calculations using the “percent-covered” overlap matrix yielded rankings 
that correlated with functional conservation values, the “percent-covering” and “p-value” 
overlap matrices did not. 
 
 The second, network saturation dataset metric is calculated by the global 
clustering coefficient (CC) of the network. This value reflects the average number of 
binding partners per protein. High network saturation may indicate “sloppy” datasets with 
a high number of false positives that over-report the true amount of protein-protein 
interactions in yeast. Oversaturated networks, furthermore, may demonstrate excellent 
functional conservation statistics because of the artificially large number of links between 
proteins in local regions of the network. In support of our analysis, we found that neither 
functional conservation scores nor assigned RDQ scores among our datasets were biased 
by network saturation (Suppl. Fig. 2b). 
 

We chose the RDQ method using the “percent-covered” overlap matrix for further 
analyses because of its ability to 1) accurately punish large, noisy datasets for false 
positives (Suppl. Fig. 1) and to 2) correlate functional conservation to assigned RDQ 
score in a manner unbiased by network saturation (Suppl. Fig. 2). 
 
8. Pairwise clustering coefficient 

Protein pairs in densely connected regions of networks are characterized by a high 
pair-wise clustering coefficient (CC), which quantifies the cohesiveness of a network in a 
local neighborhood (Goldberg and Roth, 2003). For a pair of proteins, the CC assesses 
relative connectivity to common and distinct neighbors. Reliably interacting pairs in a 
small-world network are more likely to share strong links to common neighbors and thus 
have a higher CC. Under the assumption that a functional protein complex consists of a 
set of strongly interconnected proteins that link more strongly to each other than to other 
proteins in the environment, the CC presents a powerful metric towards the identification 
of network regions that correspond to physical protein complexes.  

 
Previous analysis (Goldberg and Roth, 2003) applied the CC to an interaction 

network derived from high-throughput yeast-two-hybrid screens in order to identify 
unlinked yet high-scoring pairs as putative false negatives in the datasets. These and other 
previous studies using the CC have been limited to unweighted graphs, though its 
application to weighted graphs has been suggested as a network centrality measure 
(Wuchty and Stadler, 2003). In the absence of precedent, we developed six variants of a 
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novel CC formula for use in weighted graphs (Suppl. Fig. 3) and compared them on the 
basis of their ability to predict common function of a pair of proteins.  

 
Different CC formulas emphasize various aspects of local network density. All 

variants developed use the strength of the link between a pair of proteins as well the 
connectivity and strength of the links of each to other proteins in the environment. The 
existence of a direct link between a pair of proteins is not required to assign the pair a 
nonzero CC as long as the protein pair shares common neighbors. The CC for a pair of 
nodes is positively affected by the link between the pair and by links to mutual neighbors 
(which helps reconstruct links missed due to false negatives). The CC is negatively 
affected by links to other nodes in the network (to downweight links due to false 
positives). These positive and negative effects are reflected in the choice of numerator 
and denominator, respectively. 

 
For a pair of nodes N and N', a is the weight of the link between them, bi and bi' 

are the weights of the i-th links of N and N', respectively, to common neighbors, and ci 
and ci' are the weights to uncommon neighbors. We then define the intermediate terms 
(see Suppl. Fig. 3 for explanation and illustration) 

 
∑∑ ++= ii cbaNT )( , the total weight of links from a single node N 

∑+= ibaNL )( , the weight of links from node N to common neighbors of N and 
N’ 

∑ ∗+= )'()',( 2
1 ii bbaNNW , the dot product of weights to common neighbors, 

deemphasizing the mutual link (a<1) 
∑ ∗+= )'()',(2 ii bbaNNW , the dot product of weights to common neighbors, 

emphasizing the mutual link 
 

And define the CC formulas as follows: 
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The denominator of the CC accounts for all the links of a pair of proteins both in 

and outside their mutual neighborhood; it is meant to penalize a large number of 
interactions outside this neighborhood. The denominator of CC1, CC2 and CC5 is the 
sum of all interaction weights for both proteins in the pair; CC3, CC4 and CC6 use the 
product of the sum of interactions for each of the two proteins. Use of the sum is 
motivated by the Jaccard index and the product by the Meet/min coefficient used in 
previous definitions of the CC (Goldberg and Roth, 2003). Using the sum, however, 
carries the risk of being skewed by one member of the pair; we desire to punish a pair’s 
CC score to a greater extent if both proteins have many links (are noisy binders). The 
product generates a smaller denominator, penalizing the CC less when only one of the 
proteins is a significantly more selective binder.  

 
For each pair of proteins, the numerator of the CC is computed as follows. CC1 

and CC3 use the sum of all weighted links to common neighbor proteins and twice the 
weight of their mutual link. This simple summation does not take into account the 
distribution of strong links to the same common neighbor. Formulas CC2 and CC4 sum 
the products of weights to each of their common neighbors and square the mutual link 
weight. Since the value of the mutual link is less than zero, taking the square diminishes 
its contribution. CC5 and CC6 use the same numerator as CC4 and CC5 but do not 
square the mutual link weight, thus emphasizing it. 
 
9. Comparison of CC formulas based on prediction of common function 
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We selected a single one of our 6 CC formulas based on its ability to distinguish 
among links between functionally related and unrelated proteins, as determined by GO 
annotation. We were motivated by previous analysis of the interactome of C. elegans 
which notes that pairwise CC is a good predictor of functional relation, since it reflects 
sharing of common interacting partners (Li et al., 2004). In a previous study in 
Drosophila, the correlation with similar GO annotation of interacting proteins was used 
to analyze confidence scores in a protein interaction network (Giot et al., 2003). 

 
For each CC formula, logistic regression was used to correlate the calculated CC 

between each pair of proteins with the probability that the two proteins were annotated to 
the same GO process term. Pairwise scores given by the raw, RDQ-weighted network 
were evaluated as well. Logistic regression analysis was performed using the glm 
function in the R statistics package version 1.9.1 to obtain correlation z-values (Suppl. 
Table 3). For a more detailed description of the implementation and usage of the glm 
function, readers are referred to documentation provided by The R Foundation for 
Statistical Computing. Of the seven scoring systems considered, CC1 displayed the best 
correlation and was chosen for further analysis. 

  
 z-value 
RDQ 
only 27.80 
CC1 81.92 
CC2 24.39 
CC3 1.98 
CC4 1.73 
CC5 38.81 
CC6 15.22 

 
 

Supplementary Table 3: Comparison of protein pair scores in the raw RDQ-weighted 
network and scores calculated by six different CC formulas, based on ability to predict 
common function. We used logistic regression to relate scores in the RDQ-weighted 
network (“RDQ only”) and CC scores (CC1-CC6) to the probability that protein pair 
members share annotation to a common GO term. The z-value is shown; higher values 
indicate a stronger correlation. Since CC1 demonstrates the strongest correlation, this 
formula was chosen for subsequent analysis. 
 
