
Supplemental methods

1 Experimental Methods

gi-11 was isolated in a screen of T-DNA insertion lines described in (Richard-
son et al., 1998; Fowler et al., 1999). The CAB:LUC+ and CCR2:LUC
transgenes in the WS background were as described in (Hall et al., 2002)
and (Doyle et al., 2002), respectively. The toc1-9 allele introduces a ter-
mination codon at W138 of TOC1, as described (Kevei et al., 2006). toc1-
10 was isolated from a T-DNA mutagenised population (E.K., B.F. and
F.N. unpublished data). The mutation is caused by a deletion that removes
the coding region of TOC1 (At5g61380) after S255 and the adjacent gene
(At5g61390,encoding an exonuclease-like protein). toc1-9 and toc1-10 were
generated in the same WS CAB:LUC background (Hall et al., 2002) and
both alleles show indistinguishable photomorphogenic and circadian pheno-
types. To create TOC1:LUC, a 2068 bp region upstream of the TOC1 cod-
ing region was amplified (forward primer: tctagacttctctgaggaatttcatc, reverse
primer: ggatccgatcagattaacaactaaac) and inserted into pZPΩLUC (Schultz
et al., 2001). The construct was transformed into wild type Ws plants. Trans-
genic lines carrying single insertion of the transgene were selected and charac-
terised. The cca1-11 and lhy-21 mutants were isolated from the Arabidopsis
Functional Genomics Consortium population (Krysan et al., 1999) and these
were used to produce a lhy;cca1 double mutant. Both the double and sin-
gle mutants have been described in (Hall et al., 2003). The triple mutant
was produced by crossing the cca1-11;lhy-21 double mutant with gi-11. Late
flowering plants were selected in the F2 generation and genotyped with 3
allele-specific mutant and WT primer sets. CAB:LUC+ was transformed
into both the lhy;cca1 double and the gi;lhy;cca1 triple mutants. At least
4 independently transformed lines expressing the luciferase construct were
analysed for each genotype. The data in figure 2 is of one representative line.
A CCR2:LUC+ or TOC1:LUC+ transgene was introgressed into both the
lhy;cca1 double and the gi;lhy;cca1 triple mutants by genetic crossing.

2 Rhythm Analysis

The seedlings were then sown on Murashige-Skoog media contain 3% su-
crose and 1.5% agar. Seeds were kept at 4◦C for 2 days and then grown in
12L:12D cycles of 80 µmol m−2s−1 in a Sanyo MLR350 (Sanyo Gallenkamp
PLC, UK). Temperatures both during entrainment and during experiments
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were logged using Hobo temperature loggers (Onset computer corporation,
USA). Luminescence levels were analysed using an ORCA-II-BT 1024, 16bit
camera cooled to −80◦C (Hamamatsu photonics, UK). The camera was
housed on top of a Sanyo MIR-553 cooled incubator maintaining a uniform
temperature ±0.5◦C (Sanyo Gallenkamp PLC, UK). Illumination was pro-
vided by 4 red/blue LED arrays (MD electronics, UK). Image acquisition
and light control was driven by WASABI imaging software (Hamamatsu
photonics, UK). The images were processed using Metamorph 6.0 image
analysis software (Molecular Devices corporation, USA). Alternatively, lumi-
nescence was recorded by an automated luminometer equipped by red and
blue LED arrays, essentially as described (Hall et al., 2002). Individual pe-
riod estimates were generated by importing data into BRASS (available from
www.amillar.org) and using BRASS to run fast fourier transform-nonlinear
least squares (FFT NLLS) analysis programs (Plautz et al., 1997) on each
data trace to generate period estimates and relative amplitude errors (Rel.
amp. Error). The data is representative of at least 2 independent experi-
ments.

