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Summary

Gaussian-process models are developed to detect genetic linkage using complete high-resolution maps of identity
by descent between affected relative pairs. Approximations are given for the significance level and power of
the likelihood-ratio test of no linkage and for likelihood-ratio confidence regions for trait loci. The sample sizes
required to detect linkage by using different classes of affected relative pairs are compared, and the problem of
combining data from different classes of relatives is discussed.

Introduction

Classical linkage analysis in human genetics proceeds by
evaluating the likelihood of the observed recombina-
tion pattern between a phenotype and a putative
marker or a small number of markers, which, to be
most useful, must occupy known map positions. The
appropriate statistical theory is described by Ott (1991).
In order to take advantage of increasingly precise RFLP
linkage maps, Lander and Botstein (19864, 1986b) have
suggested methods for simultaneously testing linkage
of Mendelian traits to an array of markers and, in a
subsequent paper (Lander and Botstein 1989), discuss a
method for searching the entire genetic map of an ex-
perimental organism, for quantitative-trait loci. A pri-
mary difficulty associated with this approach to linkage
in humans is the need to collect large pedigrees span-
ning several generations, including family members
with and without the trait, in order to obtain “informa-
tive” family units. Incomplete or age-dependent pene-
trance causes additional problems.

An alternative approach is to establish linkage
through mapping the regions of genetic identity by de-
scent of pairs of affected relatives, i.e., relatives who
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share a trait of interest. A notable advantage of this
method is that only individuals having the trait need to
be studied, and pedigrees can consist of as few as two
affected relatives. In contrast to the well-documented
large pedigrees required by classical linkage analysis, the
method of affected relatives capitalizes on the possibil-
ity of using a large number of small pedigrees consisting
only of affected individuals, who, at least for medically
significant traits, are likely to be easily located and
eager to cooperate. An illuminating discussion of the
method of identity by descent for affected relative pairs
is contained in the work of Risch (19904, 19905,
1990¢). Risch, however, does not directly consider ad-
vantages that accrue if one can utilize a complete ge-
netic map instead of isolated markers.

With a sufficiently large number of affected relative
pairs, an analysis that maps regions of identity by de-
scent along the entire genome can reveal the positions
of genes that contribute even a slight susceptibility to
the trait. The number required is a function of many
variables, including the genetic relationships of the af-
fected pairs, the relative risk (compared with the source
population) of the trait in the individuals with a “sus-
ceptible” allele at the locus of interest, and the fraction
of “affected” cases associated with a particular locus
(which depends on both genetic heterogeneity and fre-
quency of phenocopies or misdiagnoses). A critical de-
terminant of the number of pairs required for this map-
ping strategy is the density and degree of polymorphism
of the markers to which linkage is sought (Bishop and
Williamson 1990; Risch 1990c). For practical purposes,



Gaussian Models for Linkage Analysis

the affected-relative-pair strategy requires analysis of a
large number of highly informative polymorphic
markers, closely spaced throughout the genome. Until
recently, the lack of a practical laboratory method to
satisfy this requirement has posed a barrier to wide-
spread application of affected-relative-pair mapping of
complex human traits.

Methods for typing a dense set of polymorphic
markers are now approaching feasibility. Our approach
is motivated by the particular laboratory method of
genomic mismatch scanning (Nelson et al., in press),
which can provide an essentially continuous specifica-
tion of regions of identity by descent. The same statisti-
cal ideas are relevant to identity-by-descent data ob-
tained from any polymorphic, reasonably dense
mapped set of markers, e.g., an RFLP linkage map (Bot-
stein et al. 1980).

In the present paper we discuss via a number of sim-
ple examples some Gaussian models for analyzing com-
pletely mapped identity-by-descent data. Questions to
be addressed include the following: (1) How should we
test for regions of enriched identity by descent, includ-
ing the determination of thresholds that control the
rate of false positives? (2) How can we determine the
sample size required to give us a prescribed power to
detect effects of a hypothesized magnitude? (3) When
we believe that a region of enriched identity by descent
has been detected, how do we specify the region over
which subsequent, more careful searching should take
place? (4) How do answers to the first three questions
vary as a function of the density of the genetic map?

The paper is organized as follows: In the rest of this
introduction we describe in the simplest possible con-
text, where our data are derived entirely from a number
of independent grandparent-grandchild pairs, a Mar-
kov-chain model that has been discussed in more detail
by Feingold (in press). Next we develop a Gaussian ap-
proximation to the Markov-chain model and give some
results for other relative pairs and combinations of
classes of relatives. We also discuss briefly the compli-
cations that arise if regions of identity by descent are
determined by reference to a limited fixed set of
markers. Overall we find that the Gaussian models are
substantially simpler to analyze than are the Markov-
chain models. As a result, we can obtain more complete
answers, which provide useful new insights. The unify-
ing feature of our treatment is the systematic applica-
tion of ideas from the recent statistical literature on
change-point problems (e.g., see James et al. 1987; Sieg-
mund 1989).

235

|. The Markov-Chain Model

Our basic experimental assumption is that, for any
two relatives sharing a trait of interest, it can be deter-
mined where along their genomes the DNA sequences
are identical by descent. For a given pair of relatives
these regions of identity by descent can be described by
a 0-1 process, say Y,, where Y, = 1 indicates identity by
descent at a locus ¢ and Y, = 0 indicates an absence of
identity by descent at #. A gene contributing to a pheno-
type that is not common in the population but is shared
by the relative pair is expected to be found in the region
of identity by descent.

The data consist of a number of such 0-1 processes
for various relative pairs sharing the phenotype of inter-
est. The goal is to look for regions of identity by de-
scent that are common to a large proportion of simi-
larly affected relative pairs, with the purpose of
discovering the location of the gene or genes contribut-
ing to the shared trait.

For simplicity we use the Haldane mapping function
and assume a common rate of crossovers for male and
female meioses. At the cost of some complication,
these assumptions may be weakened.

Remark. To map rare recessive traits, it may be useful to
analyze regions of homozygosity by descent of the off-
spring of consanguineous matings (Lander and Botstein
1987). The methods developed in the present paper
can, with minor modifications, be applied to the statis-
tical analysis of data from complete maps of homozy-
gosity by descent. For a parent-child mating the asso-
ciated Markov chain is slightly different from any that
we encounter in identity-by-descent analyses. For most
other matings the same process arises in analysis of
identity by descent. For example, for the offspring of a
mating of siblings the process describing the regions of
homozygosity by descent is exactly the same as that
encountered in identity-by-descent studies of first
cousins, since the offspring of a mating of siblings is its
own cousin. However, for studying homozygosity by
descent, it seems less likely that large numbers of cases
will be involved—and hence less plausible that the
large-sample Gaussian models developed here will be
directly applicable. Appropriate Markov-chain models
will be discussed elsewhere (Feingold 1993).

