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1 Two alternative models

Two diffrent general models can be used to describe efficient Cdc20 inhibition
in the context of an emitted signal. Broadly speaking Cdc20 can be inhibited
either by sequestering or by degradation (supplementory fig. 1). In the seques-
tering case it is assumed that Cdc20 “c” is tethered by the an emitted active
complex “m∗”. This tethering can be either direct, through physical binding
or indirect by phosphorylation. In the degradation case it’s simply assumed
that the inhibition is achieved though a checkpoint mediated upregulation of
the degradation rate (by the active emitted complex). Modeling the two cases
with systems if ordinary differential equations we get:

For the degradation case:

dm

dt
= kmm∗ − k−mm + kon

deg.m
∗c (1)

dm∗

dt
= −kmm∗ + k−mm − kon

deg.m
∗c (2)

dc

dt
= kprod. − kon

deg.m
∗c − koff

deg c (3)

mtot = m + m∗ (4)

and for the sequestering case:

dm

dt
= kmm∗ − k−mm + (kdeg. + kdiss.)m

c (5)

dm∗

dt
= −kmm∗ + k−mm − kass.m

∗c (6)

dc

dt
= kprod. − kass.m

∗c − kdeg.c + kdiss.m
c (7)

dmc

dt
= −(kdeg. + kdiss.)m

c + kass.m
∗c (8)

mtot = m + m∗ + mc (9)
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2 Simplifications and Assumptions

Several assumptions and simplifications were made in order to simplify the anal-
ysis of the models.

2.1 mtot constant

We assumed that the total amount of m is constant. The reason for this is
that the mRNA levels of Mad1, Mad2, Mad3, Bub1 and Bub3 are more or less
constant during the cell cycle (with the possible exeption of Bub1) [1].

2.2 m, m
∗ equilibriate fast

This assumption implicates that the active checkpoint depends on the rates kass.

and kon
deg. rather then k−m. There are two reasons for this assumption: First

it’s biologically motivated since both the turnover of checkpoint proteins at the
kinetochore [5] and the overall reaction dynamics of the checkpoint is very fast
(the checkpoint has to control the amount of emitted complexes one way or
another rapidly). Second, it simplifies the analytical treatment of the systems
without changing the overall results (see suppl. figures 4, 5, 6 and 10 where we
verify the analytically obtained solutions against the unsimplified systems).

2.3 m
∗ converts to m after deinhibition/degradation

By assuming that m∗ is converted to m after deinhibition/degradation we allow
the checkpoint to control the reaction in the simplest possible manner. The al-
ternative, to add a extra “deactivation/dephosphorylation rate” which controls
the m∗ → m reaction would not only complicate the model, it also fails to show
any different quantitative result (unpublished results).

2.4 Efficient inhibition is achieved

We also assume that both models are capable of inhibiting Cdc20. That is, we
assume that the models are capable of lowering the amount of Cdc20 enough
times to ensure good inhibition (see below for all details). The exact nature of
the inhibition depends on the model, either the degradation or phosphorylation
rates are high enough, or we have an excess of m complex in the system.

2.5 Lengthscale

What effect does the spatiality have on the system? The general idea was that
if we have a continous influx of Cdc20 from the boundary it might be harder
for the checkpoint to degrade it properly. To test this, we used FEMLAB to
simulate the effects of Cdc20 influx into the nucleus. The nucleus was modeled
as a sphere and the influx was either from the entire boundary or from one
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to several pointlike sources symmetrically located on it. The approximate area
covered by the intervall of point sources was varied from a single point source
through the approximate area covered by the nuclear pores [2] to a complete
covering of the boundary. We found that for realistic parameters the spatial
effects were not very pronounced and therefore decided to use ODEs (suppl.
Fig 2).

3 System characteristics

Three different measures were extracted from these systems of ODEs, the am-

plification, the reactivation time and the noise resistance.