3 Computational Methods

We have built upon our network equations for the proposed interlocked feed-
back loop model for the Arabidopsis circadian clock (Locke et al., 2005a),
as a recent report suggests there is an additional feedback loop involving
LHY/CCA1 and the genes PRR7 and PRR9 (Farre et al., 2005). The inter-
locked loop model consists of a feedback loop between LHY, which represents
the function of both CCA1 and LHY and is acutely light activated, and
TOC1, and an additional loop between TOC1 and a proposed gene Y, which
is also light activated. An additional gene X is also proposed to be activated
by TOC1 and then go on to activate LHY transcription, as TOC1 levels are
low at dawn when LHY transcription is activated. We have added to this
network an additional loop; PRR7 and PRR9 transcription is proposed to
be activated by LHY/CCA1, and then PRR7 and PRR9 go on to repress
LHY and CCA1 transcription (Farre et al., 2005). This gives us a three
loop model for the clock (Figure 1).

We incorporated the PRR7/9 - LHY/CCA1 feedback loop into the clock
as follows. PRR9 (Ito et al., 2003) and PRR7 (Yamamoto et al., 2003) peak
at the beginning and middle of the day respectively, with PRR9 transcription
acutely light activated. The functions of PRR7 and PRR9 in the clock are
individually modest and hard to distinguish, notwithstanding their differing
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light regulation, whereas the double prr7;prr9 mutant gives a strong period
phenotype (Farre et al., 2005), so we combined their functions into a single
gene in the model, termed PRR7/9 (Eqns 14-16). PRR7/9 transcription
was given both an acute light activation term and a constant light activation
term, as we previously used for Y, and is activated by nuclear LHY protein.
However, our optimisation scheme minimised the parameters associated with
the constant light activation of PRR7/9, so this term was removed from our
equations for PRR7/9 mRNA (Eqn 14).

We modified our terms for LHY mRNA levels to include the role of PRR7/9
(Eqn 1). PRR7/9 represses both LHY ’s light activation and the activation
by TOC1. In addition to the acute light reponse, we gave LHY mRNA levels
a constant light activation term Θlight (t)n0 as LHY transcription appears
to be light activated throughout the day in an prr7;prr9 plant (Farre et al.,
2005). Θlight = 1 when light is present, 0 otherwise.

We took the following as our mathematical model for the central circadian
network, which involves the cellular concentrations c

(j)
i (t) of the products

of the ith gene (i = L labels LHY, i = T labels TOC1, i = X labels X,
i = Y label Y, i = A labels PPR7/9) where j = m, c, n denotes that it is the
corresponding mRNA, or protein in the cytoplasm or nucleus respectively.
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Here the various rate constants nj , gj etc parameterise transcription (nj ,
gj), degradation (mj , kj), translation (pj), and the nuclear ↔ cytoplasmic
protein transport (rj). The Hill coefficients are represented by α, a, b, c, d,
e, f , g. Light is known to give an acute, transient activation response for
expression of LHY and CCA1 (Kim et al., 2003; Kaczorowski & Quail, 2003;
Doyle et al., 2002). This was modelled as in (Locke et al., 2005a,b), using
a simple mechanism involving an interaction of a light sensitive protein P,
with concentration c

(n)
P with the LHY gene promoter. Θlight = 1 when light

is present, 0 otherwise. The values of the four parameters that appear in
the equation for c

(n)
P are chosen so as to give an acute light activation profile

which is close to that observed in experiment. The essential features of Eq
13 are that P is produced only when light is absent and is degraded strongly
when light is present.

3.1 Parameter Optimisation

The parameter values for the optimum solution for the interlocked feedback
loop model (Locke et al., 2005a) were taken as our starting point. In order to
reduce parameter space, the acute light activation term for PRR7/9 q4 was
set to the same value as the acute light response for the LHY promoter q1, g,
the Hill coefficient of PPR7/9 activation by LHY was set to the same value
as c, the Hill coefficient of TOC1 repression by LHY, and g0, the constant of
repression of LHY by APPR7/9 was set to 1. The value of the Hill coefficients
were constrained through optimisation to take biological reasonable values
of between 1 and 4, and the minimum value of the constant light activation
term to LHY, n0, was set to 0.5, in order to ensure the possibility of light
activation through out the day.

