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Supplementary 1:  
 

Figures 3a and 3b in the main text show that the expression correlation between 
genes that contain the PAC motif quickly drops to zero the further the PAC motif is 
located from the start codon, whereas MED predicts a significant influence for the PAC 
motif over a much wider range. Applying cluster analysis on the genes containing PAC 
spaced between 600 and 750 bp upstream, we find that their expression profiles follow 
two somewhat anti-correlated patterns (Fig. SF1a). Similarly, the genes containing PAC 
spaced between 750 and 1000 bp upstream cluster into three distinct expression patterns 
(Fig. SF1b), two that are anti-correlated and a third one with low expression levels.  This 
clearly demonstrates that lack of co-expression does not necessarily imply lack of co-
regulation, because average pairwise correlation is a poor measure to infer motif strength 
accurately as mentioned in the main text.  In contrast, for a very tightly co-expressed 
gene ensemble (Fig SF1c), average correlation does accurately reflect the degree of co-
regulation caused by the set of motifs in the ensemble. 
 
Supplementary 2: Apparent PAC/RRPE synergetic behavior on gene expression 
 
 Expression data for PAC-only, RRPE-only, and PAC/RRPE-only gene ensembles 
are presented in Fig SF2. In this figure, we show both an average gene expression for 
each gene ensemble for each condition derived from experimental data (SF2a) and the 
corresponding one derived from MED using Eq. 1 (SF2b).  These figures show a 
consistent feature that when a gene contains both PAC and RRPE motifs, its expression 
signal is larger in magnitude compared to a gene that contains either motif alone. Note 
that the term “only” here refers to the fact that the gene ensemble of one particular motif 
contains only such motif and nothing else.  This choice of gene ensembles (instead of 
PAC, RRPE and PAC/RRPE ensembles) eliminates side effects of other motifs on gene 
expression pattern of the corresponding gene ensemble, thereby allowing us to pinpoint 
the root cause of apparent enhancement in expression level of PAC/RRPE-only 
containing gene ensemble compared to PAC-only and RRPE-only containing  gene 
ensembles.   
 

In Fig. SF2c, the strengths of the PAC and RRPR motifs in the gene ensemble 
containing both of them are plotted as a function of RRPE motif’s position averaged over 
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all PAC positions.  The two curves in this Figure SF2-c are complement to the two black 
diamond curves shown in Figure 3a in the main text.   
Supplementary 3: PAC/RRPE motif data 
 

Figure SF3-A shows the position distribution of PAC and RRPE in associated 
promoters of genes containing each. In Figure SF3-B, the distribution of expression 
correlation coefficients for a set of instances of PAC- and RRPE-containing gene 
ensembles is shown.   
 
Supplementary 4: Proof of uniqueness (see supplementary 11 for definition of 

mathematical notations) 
 
 As shown in Eq. 2 in the main text, the first part of the MED algorithm 
decomposes the gene expression data matrix E (m-genes by n-conditions) in order to 
obtain motif matrix M (m-genes by k-motifs) and the matrix of proxy regulator activity A 
(k-motifs by n-conditions) according to the following equation: 
 
 AME •≈                 [2] 
 
 For any invertible k x k matrix X, Eq. 2 above can always be written as follows: 

 
**1 AMAXXMAME •=•••=•≈ −           [S1] 

 
 In order to prove that matrices M and A are unique, it is sufficient to prove two 
things.  First we prove that the MED formalism restricts X to be an identity matrix, 
provided that (1) M and A are full rank, and (2) the matrix M is sparse and rectangular 
(i.e. there must be at least k-1 zero-matrix elements in each column in general, and the 
number of rows is larger than the number of columns).  Secondly, when rows of matrix A 
are linearly dependent or near-linearly dependent, we prove that MED formalism can still 
produce unique motif matrix M regardless of rank deficiency of matrix A, due to the 
second term of Eq. 3 or 4.   
 
Proof 
 
1. Matrix X is an identity matrix as an outcome of the MED formalism: 
 
 In Eq. 1 in the main text: 
 
 ∑

Ω∈

≈
gj

jcgjgc AME  

 
if gj Ω∉ (i.e. motif j does not exist in the promoter of gene g) then the corresponding 
matrix element gjM of the motif matrix M must be zero and remain so and as it is always 
the case in MED.  As a result, for each matrix element gjM of matrix M whose value is 
zero, the corresponding matrix element *

gjM  of matrix M* must also be zero after the 
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linear transformation with matrix X.  Therefore, for a zero element gjM in the column jth 
of the motif matrix M, we have: 
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For all genes with zero-entry in the column jth, Eq. S2 can be written in the matrix 
form: 
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then the Eq. S3 becomes: 
 