3.1 Amplification

We define the amplification “ρ”, as the steady state level of uninhibited c when
the checkpoint is off (k−m = 0), divided by the steady state level of uninhibited
c when the checkpoint is on, that is:

ρ =
coff
st.st.

con
st.st.

(10)

This gave us the following amplification for the two models:

Degradation model

The steady state solutions for the cases were the checkpoint is “on” or “off” was
found to be:

coff
st.st. =

kprod.

koff
deg.

, con
st.st. =

kprod.

kc + koff
deg.

, ⇒ ρdeg. =
kc

kdeg.

+ 1 (11)

If we assume that the system is capable of inhibiting the Cdc20 in an efficient
way then ρ >> 1, which means that we can approximate ρ to:

ρ =
kc

kdeg.

(12)

This expression was verified vs. the exact numerical solution (suppl. fig.4(a)).

Sequestering model

The solution for the “off”-case in steady state is easily obtained:

coff
st.st. =

kprod.

kdeg.

(13)
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In the “on” case we have the following equations in steady state:

0 = kprod. − kcc − kdeg.c + kdiss.m
c (14)

0 = −(kdeg. + kdiss.)m
c + kcc (15)

We eliminate mc and get the following expression:

0 = kprod.−con
st.st.

(

kc + kdeg. −
kdiss.kc

kdeg. + kdiss.

)

⇔ con
st.st. =

kprod.

kc + kdeg. −
kdiss.kc

kdiss.+kdeg

(16)

This expression is further simplified to:

con
st.st. =

kprod.

kdeg.

kdeg. + kdiss.

kc + kdeg. + kdiss.

(17)

Which gives the following ρ:

ρ =
kc + kdeg. −

kdiss.kc

kdiss.+kdeg

kdeg.

= ... =
kc

kdeg. + kdiss.

+1 ∼=
kc

kdeg. + kdiss.

(18)

Again we assumed that the inhibition is effective, ie ρ >> 1. This expression
was also verified against its numeric counterpart (suppl. fig. 4(b)).

3.2 Noise resistance

We investigated the models resistence to noise in the Cdc20 production. There
are mainly two reasons why we only look at noise in the Cdc20 and not also in
the inhibitory signal: First the copy numbers of the constituents of the MCC
complex is more or less constant during the cell-cycle (see section 2.1) and in
relative abundance 5. Second, Cdc20 is the crucial component in the system
and can therefore not be allowed to be active at any time until the checkpoint
ceases to work (see the main text). Unless the copynumber of the inhibitory
signal drops drastically, noise in it will have no or little effect. This is contrasted
by the fact that Cdc20 needs to be kept down all the time.

In order to quantisize the model’s response to noise we defined an expression
for the models noise resistance as a function of the length of the perturbation
ξ(t). What we want to measure is how robust the system is to a perturbation
in the Cdc20 production rate. Since any model will yield to a change in the
production rate if it’s long enough, we decided to investigate the dynamics of
such a response, or the time it takes to reach a new (perturbed) steady state as
a function of the model parameters after exposure to an increase in the Cdc20
production rate of time t.

I.e. we are looking at the system in an initial steady state, clow or c(t = 0),
when it suddenly is exposed to an everlasting arbitrary high increase in the
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Cdc20 production rate kprod.. After this, the increase of c as a function of
time is measured as it goes towards its new steady-state chigh or c(t = ∞).
Subsequently, the function of c(t) is normalized with the difference between the
two steady states so that we get an estimate of the noise resistence between one
and zero. For aestetic reasons one is deducted from this value from this value
so that values towards “1” means very good noise resistance and towards “0”
means very poor noise resistance, that is:

ξ(t) = 1 −
c(t) − clow

chigh − clow

(19)

Please see also supplementory figure 3 for a graphic interpretation.