10. Cluster identification: k-means clustering algorithm 

For a given number of clusters k, the k-means clustering algorithm (Hartigan, 
1975) seeks to find the optimum partition of a network into k non-overlapping clusters 
based on the sum of cluster scores over the entire network. Scores assigned to each 
cluster are based on the members of the cluster and the identity of the node 
deterministically chosen as the cluster’s “centroid.” Any centroid-based metric that 
makes use of pairwise scores between proteins may be used as long as convergence to a 
local optimum is guaranteed. 
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The k-means algorithm is typically used to cluster large data sets in Euclidean 
space into k distinct regions, sometimes known as Voronoi cells, as follows. 1) k initial 
centroids are selected from among all the data points. 2) Holding centroids constant, each 
data point is assigned to the centroid closest to it by the Euclidean distance metric, 
forming k distinct clusters. 3) For each cluster, membership is held constant while one 
member is selected as the new centroid so as to minimize the cluster score, defined as the 
sum of squared distances of cluster members to the (new) centroid. Steps 2-3 in the 
procedure are iterated until no more nodes or centroids are re-assigned. The procedure 
always converges, and the final partition is a local minima for the overall sum of cluster 
scores. 

 
We used an extension of the above method to cluster non-Euclidean data by using 

a weight metric as opposed to a distance metric and sought to maximize, rather than 
minimize, cluster scores. We used pairwise CC scores as the weight metric. Each node in 
the network was assigned to the centroid to which it had the greatest link weight, and 
each centroid was chosen to maximize the cluster score. The total network score was 

defined as the sum of cluster scores  where k is the number of clusters, 

, , and  are the size, centroid, and j-th member, respectively, of the i-th cluster, 
and CC(x,y) gives the pairwise CC between nodes x and y. Whenever a node has a CC 
score of zero with all of the current centroids, it is assigned to the centroid separated from 
it by the shortest path along links in the interaction network. Shortest path traversals were 
precomputed using Dijkstra’s algorithm (Cormen, 2001). To increase the running speed 
of the algorithm, convergence of total network score to within four digits was used in 
place of absolute convergence.  
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 Past approaches to protein interaction network clustering have used graphs with 
unweighted edges. In an investigation of the general yeast interaction network from a 
variety of diverse experimental sources, a previous study (Samanta and Liang, 2003) used 
an approach similar to our use of the CC to group proteins sharing a statistically 
significant number of protein node neighbors. While our method predetermines the 
number of clusters and samples over random cluster center seeds, however, their method 
iteratively aggregates proteins to clusters or to other single proteins and the final number 
of clusters is thus dynamically determined. Another study (Spirin and Mirny, 2003) 
clustered the yeast MIPS interaction network using three different techniques to find 
locally dense subgraphs corresponding to structural complexes or functional modules. 
First, clique identification simply searches for fully connected subgraphs. 
Superparamagnetic clustering, second, allows individual proteins to take on one of 
several allowable “spin” states that is affected by the spins of its protein interactors, 
leading to a dynamic equilibrium. The presumption behind the model is that identifying 
groups of proteins with aligned spins will indicate highly interconnected protein clusters. 
Monte Carlo optimization, third, is a randomly seeded method to find clusters 
corresponding to a given number of proteins with the maximal number of interactions 
between them. The "Molecular Complex Detection" (MCODE) algorithm (Bader and 
Hogue, 2003) likewise relies on a search for maximally connected subgraphs in the 
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network topology. MCODE uses a variant of the clustering coefficient to weigh nodes, 
then iteratively and conditionally adds nodes to highest-weighted center nodes; it also 
includes the ability to fine-tune individual clusters of interest. This method was used to 
cluster the yeast interactome using data from MIPS and from protein complex 
identification. Our use of weighted graphs represents a novel and significant addition to 
the existing body of protein interaction network clustering research. 
 
11. Selection of clustering parameters based on ability to consistently generate 
clusters enriched in functionally related proteins 

The total network score, used to select an optimum partition for a given number 
of centroids k, may not be used to determine an optimum value for k because the score 
function is biased towards smaller clusters in a non-trivial way that depends on the 
weight metric. We therefore performed the following analysis to choose a value for k; to 
confirm our choice of using calculated RDQ scores to define the network clustered; and 
to test the decision to cluster based on pairwise CC scores derived from this network. We 
evaluated the performance of clustering based on the consistent generation of biologically 
interpretable clusters, using a range of possible combinations of these parameters.  

 
First, we have sampled a representative range of values for k which allow an 

average of 10, 20, or 30 proteins per cluster, corresponding to k = 210, 105, and 70, 
respectively. Second, we used the network with datasets integrated using RDQ scores 
calculated using the “percent-covered” overlap matrix, as well as two additional networks 
constructed using two control RDQ score sets, C1 and C2. C1 simply assigns an RDQ of 
1 to each dataset. C2 reflects intuitive assessments of dataset quality by assigning an 
RDQ of 1 to MIPS-derived datasets 8-13 (Suppl. Table 2), an RDQ of 0.8 to the high-
confidence high-throughput dataset 1, an RDQ of 0.6 to the standard high-throughput 
datasets 2-4, and an RDQ of 0.3 to the computationally-derived datasets 5-7. Third, we 
based our k-means clustering on either raw weights in the RDQ-derived protein 
interaction network, or on the pairwise CC scores derived from this network. Eighteen 
parameter sets (3 choices of k, 3 choices of RDQ, and 2 choices of CC or raw network 
scores) for the clustering program were thus considered. Each parameter set was used to 
cluster the network 70 times, with random initial centroid seedings each time, to generate 
70 sets of k clusters.  

 
We next quantified the extent to which use of each parameter set produced 

biologically interpretable cluster sets. For each parameter set, the hypergeometric p-value  
was used to quantify the enrichment of each of the 70k clusters in proteins annotated to 
each of the GO-Slim terms (Suppl. Table 1b). This test compensates for cluster size and 
is not inherently biased by k. The p-value is obtained using Formula (1), with G = the 
total number of proteins in the network, C = the number of proteins in the cluster,  n = the 
number of proteins annotated to the tested GO-Slim category, and k = the number of 
proteins in the cluster annotated to that GO-Slim category. Smaller p-values indicate 
more significant functional enrichment. The best (smallest) p-value of enrichment in any 
GO-Slim category corresponds to the strength of annotation to its most likely biological 
function. For each parameter set, we thus found 70k best p-values.  
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We wished to determine which parameter set generated clusters more 
significantly enriched in function than random clusters of the same size. Each cluster set 
was randomized by randomly reassigning proteins to clusters while maintaining cluster 
size and the best p-value of enrichment in a GO-Slim category was calculated as well. To 
compare p-values obtained using real and random clusters, we used the Wilcoxon and 
Kolmogorov-Smirnov tests in MATLAB. For a more detailed description of the 
implementation and usage of the Wilcoxon (ranksum) and Kolmogorov-Smirnov (kstest) 
tests, readers are referred to documentation provided by Mathworks. 

 
In detail, for each parameter set, the highly non-normal distributions of the 70k 

real and 70k randomly-derived p-values were compared by applying the Wilcoxon rank-
sum test. Results indicated a highly shift toward more significant p-values of functional 
enrichment in real versus random cluster sets for all eighteen parameter sets, but results 
were indistinguishable among parameter sets (data not shown). We thus applied the more 
sensitive Kolmogorov-Smirnov test, which was able to discriminate between parameter 
sets. Results are shown in Suppl. Table 4. The cluster sets that displayed the most 
significant enrichments over random clusters were generated when k=70, the network 
was weighted by RDQs calculated using the “percent-covered” overlap matrix, and 
clustering was based on CC scores derived from this network.   
 