2. Grandparent-Grandchild Pairs

Initially we consider the simplest possible case,
where our data consist of a number of independent
grandparent-grandchild pairs sharing the trait of inter-
est. The meiosis that determines regions of identity by
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descent for any given pair is that of the intervening
parent. Under the Haldane mapping function, which
specifies that the number of crossovers as we move
along each chromosome is described by a Poisson pro-
cess, the probability of a recombination between two
loci having genetic distances (in ¢cM) ¢ and s from the
left end of the same chromosome is 6 = [1 — exp(—2A|¢
—s|)]/2, where A = 0.01. Equivalently, the 0-1 process
that indicates regions of identity by descent switches
between the two states after independent exponentially
distributed intervals having mean genetic length 1/A
c¢M. On any chromosome not containing a gene con-
tributing to the trait of interest, at any locus ¢, the 0-1
process is found in each of its two possible states with
probability 1/2 each.

Consider a chromosome containing a single locus 7,
at which one or more alleles confers susceptibility to
the trait. In a given population suppose that grandpar-
ent-grandchild pairs having the trait have an increased
probability (1 + a)/2 of identity by descent at locus r.
The parameter o measures the excess likelihood of
identity by descent at r, among relative pairs selected
for sharing the trait, but otherwise the definition is com-
pletely formal. For some purposes it is useful to have a
genetic-epidemiological interpretation of a. One possi-
bility is to interpret a as the percentage of pairs having
the trait on the basis of a shared allele at the locus . We
assume that the allele occurs sufficiently infrequently in
the population that, with large probability, its occur-
rence in both members of a relative pair is due to iden-
tity by descent. The remaining (1 — a)100% of pairs are
assumed to have the trait for some reason unrelated to
the locus »—and hence are assumed to share alleles
identical by descent at r with probability 1/2. A more
sophisticated interpretation, arising from a detailed ge-
netic model for the trait, is Risch’s (19904, 19905) in-
terpretation of o in terms of the increased risk of the
trait appearing in a relative of a person who has the trait
of interest. The parameter depends on both the trait
and the relationship of the affected pair. For grandpar-
ent-grandchild pairs, in Risch’s (1990b) simplest model
a= (Ao —1)/(Ao + 1), where Ay is the relative risk of an
offspring of an affected parent to be affected, com-
pared with the population prevalence of the trait. For a
brief discussion, see Appendix B.

We now consider the process X,, the number of
grandparent-grandchild pairs, of a total of N pairs, hav-
ing identity by descent at the locus ¢. On each chromo-
some, X, is a Markov chain on the states 0,1, ..., N
whose transition rates are easily calculated from the
assumed Haldane mapping function and the indepen-
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dence of the different relative pairs. On a chromosome
not containing a locus contributing to the trait, the
chain has a stationary distribution, which is binomial
(N, 1/2), so X, is usually found close to N/2. On a
chromosome containing exactly one trait locus 7, the
expected value of X, at ¢t = ris N(1 + a)/2, and, for
general ¢, N[1 + a exp(—2A|t — r|)]/2. Hence at loci ¢
close to r we expect to find values X, rather greater than
N/2, indicating a region of enriched identity by de-
scent. It seems reasonable to look for trait loci in re-
gions where X, takes on large values and to use the
maximum value of X, as ¢ varies over each chromo-
some, as a statistic to test for the existence of such loci.
If we use a threshold a to determine the existence of
such regions, the false-positive rate for each individual
chromosome is

P{max X,>a}, 1)

o<ts<l

where /is the genetic length of the chromosome and the
probability is computed under the assumption that
there is no trait locus 7. To apply this test simulta-
neously along an entire genome, we can use the inde-
pendent assortment of chromosomes at meiosis to give
an overall false-positive rate, which, for practical pur-
poses, can be taken to be the sum of the false-positive
rates for the individual chromosomes.

For a discussion of probability (1) and similar proba-
bilities for data obtained from other relative pairs, see
Feingold (in press). In general the processes involve
functions of underlying, unseen Markov chains but are
not themselves Markovian.

Gaussian Approximations: Grandparent-
Grandchild Pairs

We now turn to approximate Gaussian models. Ini-
tially we consider only the case of a large number of
grandparent-grandchild pairs, and later we indicate by a
number of examples the nature of the corresponding
analysis for other affected relative pairs. It turns out
that the Gaussian model described here is mathemati-
cally related to the model of Lander and Botstein
(1989), which we therefore also discuss briefly.

I. The Gaussian Model

Suppose that, for the grandparent-grandchild model
discussed above, the number of affected pairs, N, is
large. The parameter a denotes the excess likelihood of
identity by descent at the trait locus 7. It is convenient
to let p denote the probability of identity by descent at
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an arbitrary locus, p = 1/2 for grandparent-grandchild
pairs, and to introduce a new parameter defined by

E=NVqp. 2)

Then, by the central limit theorem, for large values of N
the normalized statistic

(X, = Np)/NV? 3)

is approximately a Gauss-Markov process Z,, which
can be described as follows: Along each chromosome
not containing the locus 7, Z, is a stationary Ornstein-
Uhlenbeck process with mean value 0 and covariance
function o%exp(—f|t|), where 6% = p(1 — p) = 1 /4 and
B = 2A, with A being the crossover rate per unit of
genetic distance ¢. When ¢ is in centimorgans, A = 0.01.
On the chromosome on which the distinguished locus »
resides, the process Z, is the same stationary Ornstein-
Uhlenbeck process superimposed on the mean value
function

Eexp(=Blt —r]), (4)

which has its maximum value equal to & at the point r
and drops off exponentially as we move away from r.
For basic definitions and for partial derivations of the
results stated below, see Appendix A.

Remarks. (i) Although we restrict our explicit discus-
sion to the case where alleles at a single locus may
confer increased susceptibility to a trait, our long-range
goals are to deal with polygenic traits. In that case we
want to detect and estimate the location of all loci
making significant contributions. When alleles at some
or all of several loci may confer susceptibility to a trait,
the enriched identity by descent at any one of these
loci, as measured by the parameter a, is likely to be
small and hence difficult to detect without a large sam-
ple size. For example, in the Risch (1990a, 1990b)
model for monogenic inheritance a value of Ao = 9
corresponds to o = 0.8. However, if two unlinked loci
confer increased susceptibility via the multiplica-
tive model of Risch (19904), then Ay = A,0h0,
where Ao(i = 1,2) is a relative-risk factor associated
with locus 7;. A similar Gaussian model applies, and the
value @, associated with 7; is (A,o — 1)/(A;o + 1). If the
two loci contribute equally, so that A, = A,q, then the
same value of A = 9 corresponds to 0; = 0.5. A similar
analysis of Risch’s additive model yields o; = 0.4. In the
numerical examples that follow we concentrate on rela-
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tively small values of a. (ii) The specific form of the
Haldane mapping function leads to the exponential
mean value and covariance function for Z,. If the frac-
tion of recombinants between loci at genetic distance ¢
is given by 8 = [1 — R(#)]/2, then the mean value of Z,
becomes ER(t — 7), while the covariance function is
R(t)/4. The resulting theory is only slightly more com-
plicated and is discussed below (see Proposition 4 of
Appendix A). The main consequence of using a differ-
ent mapping function would be a genome of a different
total length, which one can see, from the results in the
rest of the paper, would have only minor implications.
(iii) For the model of Lander and Botstein (1989) deal-
ing with quantitative traits in experimental genetics,
this same Gaussian process describes the asymptotic
behavior of the statistic (their notation) #'/2B*(d). For a
description of the behavior of the process when there is
no quantitative-trait locus on the given chromosome,
see their footnote A3. This corresponds to the special
case & = 0 in our notation, but it is easy to show that the
two models also coincide in the case when & (#!/2b in
their notation) is unequal to 0.