Degradation model

If we perturb the production rate of c, kprod., for long enough time, its level

changes from clow to chigh. For simplicity it was assumed that kperturbed
prod. >

k“normal′′

prod . Using our assumption from section 2.2, that m and m∗ are in a fast
equilibrium we can solve eq. 3 to get c(t):

c(t) = chigh − (chigh − clow)exp−(kdeg.+kc)t (20)

This gives the following noise resistance:

ξ(t) = 1 −
c(t) − clow

chigh − clow

= 1 −
chigh − (chigh − clow)e−(kdeg.+kc)t − clow

chigh − clow

⇒ ξ(t) ∼= e−kct

(21)

Again we used that ρ >> 1 which means that kc >> kdeg. (from eq. 12). This
analytical expression was verified against the numerical one (suppl. fig. 5(a)).

Sequestering model

In order obtain c(t), equation 7 and 8 were rewritten:

d

dt

(

mc

c

)

=

(

−(kdeg. + kdiss.) kc

kdiss. −(kdeg. + kc)

)(

mc

c

)

+

(

0
kprod.

)

(22)

As in the previous section it was assumed that m and m∗ are in fast equlibrium
(sec. 2.2). Next the eigenvalues were determined:

λ1 = −kdeg. (23)

λ2 = −(kdeg. + kdiss. + kc) (24)
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Which gives the following eigenvectors:

v1 =

(

kc/kdiss.

1

)

(25)

v2 =

(

−1
1

)

(26)

We thus have the general solution cg for the homogenous system:

cg(t) = C1

(

kc/kdiss.

1

)

e−kdeg.t + C2

(

−1
1

)

e−(kdeg.+kdiss.+kc)t (27)

We now looked for the particular solution cp, due to the time-independence of
the constant term, we simply assumed a constant particular solution z̄:

z̄ =

(

z1

z2

)

⇒

(

0
0

)

=

(

−(kdeg. + kdiss.) kc

kdiss. −(kdeg. + kc)

)(

z1

z2

)

+

(

0
kprod.

)

(28)

Solving for z̄ gives:

(

z1

z2

)

=
kprod.

kdeg.

(

kc

kc+kdiss.+kdeg.

kdiss.+kdeg.

kc+kdiss.+kdeg.

)

(29)

Obviously z1 and z2 corresponds to the steady-state levels of c and mc, that is:

(

z1

z2

)

=

(

mc
st.st.

cst.st.

)

(30)

Moreover we note that the ratio between the two equals the amplification:

z1

z2
=

kc

kdeg. + kdiss.

= ρ (31)

so that we can write:

z̄ =

(

ρcst.st.

cst.st.

)

(32)

Equation 22 thus have the following general solution:

(

mc(t)
c(t)

)

= C1

(

kc/kdiss.

1

)

e−kdeg.t+C2

(

−1
1

)

e−(kdeg.+kdiss.+kc)t+

(

ρcst.st.

cst.st.

)

(33)

We can now use the following boundary conditions to find C1 and C2: Assume
that we are in a steady state with a certain production rate of c at time zero,
“k0

prod.” corresponding to “clow”, and then increase it to “kincr.
prod.” so that we

arrive at a new steady state “chigh” after an arbitrary long time we get that:
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(

ρclow

clow

)

= C1

(

kc/kdiss.

1

)

+ C2

(

−1
1

)

+

(

ρchigh

chigh

)

(34)

chigh − clow is now denoted “∆c”, which gives the following equation:

−

(

ρ∆c
∆c

)

= C1

(

kc/kdiss.

1

)

+ C2

(

−1
1

)

(35)

Solving for C1 and C2 now gives:

C1 = −∆c

(

kdiss.

kdiss. + kdeg.

kdiss. + kdeg. + kc

kdiss. + kkc

)

C2 = −∆c

(

kc

kdiss. + kc

kdeg.

kdeg. + kdiss.

)

(36)

Both these formulae can be simplified somewhat due to the fact that ρ >> 1 ⇒

kc >> kdiss.&kdeg. (eq 18):

C1
∼= −∆c

kdiss.

kdiss. + kdeg.

C2
∼= −∆c

kdeg.

kdeg. + kdiss.