 RDQ k=70 k=105 k=210 

derived CC scores 
"percent-
covered" 0.4097 0.2126 0.1664

  C1 assigned 0.2237 0.2053 0.1637
  C2 assigned 0.235 0.2059 0.1582
RDQ-weighted network 
scores 

"percent-
covered" 0.2819 0.2303 0.1831

  C1 assigned 0.2649 0.2365 0.186
  C2 assigned 0.2811 0.2423 0.1898

 
 
Supplementary Table 4: Comparison of parameter sets for the clustering program based 
on generation of clusters significantly enriched in function as compared to random 
clusters. The nonparametric Kolmogorov-Smirnov test is used to measure the shift in 
distribution towards more significant p-values of enrichment of clusters generated in 70 
independent clusterings, over random clusters of the same size. Shown are the 
Kolmogorov-Smirnov statistics reported by the test, with greater values representing 
greater enrichments over random. Columns indicate choices for the parameter k, the 
number of clusters. Rows indicate choices for the method of assigning RDQ scores, 
including the set of RDQ scores calculated using the “percent-covered” dataset overlap 
matrix as well as two control sets of assigned RDQ scores. The top panel indicates 
clustering based on network-derived CC scores, while the bottom panel indicates 
clustering based on the raw RDQ-weighted network. The most significant functional 
enrichment was observed when k=70, the clustered network was weighted by RDQs 
calculated the “percent-covered” overlap matrix, and clustering was based on CC scores 
derived from this network. 
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 The parameter set chosen above includes k=70, which corresponds to an average 
cluster size of 30 proteins, out of average cluster sizes of 10, 20, and 30 surveyed. To 
ensure that larger clusters would not generate still better results, we also tested an average 
cluster size of 40, corresponding to k=52, while holding all other parameters constant 
(“percent-covered” RDQ and derived CC scores). Applying the Kolmogorov-Smirnov 
test as above, we obtained a value of 0.26238. This indicates that clusters of average size 
30 generated by our method demonstrate more significant functional enrichment than 
either smaller (top row, Supp. Table 4) or larger clusters, and confirms the choice of 
k=70. 
 
12. Cluster set 

The k-means clustering algorithm with k=70 was used as described in (10), using 
CC scores derived from the “percent-covered” RDQ-weighted network, to generate a 
single, optimum set of 70 clusters for further analysis (Suppl. Tables 5-6).  
 

The hypergeometric p-value was used to quantify the enrichment of each cluster 
in proteins annotated to each of the sub-processes of gene expression (Suppl. Table 1a, 
Fig. 2a(iii)). The p-value is obtained using  Formula (1), with G = the total number of 
proteins in the network, C = the number of proteins in the cluster, n = the number of 
proteins annotated to the tested category, and k = the number of proteins in the cluster 
annotated to that sub-process. Smaller p-values indicate more significant functional 
enrichment. 
 
Supplementary Table 5. Assignment of proteins to clusters. The number of proteins in 
the cluster is noted in parentheses. Proteins are hyperlinked to the corresponding “Protein 
Page” maintained by the Saccharomyces Genome Database (Dwight et al., 2004). 
 
Supplementary Table 6. Characterization of clusters. The number of proteins in the 
cluster is noted in parentheses. The sub-processes of gene expression (Suppl. Fig. 1a, Fig. 
2a(iii)) for which the cluster is significantly enriched (p<0.05) are listed in brackets in 
order of significance of enrichment.  
 
13. Motif identification and ranking 

We automated the identification and ranking of all instances of the three coupling 
motifs illustrated in Fig. 1c as follows.  

 
First, only direct interaction links appearing in the raw weighted interaction 

network were candidates for coupling links. Second, only links between distinct 
complexes were considered. Pairs of clusters are sorted according to a separability score 
that estimates the degree to which the clusters may be biologically distinct. This 
consideration helps to identify true instances of coupling from among false “coupled” 
clusters that may result from over-clustering, i.e., from artificially forcing biologically 
coherent clusters to split into separate clusters. The cluster separability score was defined 
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for a pair of clusters i and j, where , , and  are 

the size, centroid, and r-th member, respectively, of the i-th cluster, and l is the cluster 
formed by merging clusters i and j and finding its new centroid. Simply, the cluster 
separability score is the sum of individual cluster scores divided by the score of the 
merged cluster and is greater for more separable clusters. We considered only cluster 
pairs ranking in the top 50% by cluster separability score for further analysis.  
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Direct coupling links are defined by a pair of proteins in different clusters linked 

by a nonzero-weighted link in the RDQ-weighted interaction network. Each of the 
coupling proteins in the pair must also be linked to its own cluster significantly more 
strongly than to the coupled cluster. We assess this by calculating the ratio of the sum of 
network link weights to all proteins in its own cluster to the sum of link weights to all 
proteins in the coupled cluster. To qualify as a direct coupling link, this ratio must be 
greater than 2 for both proteins in the pair. Direct coupling links are ranked by the 
strength of the network link weight between the coupling protein pair. 

 
Cluster-mediated coupling links are defined by two clusters indirectly coupled by 

a mediating cluster. At least one direct coupling link must exist between the mediating 
cluster and each of the coupled clusters. Two additional requirements must be met. First, 
to ensure link reliability, the weight of these coupling links must be in the top 10% 
among all direct coupling links in the network. Second, to facilitate identification of 
clusters dedicated to a coupling role, the mediating cluster must be smaller than either of 
the coupled clusters (i.e. contain fewer proteins). Instances of cluster-mediated coupling 
motifs are ranked by topology, with higher-ranking instances minimizing the total 
number of 1) top-10% direct coupling links between the coupled clusters (to indicate that 
a mediating cluster is necessary), and 2) top-10% direct coupling links between the 
mediating cluster and other clusters not in the motif (to indicate the dedicated coupling 
role of the mediating cluster).  

 
Adaptor-mediated coupling links are defined by an adaptor protein assigned to 

one cluster but linked significantly to another cluster as well. To assess this, we use the 
same ratio as that used to identify direct couplers. In this case, however, we require that 
linkage of the adaptor protein to the coupled cluster (the sum of network link weights 
from the adaptor protein to proteins in the coupled cluster) must be at least half as great 
as its linkage to its own cluster (the sum of network link weights from the adaptor protein 
to proteins in its own cluster). Adaptor-mediated coupling links are ranked by the linkage 
of the adaptor protein to the coupled cluster as defined above. In our definition of the 
adaptor-coupled motif, we were motivated by previous work implicating an important 
role for individual, low-degree proteins in the coupling of complexes defined by highly 
binding “hub” proteins (Maslov and Sneppen, 2002). 
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Ranked lists of the top 25 ranked motifs of each motif pattern in our network are 
provided in Suppl. Tables 7-9. A higher-order graph to visualize the protein composition 
and top 25-ranked coupling motifs between protein clusters is provided in Suppl. Fig 4. 
 
Supplementary Table 7. Top 25 instances of the direct coupling motif. Listed are the 
clusters and specific proteins involved in each link, as well as the score used for ranking.  
 
Supplementary Table 8. Top 25 instances of the cluster-mediated coupling motif. Listed 
are the clusters and specific proteins involved in each link, as well as the score used for 
ranking. 
 
Supplementary Table 9. Top 25 instances of the adaptor-mediated coupling motif. 
Listed are the clusters and adaptor protein involved in each link, as well as the score used 
for ranking. 
 