The parameters in Eqn 1 were reoptimised to take into account that in
a prr7;prr9 plant the period of the clock is approx 30 hours in LL (Farre
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et al., 2005). In order to model the prr7;prr9 mutation the translation rate
of PRR7/9, p6, was set to 0, and then the equations were solved for 100000
simulated annealing points in order to minimise a qualitative cost function
as defined in (Locke et al., 2005a) which quantifies the goodness of fit of the
solutions to several key pieces of experimental data. We briefly outline the
terms of the cost function below, but for a full description of the method
please see (Locke et al., 2005a,b).

The equations were solved using MATLAB, integrated using the inbuilt
stiff equation solver ODE15s (Shampine & Reichelt, 1997). The optimisation
process described in the following sections was carried out by compiling the
MATLAB code into C and running the code on a task farm super computer
consisting of 31 x 2.6 GHz Pentium4 Xeon 2-way SMP nodes (62 CPUs
in total). In order to evaluate the terms of the cost function, we solved
numerically Eqns 1-16 over 600h, 300h in 12:12 LD cycles, and then 300h in
LL conditions (the first 200h of each solution are discarded as transitory). In
what follows we identify 1nM and 1h as the typical concentration and time
scales, and measure all concentrations and rate constants in units where these
are unity. We initialised our simulation at c

(j)
i = 1.

We made modifications to the WT cost function as defined for the inter-
locked loop model (Locke et al., 2005a). We repeat a description of these
terms here for completeness. The WT cost function is defined as:

∆ = δτld
+ δτd

+ δφ + δsize + δcL
+ δφd (17)

we now describe each term of the cost function, Eqn.17, in turn.
First, δτld

measures the difference between the experimental target period
and the mean period of the oscillation in mRNA levels of LHY and TOC1
in light:dark (LD) cycles as exhibited by the model;

δτld
=
∑

i=L,T

〈(24 − τ
(m)
i )2/0.15〉ld (18)

This is the summed error in the period, τ , for LHY (L) and TOC1 (T)
mRNA levels (m) in light:dark cycles (LD), where 〈〉ld gives the average
over the cycles between 200 < t < 300, and a marginally acceptable period
difference of ≈ 25mins contributes O(1) to the cost function for each term.

Second, the term δτd
gives a similar measure in constant darkness (DD).

These two terms ensure that the entrained and free running clocks are near
limit cycles with the experimentally observed period (stably entrained in LD
cycles and with a free running period greater than 24h (Millar et al., 1995)),

δτd
=
∑

i=L,T

〈(25 − τ
(m)
i )2/f〉d (19)
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where the average of 〈〉d is now over 300 < t < 600 (DD). The biological
evidence strongly indicates that the free running period of the clock is greater
than 24 (Millar et al., 1995), probably about 25, but we have less confidence

in assigning a precise value hence we adopt values of f = 0.05 if τ
(m)
i ≤ 25

and f = 2 if τ
(m)
i > 25.

Thirdly δφ measures the difference between the target phase and the av-
erage phase of the peaks of LHY and TOC1 mRNA expression in LD. It
also ensures that the oscillations are entrained to the LD cycles,

δφ =
∑

i=L,T
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The first term compares the mean difference in phase over the LD cycles,
where ∆Φi = φ̄i − φi, φi is the phase (from dawn) of the RNA peak in
the model and φ̄L = 1hr, φ̄T = 11hr are the target phases of the peaks
in c