(37)

We can now find c(t) from eq.s 33 and 37 and calculate the noise resistance as
defined by eq. 19:

ξ(t) = 1−∆c

(

−
kdiss.

kdiss. + kdeg.

e−kdeg.t −
kdeg.

kdeg. + kdiss.

e−(kc+kdiss.+kdeg.)t + 1

)

/∆c

(38)

This expression can also be simplified, if ρ >> 1 we can neglect the second
exponential term and get the expression for the noise resistance in its final
form:

ξ(t) =
kdiss.

kdiss. + kdeg.

e−kdeg.t (39)

Also this analytical approximation of the noise resistance was consistent with
its numerical counterpart (suppl. fig. 5(b)).

3.3 Reactivation

We defined the reactivation time “τ” as the time it takes to reach 90% of the
coff
st.st. after the checkpoint shutdown. Since m and m∗ are in fast equilibrium

(sec. 2.2) the checkpoint only depends on the kc rate so by setting it to zero
(checkpoint deactivation) we can solve c(t) in the two cases:
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Degradation model

When kc = 0, we can solve eq. 3 which gives a c(t) of the following form:

c(t) =
kprod.

koff
deg.

−

(

kprod.

koff
deg.

−
kprod.

koff
deg. + kc

)

e−k
off

deg.
t (40)

This means that the time it takes to reach 90% of the “off” steady-state, τ is:

τ = −
1

kdeg.

ln





0.1kprod./kdeg.

kprod.

kdeg.
−

kprod.

kdeg.+kc



 =
1

kdeg.

ln





10

1 − 1

1+ kc
kdeg.



 w

1

kdeg.

ln(10)

(41)
This expression was verified with its numerical solution in suppl. fig. 6(a).

Sequestering model

When kc = 0 (checkpoint deactivation) we got the following equation for mc:

dmc

dt
= −mc(kdeg. + kdiss.) ⇒ m(t)c = mc

st.st.e
−(kdeg.+kdiss.)t (42)

Since mc
st.st. is already known from eq:29 and 30, equation 7 can be rewritten

as:
dc

dt
= kprod. − kdeg.c + kdiss.m

c
st.st.e

−(kdeg.+kdiss.)t (43)

This equation has the following general solution:

c(t) =
kprod.

kdeg.

+ Ce−kdeg.t − mc
st.st.e

−(kdeg.+kdiss.)t (44)

Here C is a constant to be determined from the initial and final steady states
of the system that is:

c(t = 0) = con
st.st. and c(t = ∞) = coff

st.st. (45)

Where coff
st.st. and con

st.st. are known from eqs:13 and 17. Using the initial condition
for t = 0 we get that:

con
st.st. =

kprod.

kdeg.

kdeg. + kdiss.

kc + kdiss. + kc

= C −
kprod.

kdeg.

kc

kc + kdiss. + kdeg.

+
kprod.

kdeg.

(46)

We used eq. 32 for the value of mc
st.st.. Solving this equation we see that C = 0,

which gives us the final form of c(t):

c(t) =
kprod.

kdeg.

(

1 −
kc

kc + kdiss. + kdeg.

e−(kdiss.+kdeg.)t

)

(47)
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In order to determine the time it takes to reach a certain fraction “x” of the final
level (coff

st.st. = kprod./kdeg.), we solve the following equation for the reactivation
time τ :

x
kprod.

kdeg.

=
kprod.

kdeg.

(

1 −
kc

kc + kdiss. + kdeg.

e−(kdiss.+kdeg.)τ

)

(48)

we get that:

(1 − x)
kc + kdiss. + kdeg.

kc

= e−(kdiss.+kdeg.)τ (49)

which is the same as:

(1 − x)(1 + 1/ρ) = e−(kdiss.+kdeg.)τ ⇒ (1 − x) ∼= e−(kdiss.+kdeg.)τ (50)

Again we used that ρ >> 1, we now get the final form for the reactivation time
τ :

τ =
ln(1− x)

−(kdiss. + kdeg.)
for x = 0.9 we get that: τ =

ln(10)

kdiss. + kdeg.