0
rr

=• • jXM               [S5] 
 

Since the number of zero elements p (number of genes that do not contain motif indexed 
as j) in each column j of matrix M is much larger than k-1 (number of motifs in a motif 
set) for eukaryotic genome, and the way we estimate the initial non-zero values for 
matrix M in Eq. 2, the matrix M in Eq. S5 is full-rank.   One possible exception is when 
a motif only occurs in the presence of a second motif (as may be the case with two 
variants of the same motif). However, in this case it is easy to see that the use of the 

0
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lambda parameter still guarantees a single optimum, similar to the proof for rank-
deficient A below.  Accordingly, the equality in Eq. S5 is true if and only if: 

 
0
rr

=• jX                [S6] 
 

Therefore, all entries in column j of matrix X must be zero except Xjj, which can 
be of any value, for all j=1..k.  As a result, matrix X is a diagonal matrix. Since the step 
(c) of the MED formalism requires that each row of matrix A has the unit norm, each 
diagonal element of matrix X must be 1. Therefore X is an identity matrix.    This 
completes the proof of the first part. 
 
2. In MED, the motif matrix M is unique even when matrix A is rank deficient: 
 
 When two or more distinct motifs are regulated by the same regulator, two or 
more corresponding rows of the global proxy regulator activity matrix A become linearly 
dependent (i.e. A is rank deficient), an event that cannot be controlled a priori 
mathematically.  The same is also true when two or more regulators work together within 
a finite number of experimental conditions under consideration. For example, let 
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Obviously a set of infinite solutions can result from Eq. S7, because the rank of 

the matrix in Eq. S7 is one and hence values can be shifted freely among the q motif 
strength variables 

l
gjM , l=1..q.    

However, in the MED formalism, we require that the sum of square of motif 
strengths in each gene be minimal or as close as possible to some user predefined values 
(if they are known a priori) as the second term of Eq. 4 or Eq. 5 represents, respectively.  
Mathematically, this can be written in the matrix form as follows: 
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 In the Eq. S9,  *

gM
r

 is a vector of user defined priors for the motif strength for 
gene g. Since the matrix in Eqs. S8-S9 is always full-rank, due to the block represented 
by the identity matrix I regardless of data in matrix A, Eqs. S8 or S9 has a unique least 
square solution.  This completes the proof of the second part.  
 
 Note that in Eq. S1, the linear transformations of matrix M to a matrix represented 
by XM • and of matrix A to a matrix represented by AX •−1  are known as (oblique) 
rotation (Paatero et al., 2002).  Historically, in the proof to part 1, the idea of using an a 
priori known pattern of zero elements in matrix factorization problem to reduce the 
rotational degrees of freedom (i.e. number of off-diagonal non-zero elements of matrix 
X) is a well-known one.  If there are enough pre-determined known zero elements in one 
of factored matrices, the rotation becomes prohibited as discussed by Anderson 
(Anderson, 1984); Paatero and co-workers (Paatero et al., 2002); and an alternative proof 
to part 1 on the structure of matrix 1X −  instead of matrix X was previously provided by 
Liao and co-workers (Liao et al., 2003). In such case, the matrix X and hence 1X −  
become diagonal matrices, otherwise such pre-determined pattern of zero is violated.  
However, the use of the pre-determined pattern of zeros alone is not enough, since the 
rotation cannot deal with, and therefore guarantee, the uniqueness of motif matrix M 
when rows of matrix A are linearly dependent as discussed in the proof to part 2 above.  
The main mathematical step that makes our MED formalism work is the proof in step 2, 
which guarantees the uniqueness of the motif matrix M regardless of the data pattern in 
matrix A.  
 
 
Supplementary 5: Procedure for initializing non-zero matrix elements of the motif 
matrix M 
 

If the regulatory motifs were defined by a consensus sequence, the motif matrix 
M could simply be initialized by counting how many times each specific consensus 
sequence occurs in each promoter (Bussemaker et al., 2001). However, since we are 
dealing in this case with motifs which are specified by a position specific scoring matrix 
(PSSM), we can weight this count by the score of each motif instance. 

The initial weight Mgm for motif m and gene g is given by: 
 

( )∑=
i

mgS
gi

mgS
gm

ii eeM ),(
,

),( max/          [S10] 

 
where Si(g,m) is the ScanAce score (Hughes et al., 2000) of the ith instance of 

motif m in the promoter of gene g, which is approximately proportional to the log 
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probability of binding to that sequence (Stormo, 2000). Note that for the best-fit 
sequences to the PSSM for the motif, the initial value for Mgm reverts to a count of the 
number of motif instances. 
 

