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Supplementary 1:

Figures 3a and 3b in the main text show that the expression correlation between
genes that contain the PAC motif quickly drops to zero the further the PAC motif is
located from the start codon, whereas MED predicts a significant influence for the PAC
motif over a much wider range. Applying cluster analysis on the genes containing PAC
spaced between 600 and 750 bp upstream, we find that their expression profiles follow
two somewhat anti-correlated patterns (Fig. SF1a). Similarly, the genes containing PAC
spaced between 750 and 1000 bp upstream cluster into three distinct expression patterns
(Fig. SF1b), two that are anti-correlated and a third one with low expression levels. This
clearly demonstrates that lack of co-expression does not necessarily imply lack of co-
regulation, because average pairwise correlation is a poor measure to infer motif strength
accurately as mentioned in the main text. In contrast, for a very tightly co-expressed
gene ensemble (Fig SF1c), average correlation does accurately reflect the degree of co-
regulation caused by the set of motifs in the ensemble.

Supplementary 2: Apparent PAC/RRPE synergetic behavior on gene expression

Expression data for PAC-only, RRPE-only, and PAC/RRPE-only gene ensembles
are presented in Fig SF2. In this figure, we show both an average gene expression for
each gene ensemble for each condition derived from experimental data (SF2a) and the
corresponding one derived from MED using Eg. 1 (SF2b). These figures show a
consistent feature that when a gene contains both PAC and RRPE motifs, its expression
signal is larger in magnitude compared to a gene that contains either motif alone. Note
that the term “only” here refers to the fact that the gene ensemble of one particular motif
contains only such motif and nothing else. This choice of gene ensembles (instead of
PAC, RRPE and PAC/RRPE ensembles) eliminates side effects of other motifs on gene
expression pattern of the corresponding gene ensemble, thereby allowing us to pinpoint
the root cause of apparent enhancement in expression level of PAC/RRPE-only
containing gene ensemble compared to PAC-only and RRPE-only containing gene
ensembles.

In Fig. SF2c, the strengths of the PAC and RRPR motifs in the gene ensemble
containing both of them are plotted as a function of RRPE motif’s position averaged over



all PAC positions. The two curves in this Figure SF2-c are complement to the two black
diamond curves shown in Figure 3a in the main text.
Supplementary 3: PAC/RRPE motif data

Figure SF3-A shows the position distribution of PAC and RRPE in associated
promoters of genes containing each. In Figure SF3-B, the distribution of expression
correlation coefficients for a set of instances of PAC- and RRPE-containing gene
ensembles is shown.

Supplementary 4: Proof of uniqueness (see supplementary 11 for definition of
mathematical notations)

As shown in Eg. 2 in the main text, the first part of the MED algorithm
decomposes the gene expression data matrix E (m-genes by n-conditions) in order to
obtain motif matrix M (m-genes by k-motifs) and the matrix of proxy regulator activity A
(k-motifs by n-conditions) according to the following equation:

ExMeA [2]
For any invertible k x k matrix X, Eq. 2 above can always be written as follows:
ExMeA=MeXeX 'eA=M oA’ [S1]

In order to prove that matrices M and A are unique, it is sufficient to prove two
things. First we prove that the MED formalism restricts X to be an identity matrix,
provided that (1) M and A are full rank, and (2) the matrix M is sparse and rectangular
(i.e. there must be at least k-1 zero-matrix elements in each column in general, and the
number of rows is larger than the number of columns). Secondly, when rows of matrix A
are linearly dependent or near-linearly dependent, we prove that MED formalism can still
produce unique motif matrix M regardless of rank deficiency of matrix A, due to the
second term of Eq. 3 or 4.

Proof

1. Matrix X is an identity matrix as an outcome of the MED formalism:

In Eq. 1 in the main text:

E~>»MA
gc g’ e
jeag

if jeQ (i.e. motif j does not exist in the promoter of gene g) then the corresponding
matrix element M of the motif matrix M must be zero and remain so and as it is always
the case in MED. As a result, for each matrix element M of matrix M whose value is
zero, the corresponding matrix element M of matrix M* must also be zero after the



linear transformation with matrix X. Therefore, for a zero element M _ in the column j"
of the motif matrix M, we have:

0
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My =D M+ M+ M X =2 M X+ MX =0 [S2]