14. Robustness of motif identification and ranking in suboptimal cluster runs 

We next investigated the sensitivity of coupling motif identification to the 
selection of a particular, optimum run of k-means clustering (with a particular set of 
random cluster centroids, compared by total graph score). We compared motifs found 
within the optimum cluster set to those found within each of the 69 inferior cluster sets 
generated using the chosen parameters {k=70, RDQ is “percent-covered,” and applying 
the CC formula}. For each inferior cluster set we: 1.) found and ranked all direct-
coupling motifs within each of these cluster sets, and 2.) generated 50 randomized cluster 
sets with corresponding cluster sizes, and found and ranked all direct-coupling motifs 
within these. Of motifs found in each inferior and randomized cluster set, we determined 
how many were also found in the optimal cluster set. We found that approximately 20% 
of motifs found in sub-optimal cluster sets were conserved within the optimal cluster set, 
on average, a value over 400 times higher than that obtained using suboptimal cluster sets  
clusterings (Suppl. Table 10, “Identification conserved”). Approximately 10-20% of 
motifs were furthermore found in the same top percentile of ranked motifs in the 
suboptimal and optimal cluster sets, a value 75 to over 2000 times higher than expected 
in random clusterings (Suppl. Table 10, “Identification and rank conserved”). While the 
comparison of cluster sets and motifs is an active area of research (Hart et al., 2005) and 
is not the main focus of this paper, this test allows a cursory assessment of robustness of 
the final results of our method.  
 

  
Percentile 
motif rank             

    1 5 10 25 50 75 100
a. 
Identification 
conserved 

Percent 
conserved 16.89 17.40 16.23 19.31 20.23 20.23 20.20

  

Enrichment 
over 
random 278.47 488.39 456.62 472.35 462.48 462.48 460.45

b. 
Identification 
and rank 

Percent 
conserved 11.34 14.59 16.20 19.08 20.23 20.23 20.20
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conserved 

  

Enrichment 
over 
random 75.00 973.53 2228.60 1926.11 472.82 472.82 460.45

 
Supplementary Table 10. Conservation of direct coupling motif identification and 
ranking in sub-optimal cluster sets. 69 cluster sets with a lower total graph score than the 
optimal cluster set were analyzed. Direct coupling motifs within the indicated top 
percentiles (columns) were identified in each of the suboptimal cluster sets and in 50 
randomized cluster sets with cluster size conserved for each of the suboptimal sets. a) 
The average percentage of motifs found in the suboptimal cluster set also identified in the 
optimal cluster set is shown (“percent conserved”). We also report the fold enrichment of 
this percentage over that obtained using the randomized cluster sets (“enrichment over 
random”). b) Analysis was done as in a), but conservation statistics were only reported 
for motifs further found in the same top percentile rank (columns) in the optimal cluster 
set as in the suboptimal and randomized cluster sets. (Further data available upon request 
from KM).  
 
15. Experimental validation 

A comprehensive physical interaction dataset that focused on soluble proteins, 
where proteins were purified using TAP affinity tags (calmodulin-binding peptide plus 
protein A) (Rigaut et al., 1999), was also used as validation. Following affinity 
purification on IgG and calmodulin columns, components of the resulting highly-purified 
protein complexes were identified by two methods in this study: 1) direct analysis of the 
purified material by trypsin digestion followed by shotgun sequencing using high 
performance capillary-scale liquid chromatography-tandem mass spectrometry (LC-
MS/MS) (Cagney and Emili, 2002) and 2) excision of silver-stained gel bands after SDS-
PAGE followed by trypsin digestion and MALDI-TOF mass spectrometry (Krogan et al., 
2002). 
 

Each peptide mass spectrum is subjected to subsequent computational analysis for 
accurate protein identification. A confidence score for each protein pair is derived for the 
entire set of purified complexes. Interactions in the LCMS dataset are quantified by a 
calculated percent reliability, while interactions in the MALDI dataset are quantified by a 
quality index ranging from 0 to above 30, with values above 0.5 considered to indicate 
plausible interactions and values above 1.0 considered to indicate highly likely 
interactions (Tikuisis et al., unpublished data). Data from the independent LCMS and 
MALDI datasets were downloaded to a SQL Server database. Data were ported to 
MATLAB as described in Suppl. 2, additionally imposing minimum cutoff thresholds of 
50%, 70%, 90%, or 98% on the LCMS data and 0.5, 0.7, 0.9, or 1.0 on the MALDI data. 
This yielded eight different validation datasets.  
 
 For each interaction in each validation dataset, we determined whether the 
interaction corresponds to a 1) direct, 2) cluster-mediated, or 3) adaptor-mediated 
coupling motif link in the top x% of all such coupling links in the network, 4) occurs 
between proteins within a single cluster, 5) does not define a coupling motif link, but 
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occurs between clusters already linked by a coupling motif link, or 6) occurs between 
clusters significantly (p<0.05) annotated to the same sub-process of gene expression. For 
(2), interactions were said to define an adaptor-mediated coupling link if they occurred 
between an identified adaptor protein and any protein in the coupled cluster. We sampled 
values of  x= {1, 2.5, 5, 10, 15, 20, 25, 30, 35, 50, 75, 100}. Since coupling motif 
instances with the same score (the score used to calculate rank, see Suppl. 13) will be 
assigned consecutive ranks, we define the subset of coupling motif instances ranking in 
the top x% as those with score better than or equal to the score of the motif instance 

ranking exactly 
100

* nx , where n= the total number of instances of that motif. 

 
We reported the total counts of interactions in the validation datasets in each of the six 
categories (Suppl. Table 11a, “Real model”).  
 

For each interaction in each validation dataset, we similarly determined whether 
the interaction falls into categories (1-6) above in a randomized model. For each value of 
x, we randomized our model of coupled clusters by randomly renaming proteins, keeping 
clusters and topologies of coupling and other links the same.  We compared validation 
datasets to random models 50 times for each random model, and reported the average 
counts of interactions in the validation dataset in each of the six categories over the 50 
randomized models (Suppl. Table 11b, “Average over 50 randomized models”). 
 
 The fold enrichment of interactions from the validation datasets in categories (1-
6) using our network model versus randomized models was calculated by taking the ratio 
of the total counts obtained using the real model to the average counts obtained using the 
corresponding randomized models  (Suppl. Table 11c, “Enrichments: real over random”). 
Category 1 enrichments are shown in Fig. 4. Category 2-4 enrichments are shown in 
Suppl. Fig. 6.  
 
Supplementary Table 11. Localization of interactions from the independent, validation 
protein interaction datasets MALDI and LCMS within our network model of coupled, 
annotated protein clusters. Eight validation datasets (row categories, indicated in leftmost 
column) were obtained by applying four different cutoff thresholds to each of the datasets 
(50%, 70%, 90%, and 98% thresholds for LCMS, and 0.5, 0.7, 0.9, and 1.0 cutoffs for 
MALDI). Only interactions among proteins appearing in our model are considered  The 
number of interactions in each of these eight validation datasets is indicated (leftmost 
column). For each interaction in each validation dataset, we determined whether the 
interaction corresponds to a 1) direct, 2) cluster-mediated, or 3) adaptor-mediated 
coupling motif link in the top x% of all such coupling links in the network, 4) occurs 
between proteins within a single cluster, or does not define a coupling motif link, but 
occurs between clusters 5) already linked by a coupling motif link, or 6) significantly 
(p<0.05) annotated to the same sub-process of gene expression. The second column from 
left indicates x. a) The number of interactions from validation datasets located in 
categories (1-6) in our model. b) The number of interactions from validation datasets 
located in categories (1-6) in a randomized model, averaged over 50 randomizations. c) 
Fold enrichment of interactions from the validation datasets in categories (1-6) using our 
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model versus randomized models. (Further data available upon request from KM and 
NK). 
 A summary of interactions from the combined source datasets and for each 
validation dataset is provided in Supplementary Table 12. Here, we provide the number 
of interactions in each of these datasets that occur between proteins annotated to each 
functional category within each of the 70 clusters (involving exactly two proteins in the 
cluster) and crossing each cluster (involving exactly one protein in the cluster).  
 