 
Supplementary 6: Standard least square formalism used in MED 
 

Given a matrix nmM mxn ≥ℜ∈ ,  and a vector of observable data mb ℜ∈
r

, the least 

square problem is to find a vector nx ℜ∈
r  such that bxM

rr
−  is minimized. 

Geometrically, this can be represented in Fig SF4 where the vector solution xr  can be 
calculated by projecting the vector of observable data b

r
 orthogonally onto the range of 

the matrix M spanned by its columns vectors. Mathematically we can write: 
 

bxM
rr

≈             [S11] 
 
⇒  bMMMx TT

rr 1)( −=            [S12] 
 
Using singular value decomposition for the matrix M, we have: 
 
 TVUM •Σ•=            [S13] 
 
Substitute S13 into S12, the solution to the least square problem can be computed using 
the following formula: 
 
 1 Tx V U b−= •Σ • •

rr            [S14] 
 
If the vector of observable data b

r
 in Eq. S14 is a matrix, then Eq. S14 becomes: 

 
 1 TX V U B−= •Σ • •            [S15] 
 
where X is now a matrix instead of a vector.  
 
Supplementary 7: Definition of the total residual variance, convergence and selection of λ  
 
 From Eq. S11, the residual matrix R is defined as follows: 
 
 R M X B= • −            [S16] 
  
therefore total residual variance R is then defined as: 
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 Since the second term of the Eq. 4 imposes additional constraint on the 
factorization for any λ>0, test error will always be larger than the corresponding with 
λ=0.  Therefore, the value of λ must be chosen in such a way that it does not affect the 
test error significantly and Figs. SF5a and SF5b show both training and test errors, 
respectively, for λ =0 and λ =10-4, which is the value we used in this work.  Given this λ, 
we also show the trajectory of MED algorithm for both training and test error in factoring 
the expression matrix in Figs. SF4c and SF4d, respectively.   
 
Supplementary 8: Extended form of Eq. 1 to account for non-linear motif-motif 
interactions 
 

In the Eq. 1 in the main text, the log expression ratio of gene g under 
environmental condition c, Egc, can be approximated as follows: 

 
∑
Ω∈

≈
gj

jcgjgc AME                [1] 

 
Although motif-motif interactions are not explicitly included in Eq. 1, such interactions 
can still be captured to some degree by assigning a different weight to a motif depending 
on the presence of other motifs it interacts with. Nevertheless, one can also choose to 
include interaction terms explicitly in Eq. 1, according to the following equation: 
 

∑∑
ΩΩ∈Ω∈

+≈
gxgjl

jlcgjl
gj

jcgjgc AMAME           [S18] 

 
where gjlM  represents the influence of interaction between motifs j and l present in the 
promoter of gene g; and jlcA represents the global proxy activity of the virtual regulator 
for such interaction.  With this explicit form, one can investigate combinatorial regulation 
principles in terms of motif-motif interactions, which is an important feature in 
eukaryotic genomes (Kellis et al., 2003).  The differences between Eqs. 1 and S18 are 
extra non-zero entries for each gene (extra columns) in the motif matrix M and the MED 
formalism can still be applied transparently.   
 
Supplementary 9: Data 
 
 Motif data and expression data sets along with other essential data used in this 
work are available from our website at http://arep.med.harvard.edu/MED 
 
Supplementary 10: p-Value calculations for motif strengths derived from the random 
shuffling of expression data 
 
 In the random shuffling test, we recalculated the strength of each motif (random 
motif strength) in the same manner as being done in Fig. 3 (in the main text) for each 
randomly shuffled expression matrix, for 100 times.  The supplementary Figures SF6a-c 
show the distribution of such random motif strengths for the PAC, RRPE, MCB, and 
RAP1 motifs in the promoter location and with orientation, where they are most active, 
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along with the corresponding ones (actual motif strength) derived from the actual 
expression data.  Since the actual motif strength is far away from the mean of the 
distribution of the corresponding random motif strengths by at least 28 standard 
deviations, the p-value for these actual motif strengths can be much smaller than 0.01, 
due to the Chebyshev inequality (Abramowitz and Stegun, 1972).  Note that for the MCB 
and RAP1 motifs, we also show their distribution and actual motif strength for both 
motif’s orientations with “ ” denotes 5’  and “ ” denotes 5’  orientations.    
 
 
Supplementary 11: Mathematical notations 
 
 Throughout the text, we employ a set of mathematical notations and symbols.  
Here are their definitions. 
 •jX

r
: denotes the jth row vector of a given matrix X 

 jX •

r
: denotes the jth column vector of a given matrix X 

TX : denotes the transpose of a give matrix X 
 •    : represents the multiplication operation 
 xr    : denotes a column vector. 
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