(51)

Also this expression was verified vs. its numerical solution (suppl. fig. 6(b)).
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4 Limitations

By restraining ρ, τ , and ξ(t), we were able to investigate their interplay.

4.1 Degradation model

We defined the noise resistance as adequately good if ξ < e−1. This gives that
1/t > kc (eq:21). We furthermore demand that kc/kdeg. > ρ for some ρ (eq.11)
and that τ < ln(10)/kdeg. for some τ (eq:41). In conclusion we get:

1

t
> kc > ρkdeg. >

ρln(10)

τ
>

ρ

τ
⇒ t <

τ

ρ
(52)

This means that the maximal length of a tolerated perturbation is smaller than
the reactivation time divided by the amplification.

4.2 Sequestering model

Given the equations for the amplification, noise sensitivity and reactivation (eq:s
18, 29 and 51) we estimate how a maximal tolerated pulse length depends on
the parameters and constraints. We have that:

ln(10)

τcritical

< kdeg.+kdiss. <
kc

ρminimal

and ξ(tlimit) =
kdiss.

kdeg. + kdiss.

e−kdeg.tlimit

(53)

In order to have good noise resistance, i.e. ξ > e−1 we need to fulfill two
conditions:

(1) : kdeg. < 1/tlimit

(2) : kdiss. > kdeg.

(54)

From these conditions it becomes clear that the limits imposed on kdeg. and kdiss.

in eq:53 doesn’t restrict the noise resistance. According to these constraints
kdeg. don’t have a lower limit (first condition) and we are only interested in the
relation between kdeg. and kdiss., not in their absolute values (second condition).
Obviously for biological reasons kdeg. cannot approach zero but the fact that
it’s not constrained by the mechanisms of this model still holds.

4.3 A combination of the two models

What happens if we combine the two models? That is, if we allow the degra-
dation rate from mc to be higher than kdeg.? Denoting the new enhanced
degradation rate as “k3” we get that the new steady state for con:

con
st.st.

kprod.

kdeg. + kc
k3

k3+kdiss.

(55)
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Here we have two cases: If k3 < kdiss. then the inhibition will scale linearly
with k3 else if k3 > kdiss. only kc/kdiss. will effect the inhibition (and we are
effectively back in the degradation model). That the inhibition (or amplification,
which is linear with the inhibition since the “off”-state is constant) is indeed
proportional to this expression is verified in suppl. figure 7.

Where the inhibition increases with the rate k3 the noise resistance decreases,
since we move more and more towards the degradation case (suppl. fig.8).

5 A comparison between the deterministic and

the stochastic formulations

We also compared the deterministic estimates of ρ,τ and ξ with stochatic sim-
ulations of the models. This was done using the Gillespie algoritm [3]. The
total amount of m was set to 1000, a value lower but in the same magnitude as
the estimated copynumbers of the Cdc20 binding proteins [4] (#Mad2 ∼ 1.1e3,
#Mad3 ∼ 3.17e3, #Bub1 ∼ 4.14e2, #Bub3 ∼ 1.43e3). This value is, as stated
above, not an absolute demand. It can be lowered at least a magnitude depend-
ing on the association rate/“on”-degradation rate. A typical gillespie simulation
is shown in supplementary figure 9.

5.1 Amplification and reactivation

More comprehensive simulations of the models were also done. In order to
get decent fits between the analytical estimates and the numeric simulations,
two things were demanded: First, the system we are looking at has to be in
equilibrium before we perturb it, this generally means that the simulations has
too be long. Second, in order to capture rapid events such as the reactivation we
need as good resolution as possible which implies that we sample often. Another
intersting feature of the stochastic approach is that we can impose an additional
demand on the system, regarding low copynumbers (an amplification of 100 is
not very useful if it decreases the copynumber from 10e6 to 10e4). When tested
for a broader range of parameters (see suppl. fig. 10), we see that the estimates
fits quite well, it should also be noted that the less c, the lower ρ and the shorter
reactivation time the worse the fit between analytical estimate and numerical
simulation.