2. Significance Level, Power, and Sample Size

In what follows we discuss the process Z, for an arbi-
trary chromosome of genetic length / and, to extend
results to an entire genome, appeal to the independent
assortment of chromosomes at meiosis. To study the
process Z, on a given chromosome, we note that, al-
though we observe the process over an interval [0,/],
where [ is the (genetic) length of the chromosome, the
process can be assumed to be defined on the entire real
line. As a consequence of Proposition 1 in Appendix A,
we see that the log-likelihood function of the observed
process {Z,, 0 < t <[} as a function of the unknown
parameters 1, & equals

o8z, — &/2]. (5)

In particular, if » were known, then a sufficient statistic
for the remaining parameter & would be Z,. From for-
mula (5) it follows that for testing the null hypothesis of
no region of enriched identity by descent, & = 0, against
the one-sided alternative, £ > 0, the likelihood-ratio
test rejects the null hypothesis if max,.,;Z, /0 exceeds
some threshold b. (This is equivalent to the test pro-
posed above for the Markov-chain model.)

In the statistical literature there are several
simple approximations for the significance level,
Py{max,c,Z, /G > b}, where the subscript 0 denotes
that the probability is evaluated under the assumption
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that & = 0. For example, see Leadbetter et al. (1983,
chap. 12), Siegmund (1985, chap. 4), and Aldous (1989,
chap. D). For our calculations we have used the ap-
proximation

Py{max Z,/c > b} ~ 1 — D(b) + Blbp(b), (6)

where / is the length (in cM) of the chromosome and ¢
and @ are the standard normal density and distribution
functions, respectively. Although this approximation is
not the best one for the present problem, it has the
advantage that, with minor modifications, it is appro-
priate for problems in which the set of markers is dis-
crete and for non-Markovian processes (see below). By
the independent assortment of chromosomes, an over-
all significance level when this test is applied to each
chromosome is approximately approximation (6)
summed over all chromosomes.

It is also possible to give an approximation for the
power of the test, i.e., the probability P¢{max,Z,/c
> b} for values of & not equal to 0 and hence, via equa-
tion (2), to determine the number of affected pairs nec-
essary to detect, with reasonably large probability, say
.50 or .90, a deviation of given magnitude from the null
hypothesis. By arguing along the lines of James et al.
(1987), we obtain in Proposition 2 of Appendix A the
following approximation for the power of the test:

Pe{max Z,/6 > b} =~ 1 — Db - /o)
+ ¢(b—&/0)2E/0)! — (/0 + b)7].

The first two terms on the right-hand side of approxi-
mation (7) give the probability that the process at the
trait locus, Z, /o, exceeds b. The final expression is an
approximation for the probability that the process is
below the threshold at the trait locus 7 but, because of
random variation, exceeds the threshold at some
nearby locus. The approximation (7) is predicated on
the assumption that the locus 7 is not too close to either
end of a chromosome. When 7 is at an end of a chro-
mosome, there is slightly less power, and the term in
square brackets in approximation (7) is just (§/c)".
Note that approximation (7) depends critically on the
noncentrality parameter /6. It depends indirectly on
the value of B, to the extent that the value of b needed
to achieve a desired false-positive rate depends on B (see
approximation [6]).

For a numerical example, we consider the mythical
unicorn, which we will suppose to have 25 pairs of
chromosomes, each of which is 100 ¢M in length. The
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numerical results would be almost the same for humans
having 23 pairs of chromosomes of a total genetic
length in the range 3,000-3,600 cM. To obtain a signifi-
cance level of about .002 for each chromosome—and
hence an overall significance level of about .05—we
can, according to approximation (6), take b = 3.84.
This corresponds to a threshold of 3.2 on the LOD
scale, which is traditionally used with a threshold of 3
in classical linkage analysis (Ott 1991). In terms of the
process X,, which counts the number of cases (of the
total of N affected pairs) of identity by descent at the
locus ¢, by statistic (3) and approximation (6) the thresh-
old is Np+06bN /2 = 50 + (0.05)(3.84)(10) = 69.2 for N
= 100, in agreement with Feingold (in press). According
to approximation (7), 50% power is achieved at &
= 1.72. Using equation (2), we see that we can achieve
50% power to detect a gene responsible for 50% of the
cases of a given trait, with a sample size of N = 48
affected pairs. If we want 90% power to detect a single
locus contributing to 50% of the cases of a trait, we
need about N = 90 affected pairs. This later result ap-
pears to be roughly consistent with a calculation by
Risch (1990b), if we equate our parameter o to his
(Ao — 1)/(Ao + 1). However, Risch’s calculation is con-
cerned with a single marker assumed to lie at zero re-
combination distance from the trait locus of interest.
This will rarely be the case when linkage to individual
markers is being tested.

Remarks. The following technical mathematical fea-
tures of the Gaussian approximation are worth noting.
For r < s < t the exact covariance of the process (3) is
o’lexp(—B|t — s|) — d?exp(—B{t + s — 2r})]. As N —
00, we assume that o = 0 in such a way that the parame-
ter € in equation (2) remains finite. As a consequence,
the second term in the exact covariance function of
process (3) converges to zero. The discrepancy between
the exact and the asymptotic covariance functions will
have some effect on the quality of the approximation
(7), for the power of the test to detect linkage, espe-
cially if o is large. If we carry out a similar analysis with
the more complicated, exact covariance function, we
find that about N = 83 affected pairs are required for
90% power, instead of the N = 90 obtained above.
Similarly, while it turns out that approximation (6) pro-
vides an excellent approximation in a number of cases,
in general it can be improved by making a preliminary
transformation of the process X,. Since our main goal
in this paper is to use the simplest possible models to
obtain new insights, we defer to the future both a sys-
tematic quantitative assessment of the accuracy of our
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approximations and the possibility of improving them
at the cost of some additional computation.