Supplementary Table 12. Functional annotation of proteins involved in interactions 
from the combined source datasets (a) and in each validation dataset (b-i). Data is 
presented for proteins in each of the 70 clusters, further specifying whether the links 
described are within the cluster (involve exactly two proteins in the cluster) or across the 
cluster (involve exactly one protein in the cluster). Indices of matrix rows and columns 
indicate functional categories of proteins involved, as indicated in the Legend. For 
interactions within clusters, all matrices are upper-triangular. For interactions across 
clusters, row indices indicate proteins within the cluster while column indices indicate 
proteins outside the cluster. 
 
References 
 
Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. 
P., Dolinski, K., Dwight, S. S., Eppig, J. T., et al. (2000). Gene ontology: tool for the 
unification of biology. The Gene Ontology Consortium. Nat Genet 25, 25-29. 
Bader, G. D., and Hogue, C. W. (2002). Analyzing yeast protein-protein interaction data 
obtained from different sources. Nat Biotechnol 20, 991-997. 
Bader, G. D., and Hogue, C.W. (2003). An automated method for finding molecular 
complexes in large protein interaction networks. BMC Bioinformatics 4. 
Cagney, G., and Emili, A. (2002). De novo peptide sequencing and quantitative profiling 
of complex protein mixtures using mass-coded abundance tagging. Nat Biotechnol 20, 
163-170. 
Cormen, T. H. (2001). Introduction to algorithms, 2nd edn (Cambridge, Mass., MIT 
Press). 
Deane, C. M., Salwinski, L., Xenarios, I., and Eisenberg, D. (2002). Protein interactions: 
two methods for assessment of the reliability of high throughput observations. Mol Cell 
Proteomics 1, 349-356. 
Dwight, S. S., Balakrishnan, R., Christie, K. R., Costanzo, M. C., Dolinski, K., Engel, S. 
R., Feierbach, B., Fisk, D. G., Hirschman, J., Hong, E. L., et al. (2004). Saccharomyces 
genome database: underlying principles and organisation. Brief Bioinform 5, 9-22. 
Enright, A. J., Iliopoulos, I., Kyrpides, N. C., and Ouzounis, C. A. (1999). Protein 
interaction maps for complete genomes based on gene fusion events. Nature 402, 86-90. 
Gavin, A. C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., 
Rick, J. M., Michon, A. M., Cruciat, C. M., et al. (2002). Functional organization of the 
yeast proteome by systematic analysis of protein complexes. Nature 415, 141-147. 
Giot, L., Bader, J. S., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., Hao, Y. L., Ooi, C. 
E., Godwin, B., Vitols, E., et al. (2003). A protein interaction map of Drosophila 
melanogaster. Science 302, 1727-1736. 

 19



Goldberg, D. S., and Roth, F. P. (2003). Assessing experimentally derived interactions in 
a small world. Proc Natl Acad Sci U S A 100, 4372-4376. 
Hart, C. E., Sharenbroich, L., Bornstein, B. J., Trout, D., King, B., Mjolsness, E., and 
Wold, B. J. (2005). A mathematical and computational framework for quantitative 
comparison and integration of large-scale gene expression data. Nucleic Acids Res 33, 
2580-2594. 
Hartigan, J. A. (1975). Clustering algorithms (New York,, Wiley). 
Ho, Y., Gruhler, A., Heilbut, A., Bader, G. D., Moore, L., Adams, S. L., Millar, A., 
Taylor, P., Bennett, K., Boutilier, K., et al. (2002). Systematic identification of protein 
complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180-183. 
Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., and Sakaki, Y. (2001). A 
comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl 
Acad Sci U S A 98, 4569-4574. 
Krogan, N. J., Kim, M., Ahn, S. H., Zhong, G., Kobor, M. S., Cagney, G., Emili, A., 
Shilatifard, A., Buratowski, S., and Greenblatt, J. F. (2002). RNA polymerase II 
elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach. Mol 
Cell Biol 22, 6979-6992. 
Li, S., Armstrong, C. M., Bertin, N., Ge, H., Milstein, S., Boxem, M., Vidalain, P. O., 
Han, J. D., Chesneau, A., Hao, T., et al. (2004). A map of the interactome network of the 
metazoan C. elegans. Science 303, 540-543. 
Marcotte, E. M., Pellegrini, M., Ng, H. L., Rice, D. W., Yeates, T. O., and Eisenberg, D. 
(1999). Detecting protein function and protein-protein interactions from genome 
sequences. Science 285, 751-753. 
Maslov, S., and Sneppen, K. (2002). Specificity and stability in topology of protein 
networks. Science 296, 910-913. 
Mewes, H. W., Frishman, D., Guldener, U., Mannhaupt, G., Mayer, K., Mokrejs, M., 
Morgenstern, B., Munsterkotter, M., Rudd, S., and Weil, B. (2002). MIPS: a database for 
genomes and protein sequences. Nucleic Acids Res 30, 31-34. 
Meyer, C. D. (2000). Matrix analysis and applied linear algebra (Philadelphia, Society for 
Industrial and Applied Mathematics). 
Samanta, M.P. and Liang, S. (2003) Predicting protein functions from redundancies in 
large-scale protein interaction networks. Proc Natl Acad Sci U S A, 100, 12579-12583. 
Spirin, V. and Mirny, L.A. (2003) Protein complexes and functional modules in 
molecular networks. Proc Natl Acad Sci U S A, 100, 12123-12128. 
Tatusov, R. L., Natale, D. A., Garkavtsev, I. V., Tatusova, T. A., Shankavaram, U. T., 
Rao, B. S., Kiryutin, B., Galperin, M. Y., Fedorova, N. D., and Koonin, E. V. (2001). The 
COG database: new developments in phylogenetic classification of proteins from 
complete genomes. Nucleic Acids Res 29, 22-28. 
Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., and Seraphin, B. (1999). A 
generic protein purification method for protein complex characterization and proteome 
exploration. Nat Biotechnol 17, 1030-1032. 
Tavazoie, S., Hughes, J. D., Campbell, M. J., Cho, R. J., and Church, G. M. (1999). 
Systematic determination of genetic network architecture. Nat Genet 22, 281-285. 
Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., Judson, R. S., Knight, J. R., Lockshon, 
D., Narayan, V., Srinivasan, M., Pochart, P., et al. (2000). A comprehensive analysis of 
protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623-627. 

 20



Wu, J., Kasif, S., and DeLisi, C. (2003). Identification of functional links between genes 
using phylogenetic profiles. Bioinformatics 19, 1524-1530. 
Wu, L. F., Hughes, T. R., Davierwala, A. P., Robinson, M. D., Stoughton, R., and 
Altschuler, S. J. (2002). Large-scale prediction of Saccharomyces cerevisiae gene 
function using overlapping transcriptional clusters. Nat Genet 31, 255-265. 
Wuchty, S., and Stadler, P. F. (2003). Centers of complex networks. J Theor Biol 223, 
45-53. 
 