For all genes with zero-entry in the column j*, Eq. S2 can be written in the matrix
form:
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then the Eqg. S3 becomes:
MeX, =0 [s5]

Since the number of zero elements p (number of genes that do not contain motif indexed
as j) in each column j of matrix M is much larger than k-1 (number of motifs in a motif
set) for eukaryotic genome, and the way we estimate the initial non-zero values for
matrix M in Eq. 2, the matrix M in Eq. S5 is full-rank. One possible exception is when
a motif only occurs in the presence of a second motif (as may be the case with two
variants of the same motif). However, in this case it is easy to see that the use of the



lambda parameter still guarantees a single optimum, similar to the proof for rank-
deficient A below. Accordingly, the equality in Eq. S5 is true if and only if:

X, =0 [S6]

Therefore, all entries in column j of matrix X must be zero except Xj;, which can
be of any value, for all j=1..k. As a result, matrix X is a diagonal matrix. Since the step
(c) of the MED formalism requires that each row of matrix A has the unit norm, each
diagonal element of matrix X must be 1. Therefore X is an identity matrix. This
completes the proof of the first part.

2. In MED, the motif matrix M is unique even when matrix A is rank deficient:

When two or more distinct motifs are regulated by the same regulator, two or
more corresponding rows of the global proxy regulator activity matrix A become linearly
dependent (i.e. A is rank deficient), an event that cannot be controlled a priori
mathematically. The same is also true when two or more regulators work together within

a finite number of experimental conditions under consideration. For example, let
A.=a,A, =--=a,A_ Inthat case, the contribution of these motifs to the expression of

e

gene g can be written as:
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Obviously a set of infinite solutions can result from Eq. S7, because the rank of
the matrix in Eq. S7 is one and hence values can be shifted freely among the q motif
strength variables M, 1=1..q.

However, in the MED formalism, we require that the sum of square of motif
strengths in each gene be minimal or as close as possible to some user predefined values
(if they are known a priori) as the second term of Eq. 4 or Eq. 5 represents, respectively.
Mathematically, this can be written in the matrix form as follows:

A a'eA .. aleA | M, | [E] for Eq. 4 [S8]
° ~| _ .
\/ZOI 0
Mgi
or
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E,
z{ﬁ‘(l\ﬁgﬂ for Eq. 5 [S9]

In the Eq. S9, M; is a vector of user defined priors for the motif strength for

gene g. Since the matrix in Egs. S8-S9 is always full-rank, due to the block represented
by the identity matrix | regardless of data in matrix A, Egs. S8 or S9 has a unique least
square solution. This completes the proof of the second part.

Note that in Eq. S1, the linear transformations of matrix M to a matrix represented

by M e X and of matrix A to a matrix represented by X e A are known as (oblique)
rotation (Paatero et al., 2002). Historically, in the proof to part 1, the idea of using an a
priori known pattern of zero elements in matrix factorization problem to reduce the
rotational degrees of freedom (i.e. number of off-diagonal non-zero elements of matrix
X) is a well-known one. If there are enough pre-determined known zero elements in one
of factored matrices, the rotation becomes prohibited as discussed by Anderson
(Anderson, 1984); Paatero and co-workers (Paatero et al., 2002); and an alternative proof
to part 1 on the structure of matrix X instead of matrix X was previously provided by
Liao and co-workers (Liao et al., 2003). In such case, the matrix X and hence X™
become diagonal matrices, otherwise such pre-determined pattern of zero is violated.
However, the use of the pre-determined pattern of zeros alone is not enough, since the
rotation cannot deal with, and therefore guarantee, the uniqueness of motif matrix M
when rows of matrix A are linearly dependent as discussed in the proof to part 2 above.
The main mathematical step that makes our MED formalism work is the proof in step 2,
which guarantees the uniqueness of the motif matrix M regardless of the data pattern in
matrix A.

Supplementary 5: Procedure for initializing non-zero matrix elements of the motif
matrix M

If the regulatory motifs were defined by a consensus sequence, the motif matrix
M could simply be initialized by counting how many times each specific consensus
sequence occurs in each promoter (Bussemaker et al., 2001). However, since we are
dealing in this case with motifs which are specified by a position specific scoring matrix
(PSSM), we can weight this count by the score of each motif instance.