3. Confidence Regions

If, because of large values of Z, for a certain range of
t, our test indicates the presence of a region or regions
of enriched identity by descent, we would like to esti-
mate the extent of the region likely to contain the un-
known true values of r. Confidence regions provide an
ideal statistical tool for this purpose. For a general dis-
cussion of this concept and its application to linkage
analysis, see the work of Ott (1991, esp. secs. 3.6 and
4.4). The locus r where the mean value of Z, reaches its
maximum is a change point (for a definition and exam-
ples, see Appendix A), and consequently, to find a con-
fidence region for 7, one must go outside standard sta-
tistical methodology. By adapting the argument of
Siegmund (1989), we can show that the set of all v such
that Z, is sufficiently close to Z* = max Z, is a confi-
dence region. More precisely, we show in Proposition 3
in Appendix A that an approximate 1 — ¥ confidence
region for 7 is the set of all values v such that

2Z*Zlexp[—(Z* — Z2) /267 = 7 .

For example, if 67'Z* = 4.04, a2 0.95 confidence region
consists of all values v for which 67'Z, = 2.88. If
07'Z* = 5.68, a 0.95 confidence region consists of
those v for which 671Z, = 4.96.

In attempting to assess the importance of a particular
locus 7 in contributing to a trait, it may be useful to
estimate 0, the percentage of cases associated with that
locus. In view of equation (2) we can approach this
problem by estimating the parameter €. The method
discussed above can be adapted to give joint confidence
regions for r and & (see Siegmund 1989), but caution is
necessary in interpreting the parameter a.. The method
can also be adapted to give confidence regions for
quantitative-trait loci in the experimental setting of
Lander and Botstein (1989).

This method resembles the use of a 1- or 2-LOD
support region to give a range of reasonable estimates
for the recombination fraction between a trait locus
and a marker. However, because 7 is a change point, the
customary explanation of that concept (Ott 1991, p.
67) is not appropriate in the present context.

4. Polygenic Traits

In general there may be more than one locus r that
contributes susceptibility to a trait, perhaps because of
locus heterogeneity (Ott 1991, p. 198) or because partic-
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ular alleles at several loci are required before an individ-
ual becomes predisposed to a trait. The tests discussed
in the present paper will still be useful, but, because the
value of o associated with any one locus is likely to be
small, the process Z, may suggest regions of enriched
identity by descent at several loci but may fail to exceed
the threshold b unless the sample size is large. A statistic
designed to detect the effects of multiple loci presum-
ably will do better, but an appropriate statistic will de-
pend on the nature of the interaction among genes at
the various loci. For example, in searching for quantita-
tive-trait loci in experimental genetics by using the sim-
plest Lander and Botstein (1989) model of additive ef-
fects with no interaction, in order to detect two loci
contributing approximately equally to a trait, an appro-
priate statistic would look for a large average value,
(Z, + Z,)/2, as s and t range over the possible loci. If
the loci s and t under consideration are themselves
linked, then the average should be divided by [1
+ exp(—B|t — s|)]'/% to account for the correlation
between their genotypes. For a trait described by
Risch’s (19904) additive model, which, as Risch notes,
is approximately a model for heterogeneity, in the sim-
ple case that only two loci are involved and have ap-
proximately equal effects, the same statistic is appro-
priate. Problems in using Risch’s (1990a) multiplicative
model are similar. In all cases the test involves simulta-
neous consideration of pairs (or more) of putative loci.
Determination of thresholds that account appropri-
ately for the multiplicity of comparisons is a more com-
plex but still tractable problem. We hope to discuss
elsewhere, in greater detail, statistical analysis of prob-
lems explicitly involving multiple loci, with particular
attention to the models of Risch (19904, 19906b).

Gaussian Approximation: More Complex Cases

The same problems arise when we consider other
relative pairs and combinations of different kinds of
relatives. To illustrate the situation, we first list a num-
ber of relative pairs that can be treated by minor modifi-
cations of the results already given. We then describe in
somewhat more detail the particularly interesting cases
of sibling pairs and sibling triples, and finally we give a
brief discussion of the problem of combining different
kinds of relatives.

|. Other Relative Pairs

Half-sibling, first-cousin, and aunt-niece pairs can all
be treated by relatively minor modifications of the
methods developed above. Feingold (in press) gives der-
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ivations of related Markov-chain models under the hy-
pothesis of no linkage. By a variant of the reasoning
given above or the calculations of Risch (1990b), we
find that in all cases the mean value of the approximat-
ing Gaussian process Z, given by statistic (3) is of
the form ER(t— 7), where & = N'%ap, p is the prob-
ability of identity by descent at an arbitrary locus,
o’ = p(1 — p), and the covariance of Z, and Z is
o?R(t — s). The parameters are given below with Risch’s
interpretation of a.

half-siblings: p = 1/2, 0 = (Ag — 1)/(Ao + 1),
R(t) = exp(—4A|t]);

aunt-niece: p = 1/2, 0 = (Ao — 1)/(Ao + 1),
R(?) = [exp(—4A[t]) + exp(—6A[t])]/2 ;

first cousins: p = 1/4, 0. = 3(A, — 1)/(A, + 3),
R(t) = exp(—4A|t]|)/2 + exp(—6A|t])/3
+ exp(—8A|t])/6 .

For each of these cases the likelihood function is
obtained in Proposition 1 of Appendix A. The likeli-
hood-ratio statistic for detecting linkage is again of the
form max Z, /c. Approximation (6) continues to hold,
provided that we use for B the weighted average of the
exponents in the covariance function: 4A for half-sib-
lings, SA for aunt-niece pairs, and 16A/3 for first
cousins. Approximation (7) is unchanged. Proposition
4 of Appendix A is concerned with the appropriate
mathematical theory.

The essential difference among grandparent-grand-
child, half-sibling, and aunt-niece pairs is in the rate at
which crossovers occur—and hence in the applicable
value of B. For larger values of B, slightly larger values of
b are required to maintain a fixed false-positive rate (see
approximation [6]). For example, for our unicorn and
aunt-niece pairs, for which p = 0.05, a value of b = 4.08
gives a false-positive rate of .05, compared with b
= 3.84 for grandparent-grandchild pairs. As a result the
approximately 90 grandparent-grandchild pairs re-
quired to achieve power of about .90 at a = 0.5(Ag = 3)
has increased to about 100 if our data come solely from
aunt-niece pairs. Changes in the rate of crossovers
change the effective length of the genome, as indicated
in approximation (6). However, large changes in the
value of B can be compensated by relatively small
changes in the value of b. Consequently the power—or,
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equivalently, the required sample size—changes surpris-
ingly little (see fig. 1).

Cousin pairs, on the other hand, have a different
value of a—and hence of the noncentrality parameter
& /0. Some calculation shows that cousin pairs are less
powerful than the others when A is small and that they
are more powerful when it is large. The transition oc-
curs approximately where the noncentrality parameters
are equal, at A, = 3172 For example, for Ao = 3, about
N = 76 pairs of first cousins are required to achieve
90% power, so in this case cousins are slightly more
efficient than grandparent-grandchild pairs.