 21



Supplementary Figure 1. Relative protein interaction dataset quality (RDQ) score calculation methods show sensitivity to different 
aspects of data integrity. For each trial, a single protein interaction dataset was replaced by a corrupted version by removing (false 
negatives, left), adding (false positives, center), or rewiring (noisy data, right) a given fraction of interaction links at random. Shown 
are the RDQ scores assigned to the corrupted dataset (y-axis) as a function of the extent of its corruption (x-axis) for three different 
methods of RDQ calculation: (a) the “percent-covering” method, which accurately penalizes false negatives (left) and scrambled 
network links (right) but tolerates false positives (center); (b) the “percent-covered” method, which penalizes false positives 
(center) and rewired network links (right), but tolerates false negatives (left); and (c) the “p-value” method, which is unaffected by 
dataset corruption introduced by false negatives (left), false positives (center), or rewired links (right). The “percent-covered”
method was ultimately chosen because of its ability to discriminate against  the types of data noise expected to occur in the datasets 
used in this study (boxed).
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Supplementary Figure 2. Comparison of relative dataset quality (RDQ) score calculations with independent dataset integrity 
indicators. Shown are: (a) enrichment of the dataset in links between proteins annotated to the same Gene Ontology (GO) 
process term, and (b) the saturation coefficient of the network defined by the dataset. Only the “percent-covered” method 
(green) generates RDQ scores which give higher ranks (a) to datasets with greater enrichment in links between functionally 
related proteins. The correlation is shown to be unbiased by high network saturation (b), a metric to detect high rates of false 
positives which may be expected to occur among functionally related proteins.
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Supplementary Figure 3. The pairwise clustering coefficient (CC) is a measure of local cohesiveness in the network neighborhood of a 
pair of nodes. (a) Graphical depiction of a network neighborhood. For a pair of nodes N and N' marked in red, a is the weight of the link 
between them, bi and bi' are the weights of the i-th links of N and N', respectively, to common neighbors, and ci and ci' are the weights to 
uncommon neighbors. (b) Metrics of total connectivity of a single node (T) and weighted connectivity to shared neighbor nodes (L, 
W1,2), weighted by link strength. (c) The six formulas for the nodewise CC between N and N' in terms of the variables defined in (b). 
Each metric places a different emphasis on the mutual link within the pair and on links to common and distinct neighbors. In each case, 
strong links to common neighbors increase the CC, while links to uncommon neighbors decrease it. Note that a direct link between N 
and N' is not required to obtain a nonzero CC, making it especially appropriate in analyzing networks derived from datasets expected to 
contain false negatives.
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Supplementary Figure 4. Protein clusters used in the analysis, along with the top 25-ranked coupling motifs 
among them. The area of each colored region in a cluster is proportional to the number of member proteins 
annotated to the corresponding functional category. Especially striking are the many motifs between cluster 
pairs (C1, C21), (C30, C31), and (C20, C26). The adaptor-mediated coupling motifs between C1 and C21, 
discussed in the text, suggest coupling of splicing machinery to chromatin modification. The direct coupling 
motifs between C30 and C31 correspond to potential mechanisms to link mRNA export to mRNA 
transcription and termination processes. Note that the many direct coupling motifs between C20 and C37 are 
suspected to be artifacts caused by the mutiple roles of actin protein, Act1p, in the cell (in C20, the actin
monomerAct1p is a part of Swr transcription initiation complex, while C26 includes binding partners of 
polymerized actin). 

Cluster protein composition, by function
1. TRANSCRIPTION INITIATION
2. CAPPING
3. TRANSCRIPTION ELONGATION
4. SPLICING
5. TRANSCRIPTION TERMINATION 

AND POLY-A
6. EXPORT
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8. PRE-MRNA DEGRADATION
9. TRANSLATION
10. OTHER MRNA-RELATED
11. OTHER AND UNKNOWN

Coupling motif patterns
Direct
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Supplementary Figure 5. Fold enrichment of interactions in independent protein interaction datasets identified as (i) cluster-mediated, 
(ii) adaptor-mediated, or (iii) any coupling links in our model, as compared to randomized models. The independent, comprehensive 
protein interaction datasets were derived from systematic, previously unpublished complex precipitation studies using (a) LCMS and (b)
MALDI-TOF mass spectrometry analysis. Shown are the fold enrichments of the number of interactions identified as couplers in the 
model used in this study, over the average number of interactions identified as direct couplers in 50 randomized models. The fold 
enrichment (y-axis) is shown as a function of the percentage of top-ranking coupling links considered (x-axis). Higher-ranking adaptor-
mediated or total coupling links are more likely to appear in the independent datasets. Independent protein interaction datasets are 
subjected to thresholds at four different interaction confidence values (line colors). Higher-quality interaction data demonstrates greater 
enrichment in the model versus in random models. 
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Supplemental Table 1. 
 

Category Description 

number of 
proteins 
included 
in network

1 conjugation     13
2 cytokinesis     31
3 carbohydrate metabolism    40
4 energy pathways    8
5 electron transport    3
6 DNA metabolism    170
7 transcription     257
8 protein biosynthesis    116
9 protein modification    123

10 amino acid and derivative metabolism 30
11 lipid metabolism    33
12 coenzyme and prosthetic group metabolism 13
13 vitamin metabolism    9
14 transport     153
15 response to stress   94
16 organelle organization and biogenesis 39
17 nuclear organization and biogenesis 110
18 cytoskeleton organization and biogenesis 50
19 cell wall organization and biogenesis 46
20 cell cycle    94
21 budding     17
22 pseudohyphal growth    23
23 meiosis     52
24 signal transduction    26
25 morphogenesis     9
26 membrane organization and biogenesis 11
27 RNA metabolism    174
28 vesicle-mediated transport    68
29 cell homeostasis   13
30 protein catabolism   39
31 sporulation    18
32 ribosome biogenesis and assembly 30
33 cellular respiration   17

 
 
 
 
 
 
 
 



 
Supplemental Table 2. 
 

Data- 
set ID Dataset name 

RDQ 
score 
using 
"percent
-
covering
" 
overlap 
matrix 

RDQ 
score 
using 
"percent
-
covered
" 
overlap 
matrix 

RDQ score 
using "p-
value" 
overlap 
matrix 

# 
interaction
s between 
proteins 
annotated 
to the 
same GO 
process 
term 

% 
interaction
s between 
proteins 
annotated 
to the 
same GO 
process 
term global CC

# 
distinct 
links in 
network 

# links 
reiterate
d in 
network

# 
distinct 
proteins 
in 
network 
involved

# 
product
s of 
essentia
l genes 
involved

% 
product
s of 
essentia
l genes 
involved

1 Ito-core Y2H 3.098 5.398 7.762 67 3.995 1.778 1675 2 225 58 25.778
2 Ito-full Y2H 2.788 1.160 9.270 68 8.134 2.323 400 436 721 158 21.914
3 Uetz Y2H 4.536 6.842 6.303 90 18.000 1.638 462 38 282 75 26.596
4 Complex 16.855 2.472 8.024 923 15.435 6.229 4753 1227 763 293 38.401
5 Rosetta 0.340 0.262 10.270 43 2.376 5.621 905 905 161 40 24.845
6 Paralog 26.684 0.581 10.270 2413 7.359 21.231 32017 771 1508 324 21.485
7 Phylogenetic 0.150 1.477 11.333 12 8.451 3.381 71 71 21 9 42.857
8 MIPS-affinity 3.249 28.661 5.280 52 41.935 1.274 79 45 62 31 50.000

9 
MIPS-co-
precipitation 9.567 17.318 4.602 256 42.384 2.059 385 219 187 83 44.385

10 
MIPS-co-
purification 5.647 18.920 4.194 160 42.440 2.122 208 169 98 38 38.776

11 MIPS-synthetic 5.784 5.919 9.336 225 27.847 1.997 681 127 341 103 30.205
12 MIPS-Y2H 12.125 8.793 5.035 248 18.249 2.261 961 398 425 131 30.824
13 MIPS-other 9.176 2.196 8.321 254 7.157 5.474 2912 637 532 70 13.158

 



 
Supplemental Table 3. 
 
 z-value 
RDQ only 27.80
CC1 81.92
CC2 24.39
CC3 1.98
CC4 1.73
CC5 38.81
CC6 15.22
 
Supplemental Table 4. 
 