5.2 Noise resistance

We also tested the noise resistance for the two models:

Sequestering model: Due to the long time necessary for each simulation we
choose to look at a smaller range of parameters (see. suppl. table1). Still as
far as we see the numerical results and the analytical estimates are in good
agreement for a much broader parameter range, given long and frequent enough
simulations.
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kdiss. →

kdeg. ↓ 1.0s−1 2.2s−1 4.6s−1

0.10s−1 1.010 1.014 NaN
0.32s−1 1.071 1.062 1.057
1.00s−1 1.116 1.070 1.101

Table 1: the ratio between the estimated and numerical noise resistance times of the se-
questering model, simulation length was 200000 X 250. Three factors seem to determine the
size of the error, the length of the simulation, the resolution of the simulation (how often we
sample) and the estimated length of the noise resistance. Small t-values are noiser than longer
ones. If we could make a longer simulation while keeping a high resolution of the events this
error would decrease. The NaN value occurs when a simulations hasn’t run long enough.
Parameters used: kprod. = 20Ms−1, km = 100s−1 and k−m = 1000s−1.

Degradation model: It proved quite hard to test the noise resistance in the
degradation model, mainly due to the fact that it’s so low. In practice we had
to weaken the amplification and lower the total amount of emitted complexes
in order to compare the analytical estimate and the numerical values in a rea-
sonable way. Such an approach however violate the assumption that ρ >> 1.
Practically this means that we have to fine tune the parameters in order to get
a noise resistence that fits the estimate, one such example can be seen in suppl.
figure 9.

6 Bode plots of the two models

In order to further compare the two models we formulated the transfer functions
of the two models and plotted their responses for different frequencies in a Bode
plot (suppl. fig 11). We see that indeed the sequestering model seems to buffer
noise in a broader range of frequencies.
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8 Supplementory figures

0 c + m*zm 0 c +m*zmcz mc +

c
0

mWm*
km

-mk
mWm*

km

-mk

k
prod. k

prod.

k
deg.

off

k
deg.

on

k
deg. k

deg.

k
ass.

k
diss.

Figure 1: Two alternative models, degradation model (left) The degradation rate of Cdc20
is upregulated by the checkpoint. sequestering model (right) activated checkpoint proteins
binds and sequesters Cdc20. Cdc20 is denoted “c”, the inactive emitted complex “m” and
the active one is “m∗”.
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Figure 2: Test of the spatial effects: We used FEMLAB to test whether the spatiality in
the system indeed effects the inhibition. The nucleus was modeled as a sphere with an influx
of Cdc20 from different parts of the boundary. The inverse of the amplification of the “on-
degradation” rate is plotted as a function of different maximal reactivation times. In the
ODE case to which we compare the rate amplification is linear. We can thus compare the two
cases and see how much the spatial case deviates from the non-spatial one. A pronounced
difference was seen in the case where we limit the influx to a single point-like source (left most
panel), this effect is much less pronounced when we let the influx come from 12 symmetrically
spreaded point-like sources whose fraction of the nuclear area approximately equals that of
the real cells [2] (middle panel). In the case of a contimous influx the spatial effect practically
vanishes (right panel). Blue lines represent a case where the checkpoint doesn’t amplify the
degradation and the greeen lines a case where the amplification is 100 times. This plot is for
the degradation model, similar results was obtained using the sequestering model (not shown).
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the better resistance. See the text for more details
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Figure 4: Degradation: A comparison between the numerical and analytical solutions for
the amplification in the degradation model, the estimate is very good as long as the checkpoint

induced degradation kon
deg.

is larger then the “natural”degradation koff
deg.