Remark. For studying homozygosity by descent along
the lines suggested in the Introduction, the Gaussian
process relevant to parent-child matings has the parame-
ters p = 1/4, £ = NY2%ap, o> = 3/16, and R()
= [exp(—2At) + exp(—4Af) + exp(—6At)]/3 and the
same relation EZ, = ER(¢ — r) between the mean value
and covariance functions as do the relative pairs dis-
cussed above. Thus the methods developed here are
immediately applicable, although it presumably will
rarely be the case that the sample size is large enough to
make the Gaussian approximation a good one. Fein-
gold (1993) discusses methods that are appropriate for
small sample sizes.

2. Siblings

Among various family relationships for which link-
age analysis using data of identity by descent of affected
relative pairs is interesting, a feature peculiar (in an
outbred population) to the analysis of pairs of siblings
(and double cousins) is that they can be identical by
descent on zero, one, or two chromosomes. If we use
ordinary genetic markers—e.g., RFLPs—it is straight-
forward to distinguish among these three possibilities.
However, in the experimental situation that we envi-
sion (Nelson et al., in press), regions of identity by de-
scent are determined in segments without typing of indi-
vidual markers within segments. The experiment to
obtain these segments will be substantially simpler if
one does not try to separate maternally and paternally
derived chromosomes in order to distinguish whether
there is identity by descent on one or on two chromo-
somes. Hence we consider possible analyses with and
without this distinction and study the loss of power
that failure to make this distinction involves.

We assume an outbred population and a trait for
which the genetic contribution either shows little or no
dominance effect or is sufficiently rare that its genotype
is unlikely to be homozygous. For a discussion of the
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validity of this assumption and its role in simplifying an
otherwise more complex situation, see the work of
Risch (1990b). The information potentially available to
us in N sib pairs is a vector process X, = (Xo,, X; ., X, ,),
where X,, denotes the number of pairs having identity
by descent on k chromosomes at the locus z. Obviously
Xoe + Xy, t X,, = Nforall ¢, so we can ignore any one
of the coordinates. On a chromosome unlinked to a
trait locus, EX, = N(1/4,1/2,1/4). On a chromosome
containing a locus r conferring susceptibility to the
trait, we have EX, = N[(1 — a)/4,1/2,(1 + a)/4], and
EX, is easily calculated for general t. According to Risch
(1990b), o = (Ao — 1)/Ao. We now suppose that N is
large and consider the vector process Z, = (Z,,, Z,,),
where Z;, is the large-sample Gaussian limit of
N~V%(X,,— N/2) while Z,,, is the limit of N/%(X,,
— N/4). We are particularly interested in the situation
where we only get to observe the sum, Z; = Z,, + Z,,,
which does not distinguish whether there is identity by
descent on one or on both chromosomes.

As indicated above, the analysis of half-sibling pairs is
almost identical to that given earlier for grandparent-
grandchild pairs, although two meioses are involved
and hence the value of B is equal to 4\ = 0.04. The basic
properties of the vector process describing pairs of sib-
lings are most easily derived by recognizing that the
vector process for each sibling pair can be regarded as a
sum of two independent half-sibling processes (repre-
senting the maternal and paternal meioses). From this
representation, it is straightforward to compute the
mean and covariance functions of the vector process
(Z,4»Z,,). From that mean and covariance function one
can obtain the following convenient alternative repre-
sentation:

Zi,=2,,  Zy,=Uy-U,,  ®
where U, ,and U, , are independent Gauss-Markov pro-
cesses. The covariance function of U, is 67 exp(—p;|¢|)
fori=1,2, where 62 = 1/16, B, = 8, 03 = 1/8, B,
= 4A, and A = 0.01. The mean value of U, , is always 0.
On a chromosome containing no trait locus, the mean
value of U, is 0; on a chromosome containing one trait
locus at 7, its mean value is § exp(—f; |t — r|), where & is
related to the parameter a by the equation (see eq. [2])

&E=0aN12/4. 9)
If experimental conditions permit observation of the

vector process, (Z,,, Z, ), we see from relations (8) that
U,,=Z,,+ Z,,/2, and by Proposition 1 in Appendix
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A the log-likelihood function is &(Z,, + Z,,/2)/
o2 —£2/262%. Hence the likelihood-ratio statistic to test
for the presence of a trait locus is

max[Z,, + Z,,/2]/c, . (10)

Note that among all linear combinations this particular
combination of Z,, and Z,, maximizes the noncen-
trality parameter, i.e., the ratio of the expectation to
the SD.

If we observe only Z7, the sum of the two coordi-
nates of the vector process, a plausible ad hoc test sta-
tistic is

max Z} /[6? + o3]'/2, (11)
t

but the process does not satisfy the conditions of Prop-
osition 1 of Appendix A, so statistic (11) is not the
likelihood-ratio statistic, which appears difficult to eval-
uate and unlikely to be substantially more powerful.

Answers to the first two of the general questions
posed in the Introduction are easily obtained, provided
that we use appropriate versions of approximations (6)
and (7). In the case that we observe the vector process,
we can immediately apply the results already derived. In
comparison with grandparent-grandchild, aunt-niece,
and half-sibling pairs, if we are able to use statistic (10),
then sibling pairs are more informative for small Ao and
are less so for large. The transition occurs at about Ay
= (212 — 1)7!, where the noncentrality parameters are
equal. We can also find confidence regions for r.

Since the process Z} does not satisfy the conditions
of Proposition 1 in Appendix A, its properties differ
somewhat from those of the other processes that
we have studied. Its covariance function equals
o2exp(—PB, |t|) + o2exp(—B,|t|), which has an expan-
sion, near 0, of the form

o1 — Blt| + o(|t])], (12)

where 6% = 6% + 62 = 3/16 and B = (63, + 63B,)/
(0% + 03) = 0.05333. . . . It follows that approximation
(6) and a modified form of approximation (7) apply (see
Appendix A, especially approximation [A8]).

An interesting new question concerns the amount of
information lost if we observe the process Z} instead of
the vector process. This question is of direct practical
importance in deciding how much experimental effort
should go into obtaining data for the vector process.
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Some calculations indicate that, if we can actually
use statistic (10), we can do so with about one-third
fewer observations than we need if we use statistic (11).
A crude analysis goes as follows: The differences in
behavior of the statistics are twofold. They involve dif-
ferent values of the parameter B to be used in equation
(6) and hence different thresholds b for a given false-
positive rate, say .05. As above, small changes in b can
accommodate rather large changes in B, so this differ-
ence plays an almost insignificant role. (For statistic
[10], B = 0.04, b = 4.02; for statistic [11], B = 0.05333
..., b =4.10.) The value of £ is the same for statistics
(10) and (11). The major difference is that the effective
value of 67 to be used in the more important first term
in approximation (7) and in approximation (A8) of Ap-
pendix A is much smaller when we use statistic (10) in
preference to statistic (11). Since var(Z,, + Z,,/2) = o3
and var(Z}) = 6% + o2 are the effective values of 62, we
see from approximation (7) and equation (9) that a
rough measure of relative efficiency is the ratio of the
square of the noncentrality parameters, or, equiva-
lently, 62/(6? + 62) = 2/3. This can be translated via
equation (9) into a roughly one-third-smaller sample
size required to obtain a desired power if we use statis-
tic (10) rather than statistic (11). More precise calcula-
tions using approximation (7) and approximation (A8)
of Appendix A substantiate this conclusion.