(m)
L and c

(m)
T respectively. We assume a cost that is O(1) for solutions

that differ by an hour. The next two terms ascribe a cost of O(1) for limit
cycle solutions in LD cycles whose peak heights vary only within 5 percent
of one another, and whose variations in peak phases are 5 minutes. σ[]ld is
the standard deviation for the cycles in LD. The term δent checks that the
solution is truly entrained to the light/dark cycle, i.e is not oscillating with
the correct phase simply because of the initial conditions chosen. This is
achieved as follows: the solution is rerun for 75h, taking the solution at 202h
and shifting it back 3h, i.e initialising the t = 202 solution as the t = 199
solution. The new phase of the second peak is compared to the original phase
of the second peak. If the phase discrepancy is still near 3 h, then the solution
is too weakly entrained, and the solution is pathological. The LD cycles have
failed to phase shift the response. We assume that the rate of adjustment
of the phase is linear in the discrepancy of the phase. This gives us a phase
discrepancy that goes to 0 exponentially in time (like the radioactive decay
equation). The characteristic time is then trivially related to the log of the
phase discrepancy. It is this logarithmic variation that is reflected in our
choice of δent. Hence δent takes the form of log(0.5)/ log(δφ/3), where δφ is
the phase discrepancy in hours between the shifted and original solution, and
δφ/3 is therefore the fraction of the imposed 3h phase shift remaining after
2 periods. The term log(0.5) gives the acceptable remaining phase difference
of 1.5h for the second cycle, which results in an O(1) contribution to the cost
function.

Next δsize checks that the oscillation sizes are large enough to be detectable
experimentally, and quantifies the degree to which the clock in the model is
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damped in constant conditions: we require that it is not strongly damped,

δsize =
∑

i=L,T
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The first term introduces a > 1 cost for solutions in LD cycle with oscilla-
tion sizes, (∆c

(m)
i = c

(m)
i max − c

(m)
i min), less than 1nm, and the second term

penalises oscillations that decay too quickly when entering DD as follows:
τo is a time characterising the decay in the oscillations over the 300h in
DD, τo = −300/ log((∆c

(m)
T ld−∆c

(m)
T d)/∆c

(m)
T ld), and τe gives the marginally

acceptable decay time, −300/ log (0.75).
The term δcL

contains a measure of how broad the peak of LHY mRNA
expression is in the proposed solution in LD cycles and is small only if the
trace peaks sharply, as observed experimentally. This term is also only small
if the peak heights of LHY mRNA expression drop when going from LD to
DD,
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The first term penalises LHY mRNA expression profiles that do not have
a sharp peak in LD cycles, with an O(1) contribution if LHY ’s expression
level has dropped by 2/3 of its oscillation size within 2h before and after its
peak of expression (at time tp). The second term checks that LHY mRNA
expression has a broad minimum, with an O(1) contribution if 2h before and
after the minimum point (at time tm) LHY ’s expression has only increased
to 5 percent of the level 2 h before LHY ’s peak. The last term checks that
the peak of LHY mRNA expression drops from LD into DD, as it loses its
acute light activation.

Finally, δφd constrains an appropriate phase difference between the peak
times of LHY (φL) and TOC1 mRNA (φT ), ∆Φd = φT − φL (modulo half
the period), with a characteristic prefactor of 10h.

δφd = (10/∆Φd)
2 (23)

In order to model the prr7;prr9 mutant the cost function error term for the
WT period in DD, δτd

was replaced with an error term for the period in LL,
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δτll
in order to find a solution in LL with a period of 30h, as opposed to a DD

solution with a period of 25h. (Supplementary Table One, Supplementary
figure 1).

δτll
is given by:

δτll
=
∑

i=L,T

〈(30 − τ
(m)
i )2/f〉ll. (24)

This represents the summed error in the period, τ , for LHY (L) and TOC1
(T) mRNA levels in constant light conditions, where 〈〉ll gives the average
over the cycles between 300 < t < 600. The biological evidence strongly
indicates that the free running period of the clock in an prr7;prr9 mutant
plant is not less than 30h (Farre et al., 2005), but we have less confidence in

assigning a precise value hence we adopt values of f = 0.05 if τ
(m)
i ≤ 30 and

f = 2 if τ
(m)
i > 30. Also the error terms for the oscillation under constant

conditions in δsize and δcL
were calculated for LL, rather than DD.