. Parameters used:

mtot = 10, kprod. = .1Ms−1, k−m = 100s−1 and km = 1s−1. Sequestering: A comparison
between the numerical and analytical solutions for the amplification in the sequestering model,
we note that the approximation is good in the area of interest,( see section 4, eq53). Parameters
used: mtot = 10, kprod. = .01Ms−1, kass. = 7.5s−1, k−m = 100s−1 and km = 1s−1.
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Figure 5: Degradation: A comparison between the numerical and analytical solutions
for the noise resistance in the degradation model, the estimate is very good as long as the

checkpoint induced degradation kon
deg.

is larger then the “natural”degradation koff
deg.

. Param-

eters used: mtot = 10, kprod. = .1Ms−1, k−m = 100s−1 and km = 1s−1. Sequestering:
A comparison between the numerical and analytical solutions for the noise resistance in the
sequestering model. The reason the two last rows are all identically zero is that both the
analytical and numerical solutions give the answer 0 and 0/0 isn’t defined. Parameters used:
mtot = 10, kprod. = .01Ms−1, kass. = 7.5s−1, k−m = 100s−1 and km = 1s−1, the pulse
length was 20s (first column) and 10s (all other columns).
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Figure 6: Degradation: A comparison between the numerical and analytical solutions for
the reactivation time in the degradation model, note that the reactivation is independent of
kon

deg.
. Parameters used: mtot = 10, kprod. = .1Ms−1, k−m = 100s−1 and km = 1s−1.

Sequestering: A comparison between the numerical and analytical solutions for the reacti-
vation time in the sequestering model, we note that the approximation is good in the area of
interest, see section 4 (eq53). Parameters used: mtot = 10, kprod. = .01Ms−1, kass. = 7.5s−1,
k−m = 100s−1 and km = 1s−1.
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Figure 9: Upper panel :Gillespie simulation of the sequestering based system using with
9.375 ∗ 106 reactions. The analytical average of c (2.16) corresponds well with the numerical
value (2.29) giving a 6 ∼ % error. The c-variance is ∼ 2.3. The measured reactivation time was
∼ 2.12s compared with the analytical estimation of 2.28s (∼ 7% error). The numerical noise
resistance was ∼ 100s and the analytical 99s (∼ 1% error). Parameters used: mtot = 1000,
kprod. = 8Ms−1, kass. = 2(Ms)−1, k−m = 100s−1 and km = 10s−1 kdiss = 1s−1 and
kdeg = 0.01s−1. Lower panel :Gillespie simulation of the degradation based system using
with 1.875 ∗ 106 reactions. The analytical average of c (2.197 ) corresponds well with the
numerical value (2.20) giving a < 1% error. The c-variance is ∼ 2.2. The measured reactivation
time was ∼ 100s compared with the analytical estimation of ∼ 115s (∼ 15% error) . The
numerical noise resistance was ∼ 0.08s and the analytical ∼ 0.11s (∼ 30%error). Parameters
used: mtot = 1000, kprod. = 20Ms−1, kon = 0.01(Ms)−1, k−m = 100s−1 and km = 10s−1

koff = 0.02s−1.
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Figure 10: The amplification and reactivation for the two models. We here compare the
analytical estimates with the stochatic numerical solutions from the gillespie algorithm. We
note that the estimates get worse when we have, too much c, too little c and very fast
reactivation. Parameters used:”degr.ρ”: 100X20000 iterations, kprod = 200s−1, k−m =
1000s−1 and km = 100s−1. “degr.τ”: 100X100000 iterations, kprod = 20s−1, k−m = 100s−1

and km = 1s−1. “seq.ρ”: 10X150000 iterations, kprod = 20s−1, kass. = 20(Ms)−1 , k−m =
100s−1 and km = 10s−1. “seq.τ”: 40X50000 iterations, kprod = 20s−1, kass. = 20(Ms)−1 ,
k−m = 100s−1 and km = 10s−1. all models mtot = 1000.
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Figure 11: Bode plot and step response of the two different models. Sequestering model
in blue and degradation in green.We see that both models damp high freqiencies whereas
the sequestering model damps low and middle frequencies more efficiently. Parameters used:
same as in figure 2A in the main text.

21