Some numerical examples based on the results ob-
tained so far are displayed in figures 1 and 2. Figure 1
gives sample sizes to achieve 90% power by using dif-
ferent classes of relative pairs, as a function of Aq. Fig-
ure 2 gives the power achieved with N sibling pairs, as a
function of Ay, for the values N = 250 and N = 100.
To obtain the values in figure 1, say, we (i) use approxi-
mation (6) to determine the threshold b, then (ii) use
approximation (7) (approximation [A8] when appro-
priate) to determine the £/c value giving the desired
power, and finally (iii) use equation (2) (eq. [9] for sib-
lings), the appropriate relation for a as a function of A,
and the appropriate value of ¢ to find N. Once step (ii)
is completed, N can be expressed as a simple explicit
function of A.

It is readily seen that grandparent-grandchild, aunt-
niece, and half-sib pairs are about equally powerful.
Sibling pairs when paternal and maternal meioses are
tracked are considerably more powerful than sibling
pairs when meioses are not tracked separately. Siblings
are relatively more powerful for small values of Ag,
while first cousins are more powerful for large values.
For polygenic traits inherited according to Risch’s
(19904) multiplicative model, the same results are valid
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Figure | Sample sizes for 90% power for different affected

relative pairs, as a function of A,. @ = grandparent-grandchild; O
= half-siblings; ¢ = aunt-niece; A = siblings (tracking paternal and
maternal meioses); A = siblings (not tracking meioses); and O = first
cousins.

at each individual locus, provided that the overall rela-
tive risk Ag is replaced by the relative-risk factor for that
locus. The general situation is not so easily summarized
for Risch’s additive model. In the special case that the
different loci make equal contributions to trait suscepti-
bility, the effective value of a associated with each
locus is the value corresponding to a monogenic trait,
divided by the number of loci.

3. Sibling Triples

In many cases pedigrees of affected relatives will con-
sist only of pairs, but in other cases they will consist of
more than two family members. An interesting illustra-
tion is sibling triples, which we now consider.

It is useful to begin by observing that, as for sibling
pairs, the identity-by-descent configuration of three sib-
lings can be described in terms of two half-sibling con-
figurations: that derived from maternal meioses and
that derived from paternal meioses. Of the three possi-
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power

Figure 2 Power to detect linkage by using N affected sib
pairs, as a function of A,. The shorter dashes are for N = 250; the
dotted line is for N = 100, tracking maternal and paternal meioses;
the solid line is for N = 250; and the longer dashes are for N = 100,
not tracking meioses.

ble pairwise comparisons of three half-siblings, there
can be identity by descent in exactly one or in all three
comparisons, but it is impossible to have identity by
descent in exactly two or in none of the comparisons.
In effect the situation is exactly as it would be if we had
two independent half-sib pairs, since any two compari-
sons determine the third. For an arbitrary locus un-
linked to the trait locus, the probability of finding iden-
tity by descent in exactly one comparison is 3 /4, while
it is 1/4 for all three (i.e., two independent) com-
parisons.

A single half-sibling triple switches between the
states 1 and 3. [t switches from 1 to 3 at rate A and from
3 back to 1 at rate 3A. Let p(t)(i,j = 1,3) denote the
conditional probability that the process is in state j
given that it is in state 7 at a locus located a genetic
distance of # cM away. Standard calculations show that

pult) = [3 + exp(—4A1)]/4,
Pss(t) = [1 + 3 exp(—4As)]/4 .

If we assume that we can track maternal and paternal
meioses, a convenient description of the situation for
full siblings is given by a pair (i,j), where i = 1 or 3
indicates the number of pairwise comparisons showing
identity by descent on the maternal chromosome and
where j indicates the number of pairwise comparisons
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showing identity by descent on the paternal chromo-
some. By symmetry we can combine states (1,3) and
(3,1). Then we can conveniently index the states by the
average (i +j)/2, which takes on the possible values of
1, 2, or 3. At first it appears that we may want to distin-
guish between those (1,1) pairs where one pairwise com-
parison shows identity by descent on both chromo-
somes and those where two different pairwise
comparisons show identity by descent on exactly one
chromosome. However, a more elaborate analysis in
which we distinguish these possibilities does not seem
to provide any useful information.

Under the hypothesis of no linkage, it is easy to write
down the infinitesimal matrix for the Markov chain, X,
= (X145 Xa4 X3,), where the kth coordinate denotes
the number of sibling triples indexed by (i +j)/2 = k.
The stationary distribution is N(9/16, 3/8, 1/16).
Since the sum of the three coordinates equals the total
number, N, of triples, it suffices to consider only two
coordinates, say the second and third. The approximat-
ing Gaussian process, Z, = (Z,,, Z3,) is obtained as an
approximation to the centered and scaled process
(X,, —3N/8,X;,— N/16)/N'/%. From the representa-
tion in terms of independent half-sibling processes and
the conditional probabilities given above, it is straight-
forward to calculate the covariance function of the pro-
cess Z,, which is given below in relations (14) and rela-
tions (16). If we are unable to track maternal and
paternal meioses, instead of X, we can observe only the
sum X} = X, , + X;,, which counts the total number of
triples for which the three possible pairwise compari-
sons show identity by descent on at least one chromo-
some. The associated Gaussian process is Z; = Z,,
+Z,,.

On a chromosome containing a locus 7 at which
some allele contributes to the trait of interest, it may
be shown that EX, is of the form N[9(1 — a)/16,
3(1+a)/8,(1 + 3a)/16] for some 0 < a < 1. A deriva-
tion of this expression, together with an expression for
a in terms of Hardy-Weinberg frequencies and their
penetrances, can be obtained along the lines of an argu-
ment by Risch (1990b), but, since the calculation is
somewhat complicated and requires the introduction
of some new parameters, we defer it to Appendix B. It
follows from the Haldane mapping function that, along
the chromosome containing the locus 7,

(EZ,,, EZ; ) = E exp(—Blt — r|)1/2,1/4), (13)

where & = 3aN1/2/4, B = 4\ = 0.04.
As in the case of sibling pairs, it is convenient to
represent the process Z, in terms of independent pro-
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cesses U, ,, Us,. Appropriate processes can be inferred
from the mean value and covariance function of Z, and
are defined through the relations

Zz,: = (Uz,t + U3,t)/ 2a

(14)
Z3,t = (U3,t - UZ,t)/4 .
The mean values and covariance functions of the U’s
are given by

EUz,: =0, EU3,t = E.»CXP(—mt - I’l) , (15)

and

cov(U,, U, ) = ozexp(—2B[t — s|), (16)
cov(U;,U; ) = ojexp(—B|t — s|),

where 63 = 9/16, 65 = 3/8.