The initial weight Mg, for motif m and gene g is given by:

M, => e3tm /maxi,g(esi(g'm’) [S10]

where Si(g,m) is the ScanAce score (Hughes et al., 2000) of the i" instance of
motif m in the promoter of gene g, which is approximately proportional to the log



probability of binding to that sequence (Stormo, 2000). Note that for the best-fit
sequences to the PSSM for the motif, the initial value for Mgy, reverts to a count of the
number of motif instances.

Supplementary 6: Standard least square formalism used in MED

Given a matrix M € R™, m>n and a vector of observable data beR" , the least
square problem is to find a vector XeR" such that HMX—BH IS minimized.

Geometrically, this can be represented in Fig SF4 where the vector solution X can be

calculated by projecting the vector of observable data b orthogonally onto the range of
the matrix M spanned by its columns vectors. Mathematically we can write:

—

MX ~ b [S11]
=  X=(M"M)*MTb [S12]
Using singular value decomposition for the matrix M, we have:

M=UseZeV’ [S13]

Substitute S13 into S12, the solution to the least square problem can be computed using
the following formula:

X=VexieU eh [S14]
If the vector of observable data b in Eq. S14 is a matrix, then Eq. S14 becomes:

X =VeX'eU B [S15]
where X is now a matrix instead of a vector.

Supplementary 7: Definition of the total residual variance, convergence and selection of A

From Eq. S11, the residual matrix R is defined as follows:
R=MeX-B [S16]

therefore total residual variance R is then defined as:

R =Y var(R)) [S17]



Since the second term of the Eg. 4 imposes additional constraint on the
factorization for any A>0, test error will always be larger than the corresponding with
A=0. Therefore, the value of A must be chosen in such a way that it does not affect the
test error significantly and Figs. SF5a and SF5b show both training and test errors,
respectively, for & =0 and A =10 which is the value we used in this work. Given this A,
we also show the trajectory of MED algorithm for both training and test error in factoring
the expression matrix in Figs. SF4c and SF4d, respectively.

Supplementary 8: Extended form of Eg. 1 to account for non-linear motif-motif
interactions

In the Eq. 1 in the main text, the log expression ratio of gene g under
environmental condition c, Ey, can be approximated as follows:

Egc ~ M [} Aic [1]

Although motif-motif interactions are not explicitly included in Eg. 1, such interactions
can still be captured to some degree by assigning a different weight to a motif depending
on the presence of other motifs it interacts with. Nevertheless, one can also choose to
include interaction terms explicitly in Eg. 1, according to the following equation:

EQC ~ M gl AJC + Z M gjl Ach [818]

where M represents the influence of interaction between motifs j and | present in the
promoter of gene g; and A, represents the global proxy activity of the virtual regulator

for such interaction. With this explicit form, one can investigate combinatorial regulation
principles in terms of motif-motif interactions, which is an important feature in
eukaryotic genomes (Kellis et al., 2003). The differences between Egs. 1 and S18 are
extra non-zero entries for each gene (extra columns) in the motif matrix M and the MED
formalism can still be applied transparently.

Supplementary 9: Data

Motif data and expression data sets along with other essential data used in this
work are available from our website at http://arep.med.harvard.edu/MED

Supplementary 10: p-Value calculations for motif strengths derived from the random
shuffling of expression data

In the random shuffling test, we recalculated the strength of each motif (random
motif strength) in the same manner as being done in Fig. 3 (in the main text) for each
randomly shuffled expression matrix, for 100 times. The supplementary Figures SF6a-c
show the distribution of such random motif strengths for the PAC, RRPE, MCB, and
RAP1 motifs in the promoter location and with orientation, where they are most active,



along with the corresponding ones (actual motif strength) derived from the actual
expression data. Since the actual motif strength is far away from the mean of the
distribution of the corresponding random motif strengths by at least 28 standard
deviations, the p-value for these actual motif strengths can be much smaller than 0.01,
due to the Chebyshev inequality (Abramowitz and Stegun, 1972). Note that for the MCB
and RAP1 motifs, we also show their distribution and actual motif strength for both
motif’s orientations with “<” denotes 5’ < and “->” denotes 5’ orientations.

Supplementary 11: Mathematical notations

Throughout the text, we employ a set of mathematical notations and symbols.
Here are their definitions.

X, . denotes the j™ row vector of a given matrix X
)Z,j : denotes the j™ column vector of a given matrix X
X" : denotes the transpose of a give matrix X
e :represents the multiplication operation
X :denotes a column vector.
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