The parameters for PPR7/9 were then optimised (Eqn 14-16) in order
to model a WT plant. As in (Locke et al., 2005a,b) the equations were
solved for 1 million quasi random points in parameter space, and δτll

was
altered in order to search for a period in LL of 24h rather than 30h δτll

=
∑

i=L,T 〈(24− τ
(m)
i )2/0.1〉ll. The costfunction was also altered to find a short

period oscillation in the toc1 background (Mas et al., 2003), as opposed to a
short period oscillation in a lhy;cca1 background (Locke et al., 2005a). This
gives a cost function:

∆ = δτld
+ δτll

+ δφ + δsize + δcL
+ δφd + δtoc1

τld
+ δtoc1

τll
+ δtoc1

φ + δtoc1
size + δtoc1

cY

(25)

where the first 6 WT terms are as defined as above, and the label (toc1)
denotes the new cost function for the toc1 mutant plant. We define below
the terms for the new toc1 mutant terms of the cost function:

δtoc1
τld

=
∑

i=A,L

〈(24 − τ
(m)
i )2/0.15〉ld (26)

is the summed error in the period, τ , for A (PRR7/9) and T (LHY ) mRNA
(m) levels in LD cycles. We penalise solutions with a period of PRR7/9

greater than 20 hours under constant light conditions. δ
(m)
τll

= 0 if the period
is less than 20 hours, otherwise:

δtoc1
τll

= 〈(20 − τ
(m)
A )2/0.1〉ll (27)

9



The next term δtoc1
φ is defined as:

δtoc1
φ =

[

〈∆Φ2
L〉ld + (σ[∆ΦL])2] (28)

Here the first term compares the mean difference in phase over the LD cycles,
where ∆Φi = φ̄L−φL, φL is the phase (from dawn) of the LHY mRNA peak

in the model and φ̄L = 1h is the target phase of the peak in c
(m)
L . The second

term describes a cost of O(1) for solutions whose variations in peak phase
are 1h. Next,

δtoc1
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∑
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This term costs for solutions in LD cycle with oscillation sizes, (∆c
(m)
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c
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p
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The first term checks that the LHY mRNA expression profile has a sharp
peak in LD cycles, with an O(1) contribution if LHY ’s expression level has
dropped by 2/3 of its oscillation size within 2 hours before and after its peak
of expression. As for previous optimisations, throughout the implementation
the cost function was “capped” at ∆max = 104, such that ∆ → Min(104, ∆).
The sum of the toc1 cost function terms was also capped at 103.

The output of the model is the same as for the interlocked loop model
when simulating a lhy;cca1 plant, as PRR7/9 and LHY are no longer part of
the functional clock in this case. A further 100000 simulated annealing points
was carried out on the 10 best solutions found from the search of parameter
space, to find the optimal parameter set (Supplementary Table One).

3.2 Parameter Stability Analysis

We examined the robustness of the optimised 3 loop model to parameter
changes by calculating the period and amplitude of LHY mRNA oscillations
over 300h in LL after a 5% increase or decrease of each parameter value in
turn (Supplemental figure 2). The resulting change in period varied from
0 to 3%, similar to that seen for the interlocking loop model (Locke et al.,
2005a), and an improvement over the robustness properties for the one loop
model (Locke et al., 2005b). The model was most sensitive to alterations
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in PRR7/9 transcription and degradation (e.g see 4 points with mean LHY
mRNA levels less than 0.5 in Supplemental figure 2). Longer transients after
the transition from LD to LL are also seen using parameters with a 5%
reduction in PRR7/9 transcription compared to WT, although not in the
transition from LD to DD (Data not shown). This further points to the need
to investigate the role of light in the feedback loops.
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