In the case that we are able to track maternal and
paternal meioses, Proposition 1 in Appendix A allows
us to evaluate the likelihood function and show that
the likelihood-ratio statistic is

max U;, /03 = max(Z,, + 2Z,,)/0; . (17)

If we are experimentally unable to track maternal and
paternal meioses and are limited to observations on Z}
=2Z,,+2Z;,=(U,,+ 3U;,)/4, aplausible test statistic is

max Z}/(62/16 + 962/16)1/2 . (18)

We can use the techniques developed previously to an-
alyze these statistics, and we find that statistic (18) is
approximately 6/7 as efficient as statistic (17). This is a
considerably more favorable ratio than the 2/3 we ob-
tained in the case of sibling pairs.

4. Combining Different Classes of Relatives

An important problem is to combine efficiently data
from different classes of relatives. A very simple version
of this question arises in the study of sib pairs when one
asks how the coordinates of the vector Z, = (Z,,, Z, )
should be combined to get an overall test statistic. The
problem seems reasonably tractable when different rela-
tive pairs are independent. We can calculate, at least
approximately, a joint likelihood function. It will in
general involve different values of the parameter a for
the different relative pairs. Although these parameters
are unknown, in the models of Risch (19904, 1990b)
they have specific relations to each other. In some cases
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we are able to use these relations to show that the likeli-
hood-ratio test statistic involves the maximum of a new
process, which is a particular linear combination of the
corresponding processes for the different classes of rela-
tive pairs.

To consider the general question of combining data
from two different classes of relatives, suppose that we
have two independent processes, say W, (i = 1,2). For
example, W, , and W,, might be the processes in the
numerators of statistics (10) and (17) or in statistics (11)
and (18). Assume that at the trait locus

EWl,r = "LN }/2’ EWZ,r = CIJ'N;/Z ’ (19)
where the N; are the sample sizes on which the two
processes are based, while ¢ and p are positive parame-
ters. Assume also that var(W;,) = vZ.

The parameter p is usually unknown. In some cases it
may be reasonable to regard c as known, at least approx-
imately. An example would be grandparent-grandchild
and aunt-niece pairs, where, for Risch’s (1990a, 1990b)
single-locus, additive-multilocus, and multiplicative-
multilocus models, the value of cis 1. For other combi-
nations of relative pairs, it may be more difficult or
impossible to establish a reasonable value for ¢, espe-
cially if that value would depend on the mode of inheri-
tance of the trait. Usually we shall want to combine
several classes of relatives, with some combinations fall-
ing into each of these cases. We begin with the simpler
case, where ¢ can be assumed known.

If the covariance function of each of the processes
W, has the structure assumed in Proposition 1 of Ap-
pendix A (statistics [10] and [17] do, but statistics [11]
and [18] do not), we obtain from that proposition a
simple expression for the likelihood function of the
combined data. From this likelihood function one eas-
ily sees that the likelihood-ratio statistic for testing the
hypothesis that p = 0 is of the form max W, /v, where

W, = N1?W,,/vi+ cN}/? W,,/v3 (20)
and
v?=N,/v?+ c2N,/v3.

The theory that we have developed can be applied to
the process W,, to obtain approximations to the signifi-
cance level and power of the test and approximate con-
fidence regions for 7. If the means and covariances of
the W;, do not have the structure of Proposition 1 in
Appendix A, then it still seems reasonable to use the
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linear combination (20), which maximizes the noncen-
trality parameter at ¢ = r.

A simple example is grandparent-grandchild and
aunt-niece pairs. If we are willing to assume, on the
basis of Risch’s (19904, 1990b) models, perhaps supple-
mented by epidemiological evidence, that ¢ = 1, then
the preceding argument shows that the likelihood-ratio
test combines aunt-niece and grandparent-grandchild
pairs, using equal weights. Actually this combination is
not exactly optimal. Because of their higher rate of re-
combination, aunt-niece pairs require a larger value of
the threshold b than do grandparent-grandchild pairs.
Consequently aunt-niece pairs are less efficient and
should receive less weight in the combined data. As
indicated above, however, this effect is slight, and equal
weights are satisfactory for practical purposes. If we are
limited in the determination of regions of identity by
descent by reference to a fixed discrete set of markers,
the different recombination rates play a more impor-
tant role, so the situation must be examined more
closely (see Bishop and Williamson 1990; Risch 1990b).

Remarks. (i) A similar situation exists with respect to
combining half-siblings with grandparent-grandchild
pairs, aunt-niece pairs, or both. (i) A straightforward
calculation using the representations of Feingold (in
press) shows that, even when the niece is the same per-
son as the grandchild, the two possible pairwise com-
parisons are stochastically independent. Consequently,
unlike the case of sibling triples, it is unnecessary to
consider such a triple as being a new pedigree; we can
amalgamate the grandparent-grandchild comparison
with others of that kind, and we can do likewise with
the aunt-niece comparison. Although this procedure
would not be an optimal use of these pedigrees, some
calculation shows that it is reasonable. (iii) The preced-
ing analysis shows that it is easy to incorporate different
crossover rates for male and female meioses. For each
class of relatives, we create subclasses corresponding to
the meioses involved (e.g., we divide grandparent-
grandchild pairs into two groups according to whether
the meiosis involves the grandchild’s mother or father).
We then use the theory given above, to combine the
subclasses. This results in a class of relative pairs with a
value of B averaged according to the proportions of the
different meioses. Simple calculations show that such
an analysis is unlikely to have a substantial impact. The
situation would be more complicated and require more
careful analysis if we try to account for heterogeneous
variation in male and female crossover rates along the
genome.
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For a second example, suppose that we want to com-
bine sibling pairs and sibling triples. This application
poses some difficulties, because there is no obvious re-
lation between the parameters a for the two cases and
hence no natural value for the constant c. In particular,
there is no reason to assume that the two parameters
are the same, although they may be in some cases. If we
use one of Risch’s (19904, 1990b) models, the parame-
ters o are specific functions of the Hardy-Weinberg
frequencies of the various alleles at the locus » and of
their penetrances. One possibility is to assume hypo-
thetical values for these parameters and to investigate
the sensitivity of the resulting procedures to these as-
sumptions.

For the model of monogenic inheritance, of Risch
(19904, 1990b), we have in Appendix B obtained ex-
pressions for a, for both sibling pairs and triples, in
terms of Hardy-Weinberg frequencies and penetrances.
These values are approximately equal when only one
very rare allele has positive penetrance. If the Hardy-
Weinberg frequency of the one allele is in the range
.1-.25, then the parameter a for sibling pairs is about
25%-40% larger than that for sibling triples.

If we want to combine sibling pairs with sibling tri-
ples, under the condition that we are able to track ma-
ternal and paternal meioses, and if we assume that ¢
= 3, which is appropriate if the values of the parameter
a are the same for both pairs and triples, then the
weights 1/v2 and ¢/v2 in equation (20) are equal. In the
event that we are unable to track individual meioses,
the triples entering into statistic (18) should get 12/7
times the weight of the pairs entering into statistic (11).
If we assume that the value of a for sibling pairs is p%
larger than that for sibling triples, then the relative
weight for pairs should be increased by p% in each case.
It would be interesting to see whether something like
this analysis applies to Risch’s (19904, 1990b) polygenic
models.

