Supplementary Material

Initializing the EM Algorithm

As an initial estimate for δ , a uniform distribution is adopted. The kernel matrix K is conveniently constructed by diffusing M to a small number of iterations β to give M^{β} and selecting a small number of columns. In picking the columns of M^{β} , a greedy decision is made. In particular, column i in M^{β} corresponds to information diffusion from residue v_i . The first kernel K_i that is picked corresponds to the residue v_i with the highest stationary probability π_i . Following the selection of K_i , all other residues j (and the corresponding columns K_j in M^{β}) that fall within the half-height of the peak value of the probability distribution in K_i are eliminated from further consideration. This approach generates kernels that are spatially disjoint. The selection of kernels continues until every residue in the protein is within a half-height of the peak value of at least one kernel. While other kernel selection procedures are conceivable, we chose the greedy method for computational speed. In practice, we observed the EM algorithm generates results of biological interest that are insensitive to the initial estimates of K and δ .

Hierarchical Gaussian Network (hGNM) Algorithm

Here we present the methodology for generating **GNM** modes at different levels of coarsegraining the information on contact topology inherent to the network of residues, and reconstructing the detailed mode behavior by projecting the eigenvectors and eigenvalues generated at low levels of resolution back to their fine scale counterparts using the Markov chain propagation formalism, a method shortly referred to as hierarchical GNM (**hGNM**).

For hGNM, assume that the dimensions of the Kirchhoff matrices at the coarse, intermediate and fine scales are e, c and n respectively, where $e \leq c \ll n$. The affinity and Kirchhoff matrices at the coarsest level are not likely to be sparse, however a full eigen decomposition of the coarsest Kirchhoff matrix (size: $e \times e$) will be computationally the least expensive step. To reconstruct the eigen information at the fine-scale, assume we have access to the leading eigenvectors \tilde{U} (size: $c \times e$) for $\tilde{\Gamma}$ (size: $c \times c$). Using this we generate the leading eigenvectors U (size: $n \times e$), and the leading eigenvalues $\Lambda = [\lambda_1 \ \lambda_2 \ \cdots \ \lambda_e]$ (size: $e \times 1$) of the fine-scale Kirchhoff matrix Γ (size: $n \times n$). Let $\{U_{\Gamma}, \Lambda_{\Gamma}\}$ denote the eigenvectors and eigenvalues obtained from a direct decomposition of Γ . There are several steps to the eigen reconstruction process:

1. The coarse-scale eigenvectors \tilde{U} can be tranformed using the kernel matrix K to generate U as an approximation to U_{Γ}

$$\boldsymbol{U} = \boldsymbol{K} \boldsymbol{U}$$

- This transformation alone is unlikely to set the directions of U exactly aligned with U_Γ. So, we update the directions in U by repeated application of the following iteration (called *power* iterations (Watkins, 2002): U ⇐ Γ_gU Note, here instead of using Γ we use an adjusted matrix Γ_g given by Γ_g = νI Γ, where ν is a constant and I is an identity matrix. The power iterations will direct the eigenvectors to directions with large eigenvalues. But for fluctuation dynamics, we are interested in the *slow* eigen modes with *small* eigenvalues and hence an adjustment is made to the matrix Γ. In particular, because of Gerschgorin theorem (Watkins, 2002) the eigenvalues of Γ are bound to lie in a disk centered around the origin with a radius ν that is no more than twice the largest element on the diagonal of Γ.
- 3. Steps 1 and 2 need not preserve orthogonality of the eigenvectors in U. We fix this by a Gram-Schmidt orthogonalization procedure (Watkins, 2002).

The eigenvalues are obtained from $\Lambda = \text{diag}(\boldsymbol{U}^{\mathsf{T}} \Gamma \boldsymbol{U})$. More details of this coarse to fine eigen mapping procedure are presented in Chennubhotla & Jepson (2005), including a discussion on the number of power iterations to use and setting appropriate thresholds for convergence. Next, we show **hGNM** maps structure-dynamics information between successive levels of the hierarchy with minimal loss in accuracy.

Table 51. Summary of initia- and inter-subunit couplings and then blooged implications			
Structural Element	Predicted Kole	Relevant Experimental	Keterence
		Observation	
GroES loop E18–A33	Communication between	Allosteric modulation of	Landry et al 1993
	GroES cap and <i>cis</i> ring;	GroEL/substrate affinity	Shewmaker et al 2001
	peaks at residues I25 and G24	and chaperonin cycle speed	
		Regulation of chaperonin	e.g. Hohfeld et al 1994
		and co-chaperonin	Richardson et al 1994
		interaction	Kovalenko et al 1994
			Richardson et al 2001
		Transition from coil to	Shewmaker et al 2004
		β -hairpin upon GroEL	Richardson et al 2001
		binding; G24A mutant shows	
		significant decrease in binding	
V38–I49, A2-V6 and	Intra-ring	Positive intra-ring	See for example
D523–P525 in <i>cis</i> ;	communication	cooperativity	Yifrach et al 1995
R36–K51 in <i>trans</i> ring			
E409-R501	Intra-ring	Intra-ring	Aharoni et al 1997
	communication	communication	
trans ring subunit K	Information flow in	Negative cooperativity	See for example
recruits short segments	opposite rotational	between the two rings	Yifrach et al 1995
from subunit J; <i>cis</i> ring D	directions in <i>cis</i>		Saibil et al 2002
from subunit E, i.e. they	and <i>trans</i> rings	Counter-rotations of two	
integrate their respective		rings; a prominent	
counterclockwise and		mechanism of global	
clockwise neighbors		motion	
D179–L183, V381–K392,	Enhanced stability of	Salt bridge between E386	Yifrach et al 1998
on trans ring I-domain	trans ring compared	and R197 in the <i>trans</i> ring,	Braig et al 1994
coupled to adjacent	to cis ring, via inter-	which is broken in the	White et al 1997
subunit's A-domain	subunit A-I domains	ATP-bound (<i>cis</i>) form	Ma et al 2000 ¹
(occurs exclusively in	interactions		
<i>trans</i> ring, not <i>cis</i> ring)			
I333, D334, K321–V323,	Act as GroEL hubs		
E214–S217 in <i>cis</i> ring,	(cluster cores) for		
R350–E355, V128,E129	allosteric		
in <i>trans</i> ring, and	communication		
E50–E53 in GroES			
E461–V464, A109, K105,	Act as messengers in	Mutant E461K causes	Sewell et al 2004
R452 in both <i>cis</i> and <i>trans</i>	inter-ring allosteric	disruption in inter-ring	
	communication	transfer of ATP-induced	
		signal. R452, K105 form	
		inter-ring salt-bridges with	
		E461, E434 respectively.	
T30–K34 in both <i>cis</i>	Act as messengers in	L31–P33 coordinate the	Xu et al 1997
and trans rings	broadcasting information	nucleotide (along with T90,	
	away from nucleotide-	G88, I493, T91, D495, G415,	
	binding sites	D87) in the X-ray structure	

Table S1. Summary of Intra- and Inter-Subunit Couplings and their Biological Implications