 RDQ k=70 k=105 k=210 
derived CC scores "percent-covered" 0.4097 0.2126 0.1664
  C1 assigned 0.2237 0.2053 0.1637
  C2 assigned 0.235 0.2059 0.1582
RDQ-weighted network scores "percent-covered" 0.2819 0.2303 0.1831
  C1 assigned 0.2649 0.2365 0.186
  C2 assigned 0.2811 0.2423 0.1898
 



 
Supplementary Table 6. Characterizations of clusters. 
 
Cluster C1 (76 proteins): [Transcr. Init.] SAGA, Swi/Snf, ISWI, RSC: Machinery for 
chromatin remodeling. 
 
Cluster C2 (4 proteins): [Transcr. Init.] Transcription factors. 
 
Cluster C3 (6 proteins): [Transcr. Init.] Chromatin remodeling in response to mating-type 
signals. 
 
Cluster C4 (7 proteins): [Transcr. Init.] Signal integration, including mating. 
 
Cluster C5 (27 proteins): [Transcr. Init.] Transcription initiation factors, especially 
cluster-domain-containing. 
 
Cluster C6 (35 proteins): [Transcr. Init.] Chromatin remodeling, DNA replication. 
 
Cluster C7 (21 proteins): [Transcr. Init., Transcr. Term/PolyA.] DNA-binding proteins, 
mRNA export proteins, membrane permeases. 
 
Cluster C8 (19 proteins): [Transcr. Init.] TFIIA, TFIID. 
 
Cluster C9 (21 proteins): [Transcr. Init.] Chromatin remodeling, GATA transcription 
factors. 
 
Cluster C10 (23 proteins): [Transcr. Init.] Chromatin modification. 
 
Cluster C11 (14 proteins): [Transcr. Init.] Telomere silencing and transcription factors. 
 
Cluster C12 (6 proteins): [Transcr. Init.] Transcription factors. 
 
Cluster C13 (24 proteins): [Capping] RNA PolII/III core, capping-elongation switch. 
 
Cluster C14 (18 proteins): [Capping] pre-mRNA capping, signal sensors, ER/Golgi 
enzymes. 
 
Cluster C15 (19 proteins): [Transcr. Elong., mRNA Export] THO complex. 
 
Cluster C16 (5 proteins): [Transcr. Elong.] Elongation through chromatin. 
 
Cluster C17 (11 proteins): [Transcr. Elong., Transcr. Term/PolyA., mRNA Export] 
Elongation, THO complex, export. 
 
Cluster C18 (24 proteins): [Transcr. Elong.] DNA helicases, DNA repair, and 
meiosis/silencing at HML/R.  



 
Cluster C19 (43 proteins): [Transcr. Elong.] THO complex, links to actin, cytoplasmic 
protein sorting and vesicle transport. 
 
Cluster C20 (49 proteins): [Transcr. Elong., Transcr. Init.] Elongation through chromatin, 
actin-binding/modifying proteins, Swr complex. 
 
Cluster C21 (80 proteins): [Splicing, mRNA Degrad.] Spliceosome, Lsm proteins. 
 
Cluster C22 (28 proteins): [Splicing, Transcr. Elong.] Elongation and splicing machinery 
assembly. 
  
Cluster C23 (25 proteins): [Splicing] Splicing, ER and plasma membrane. 
 
Cluster C24 (17 proteins): [Splicing] Mitochondrial splicing, other non-nuclear proteins. 
 
Cluster C25 (9 proteins): [Splicing] Diverse nuclear proteins. 
 
Cluster C26 (39 proteins): [Transcr. Term/PolyA., NMD] Main termination and 
polyadenylation machinery.  
 
Cluster C27 (16 proteins): [Transcr. Term/PolyA., mRNA Degrad.] Multifunctional 
CCR-NOT complex: represses transcription initiation, aids transcription elongation, and 
acts as a 3’->5’ exoribonuclease for deadenylation-dependent mRNA decay. 
 
Cluster C28 (11 proteins): [Transcr. Term/PolyA.] Cytoplasmic/membane proteins. 
 
Cluster C29 (19 proteins): [Transcr. Term/PolyA., Translat.] Diverse nuclear proteins. 
 
Cluster C30 (23 proteins): [mRNA Export, Transcr. Term/PolyA.] mRNA export, 
transcription termination, polyA-binding. 
 
Cluster C31 (21 proteins): [mRNA Export, Transcr. Term/PolyA.] Export of 
polyadenylated mRNA. 
 
Cluster C32 (23 proteins): [mRNA Export] mRNA export, heme-activated transcription 
initiation. 
 
Cluster C33 (16 proteins): [mRNA Export] Nuclear export, mitosis/meiosis proteins, 
nuclear membrane disintegration. 
 
Cluster C34 (12 proteins): [mRNA Export] Chromosome maintenance proteins, 
interaction partners of GTP-exchange factors. 
  
Cluster C35 (15 proteins): [mRNA Export] Diverse proteins. 
 



Cluster C36 (7 proteins): [NMD, Transcr. Elong., mRNA Degrad., mRNA Export] THO 
complex, NMD machinery components. 
 
Cluster C37 (66 proteins): [NMD] Interaction partners of GTP-binding proteins: involved 
in chromatin modification, NMD, polyA-binding, export, as well as exocytosis, stress 
response, and amino acid metabolism. 
 
Cluster C38 (16 proteins): [mRNA Degrad.] Exosome complex. 
 
Cluster C39 (16 proteins): [mRNA Degrad.] mRNA and protein degradation, nuclear  
phosphatase and kinase regulators. 
 
Cluster C40 (31 proteins): [mRNA Degrad.] Budding/cell wall formation, possible 
polyA-actin link, mRNA degradation. 
 
Cluster C41 (27 proteins): [Translat., Capping] Capping, translation initiation. 
 
Cluster C42 (15 proteins): [Translat.] Cotranslational targeting of nascent polypeptides. 
 
Cluster C43 (50 proteins): [Translat., mRNA Export, Splicing, mRNA Degrad.] 
 
Cluster C44 (42 proteins): [Translat.] Translation initiation complexes eIF2A/B, eIF3, 
eIF5; drug response/transport, enzymes. 
 
Cluster C45 (8 proteins): [Translat.] Translational elongation and ribosomal subunit 
biogenesis.  
 
Cluster C46 (58 proteins): [Translat.] Chromatin modification, translation, ribosome, 
amino acid synthesis. 
 
Cluster C47 (18 proteins): [Translat.] Ribosome components, diverse non-nuclear 
proteins. 
 
Cluster C48 (20 proteins): [Translat.] Various enzymes from diverse cellular components, 
several interaction partners of Sin4p. 
  
Cluster C49 (27 proteins): Chromosome structure and repair, DNA exonucleases. 
 
Cluster C50 (13 proteins): Mitochondrial and unknown proteins. 
 
Cluster C51 (27 proteins): Protein targeting: vacuolar and secretion proteins; gene 
silencing. 
 
Cluster C52 (3 proteins): Plasma membrane synthesis. 
 



Cluster C53 (36 proteins): Previously unannotated transcription elongation proteins, cell 
cycle and actin structure-related proteins. 
 
Cluster C54 (9 proteins): Interaction partners of Srb2p (by yeast-two-hybrid). 
  
Cluster C55 (19 proteins): APC complex. 
 
Cluster C56 (43 proteins): Mitochondrial and ribosomal proteins, PolII core. 
  
Cluster C57 (2 proteins): Upstream activating factor for PolI and PIP3-phosphatase. 
 
Cluster C58 (91 proteins): Diverse proteins, most interact with nuclear pore proteins. 
 
Cluster C59 (31 proteins): Mitotic/meiotic checkpoint module, DNA double-strand break 
repair; proteasome. 
 
Cluster C60 (30 proteins): Stress response, protein degradation. 
 
Cluster C61 (12 proteins): RNA Pol I/III, RSC complex. 
 
Cluster C62 (23 proteins): Diverse proteins. 
 
Cluster C63 (19 proteins): Transcription Mediator, proteins assembling on DNA and 
chromatin. 
 
Cluster C64 (100 proteins): Signaling transcription factors, other interactors of Sua7p by 
yeast-two-hybrid. 
 
Cluster C65 (28 proteins): Cell signal responses. 
 
Cluster C66 (116 proteins): Kinases, DNA replication. 
 
Cluster C67 (245 proteins): DNA-binding proteins: PolII, transcriptional activation and 
repression, chromatin modifications, and cell cycle mechanisms; mRNA catabolism; 
enzymes and GTP-binding proteins. 
 
Cluster C68 (14 proteins): Interaction partners of karyopherin Crm1. 
 
Cluster C69 (18 proteins): Transcription Mediator, PolII holoenzyme. 
 
Cluster C70 (14 proteins): mRNA export; histone deacetylation; ribosomal proteins; 
interaction partners of telomere-maintenance complex. 
 
 
 
 



Supplemental Table 7. 
 
Motif rank Motif score Protein 1 Cluster 1 Protein 2 Cluster 2 

1 0.027927 SIR4 30 SIR2 18
2 0.027008 CDC33 21 TIF4632 26
3 0.020943 NPL3 30 MTR10 31
4 0.017478 SIR4 30 RAP1 11
5 0.017346 ACT1 26 PFY1 19
6 0.017004 PBP1 31 LSM12 43
7 0.015999 ACT1 26 SRV2 20
8 0.015932 YAP1 30 CRM1 43
9 0.015026 YRB2 30 CRM1 43

10 0.014328 ARC1 30 MES1 8
11 0.013414 ACT1 26 COF1 20
12 0.01306 ACT1 26 TWF1 20
13 0.011572 HRP1 30 NAB2 29
14 0.011402 TRI1 15 TOP1 18
15 0.011119 RIF2 15 RAP1 11
16 0.0109 NUP159 30 NMD5 31
17 0.01056 ACT1 26 TPM2 20
18 0.010273 DDI1 29 YJR141W 34
19 0.0094945 TOF2 15 TOP1 18
20 0.0094945 GLE1 31 YEL024W 18
21 0.0088657 RSP5 13 BUL1 43
22 0.0086723 BIT61 37 YGR071C 20
23 0.0086723 RSP5 13 YOR385W 43
24 0.0086723 RSP5 13 DIA1 43
25 0.0085688 ACT1 26 MYO4 20

 
 



 
Supplemental Table 8. 

Coupled 
Cluster 1 

Coupling 
protein(s) 
in Cluster 
1 

Coupling 
protein(s) 
in 
Mediating 
Cluster 
linked to 
Cluster 1 

Mediating 
cluster 

Coupling protein(s) in 
Mediating Cluster 
linked to Cluster 2 

Coupling 
protein(s) in 
Cluster 2 

Coupled 
Cluster 2

15 RIF2 YJL015C 54 YDR154C RVS161 40 
13 RPB9 SPR6 70 GluRS ARC1 30 
7 DSE3 PXL1 28 YKR021W YOL014W 33 
34 MUM2 KAR4 45 KAR4 YNL196C 62 
21 LSM1 RIA1 46 HCH1, YMR293C, 

RSM23, DOA4, AHC2 
JNM1, JSN1, 
BZZ1, BZZ1, 
ATG17 

66 

13 UFD1 YPL222W 42 SSA4 ALG2 14 
9 EAF6 VPS68 34 AIR1 TRF4 15 
9 EAF6 VPS68 34 YJR141W DDI1 29 
6 APQ12 SSA2 42 YPL222W UFD1 13 
15 RIF2 GIS3 35 LTV1 SRB4 69 
6 APQ12 SSA2 42 SSA4 ALG2 14 
41 SUA7 LRE1 33 PRO1 SUP35 43 
15 RIF2 RPC40 61 RPC25 LOS1 31 
10 NST1 IBD2 68 MPC54 NMD5 31 
10 NST1 IBD2 68 YFL068W ATG16 22 
26 ACT1, 

RNA15 
RPP2B, 
GRX3 

47 WTM2 PSE1 30 

26 ACT1, 
RNA15 

RPP2B, 
GRX3 

47 RFA3 RAD52 59 

15 TRF4 AIR1 34 YJR141W DDI1 29 
8 ARO9 YIM1 35 GIS3 RIF2 15 
8 BRF1 TFC4 39 TRK2 TFB1 22 
6 YIR014W HOM3 63 YKL137W RRN11 32 

6 SDS3 RSC6 61 RPC40 RIF2 15 
6 SDS3 RSC6 61 RPC25 LOS1 31 
32 RRN11 YKL137W 63 HMO1 FHL1 48 
22 TFB1 TRK2 39 SKI8 COX4 48 
 



 
 
Supplemental Table 9. 
 

Motif 
rank 

Motif 
score 

Adaptor 
protein 

Cluster 
containing 
adaptor 
protein 

Coupled 
cluster 

1 0.10942 HAP2 5 32
2 0.093934 PRP4 1 21
3 0.073389 NSP1 30 31
4 0.063381 STD1 40 5
5 0.057796 PRP46 1 21
6 0.044698 ACT1 26 40
7 0.039833 PAB1 43 26
8 0.036457 KAP95 51 30
9 0.032408 NUP57 31 30

10 0.025553 HSH49 1 21
11 0.020811 SRB2 1 21
12 0.020244 NAB2 29 44
13 0.018787 TFC7 14 27
14 0.017403 NUP49 31 30
15 0.017174 SPC29 55 44
16 0.014692 KAP104 31 30
17 0.014576 RPT5 8 40
18 0.014566 GSP1 30 31
19 0.014525 TIF4632 26 43
20 0.014516 FAR3 19 44
21 0.012929 CRM1 43 31
22 0.012771 YAP1 30 69
23 0.012548 HHF2 26 1
24 0.01246 IES5 22 63
25 0.011735 TRF4 15 49
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