If it is difficult or impossible to choose a value for ¢,
it can be regarded as unknown. In that case the likeli-
hood-ratio statistic is

max[(W{,/v,)? + (W3, /v,)}]/2, (21)

where a* denotes the maximum of a and 0. It is possible
to analyze statistic (21) and higher-dimensional general-
izations for dealing with more than two classes of rela-
tives (see approximation [A11]in Appendix A). In cases
where we can make an educated guess at a value for ¢, it
appears from preliminary calculations that statistic (20)
will turn out to be more efficient than statistic (21),
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unless our guess is poor. On the other hand, the penalty
for using statistic (21) or a higher-dimensional version
appears to be small unless the number of classes of
relatives involved is large. For example, suppose we
combine approximately equal numbers of independent
grandparent-grandchild and half-sibling pairs, using
statistic (21) rather than the equally weighted linear
combination suggested by the preceding analysis. By
approximation (A11) in Appendix A, b = 4.28 (LOD
3.98) is the appropriate threshold for a false-positive
rate of .05, and additional calculations (not shown) indi-
cate that only about 10% more affected pairs would be
required to obtain 90% power. If our relative pairs are
divided approximately equally among grandparent-
grandchild, half-sibling, and aunt-niece pairs, about
15% more pairs would be required.

If several classes of relatives are involved, then there
will be a greater loss of efficiency if we use a several-di-
mensional version of statistic (21) instead of an appro-
priate linear combination. In practice it seems reason-
able to use a combination of the two methods: linear
combinations to combine classes of relatives for which
one can make reasonable assumptions relating the non-
centrality parameters (e.g., grandparent-grandchild,
half-siblings, and aunt-niece) and a higher-dimensional
version of statistic (21) to pool the remaining classes
(some of which will consist of linear combinations of
smaller classes) into an overall statistic. We expect to
make a more detailed study of this problem in the
future.

Discrete Set of Markers

Until now we have assumed that the process Z, can
be observed continuously, i.e., that for practical pur-
poses we know exactly where regions of identity by
descent begin and terminate. However, if the process is
determined by reference to a discrete set of markers,
say one at every A cM along the genome, then the ap-
propriate theory is more difficult. (For a discussion of
this issue as it relates to the search for quantitative trait
loci in experimental genetics, see the paper by Lander
and Botstein [1989].) As an illustration consider the
special case of grandparent-grandchild pairs. A simple
test statistic is the maximum value of the process Z, as ¢
runs through the equally spaced set of markers, al-
though this is not the actual likelihood-ratio statistic,
which is somewhat more complicated. Its signifi-
cance level is approximately (see Proposition 4 in
Appendix A)
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1 — @(b) + Blbp(b)]b(2BA)?], (22)

where v(x) is a special function which can be evaluated
numerically and is reasonably well approximated by
exp(—0.583x) (Siegmund 1985, chap. 4). For grandpar-
ent-grandchild pairs of the unicorn discussed above, for
1-, 5-, 10-, and 20-cM maps the 0.05 false-positive
thresholds are, respectively, approximately b = 3.72,
3.59, 3.50, and 3.38 (LOD 3.01, 2.80, 2.66, and 2.48,
respectively). In effect, if we test fewer markers, the
threshold b can be lowered slightly while the same
overall false-positive rate is maintained.

Discussions of power and confidence regions be-
come appreciably more complex when regions of iden-
tity by descent are determined with reference to a dis-
crete set of markers. Specifically, the power of the test
suggested in the preceding paragraph exhibits greater
variability as a function of both the location of the trait
locus with respect to the markers and the relationship
of the affected pairs under consideration. If the trait
locus is sufficiently close to a marker, then the lower
threshold means that the power can actually increase
slightly. However, if it is located approximately mid-
way between markers, then the power can decrease ap-
preciably. For more distant relatives, whose identity-
by-descent regions involve several meioses, there is a
greater chance for multiple crossovers to occur be-
tween markers than there is in, say, grandparent-grand-
child pairs, which involve only a single meiosis. Hence
the test has comparatively less power to detect a trait
locus lying midway between markers, when more dis-
tant relatives predominate. This problem can be alle-
viated somewhat by using the true likelihood-ratio sta-
tistic, which is related to Lander and Botstein’s (1989)
“interval mapping.” If A is small enough in relation to
the composition of the relatives under consideration,
then a discrete set of markers will behave more or less
like a continuous one. A basic question is to determine
how small this A must be. These issues will be discussed
in detail elsewhere.

Approximation (22) is also appropriate in the context
of Lander and Botstein’s (1989) work. It can be seen to
be quite accurate by comparison with the simulations
presented there.

Discussion

In this paper we have developed approximate Gauss-
ian models for statistical analysis of genetic linkage,
using complete high-resolution maps of identity by de-
scent of affected relative pairs. We have determined
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thresholds to control the overall false-positive rate of
tests to detect linkage and have developed approxima-
tions to the power of the tests, from which one can
infer the sample size necessary to detect an hypothe-
sized effect with a specified probability. We have also
discussed confidence regions for a trait locus.

There are some basic differences between our ap-
proach and that of testing linkage to individual
markers, as exemplified by Risch (1990b). Risch uses
the traditional LOD-3 threshold for proving linkage,
without regard to either the number of markers tested
or the composition of the relative pairs studied. This
criterion would not be sufficiently stringent and would
lead to unacceptably high false-positive rates if it were
used to test a continuous map of markers. Moreover,
the actual false-positive rate would vary from one class
of relatives to another, making comparisons of power
potentially misleading. Our method uses a threshold
that is appropriate to both the composition of the rela-
tive pairs under consideration and the test statistic em-
ployed. The statistical price of using a continuous map
and, hence, a more stringent threshold is that our test is
slightly less powerful than Risch’s in the case that one
of his markers is at zero recombination distance from a
trait locus. Usually this will not be the case when link-
age to individual markers is tested, and then our test
can be considerably more powerful.

We have also introduced some ideas for efficiently
combining data from different classes of relatives, and
we expect to examine this issue in more detail in the
future. In addition, we hope to develop specific statisti-
cal procedures for models dealing with complex modes
of inheritance and to compare their performance with
the performance of the methods developed in this

paper.
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Appendix A

A family of random variables {Z,, —0c0 <t < o0} is
called a “Gaussian process” if, foreachn = 1,2, .. .and
t, <...<t, the random variables Z, , ..., Z, are
jointly normally distributed. A Gaussian process is spec-
ified by its mean value or drift function u() = E(Z,) and
covariance function C(s,t) = Cov(Z,,Z,). The process is
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said to be covariance stationary if C(s,#) is a function
only of t — s, say C(s,t) = 6*R(t — s).

The value 7 is called a “change point” (for p[t]) if
there is a jump in the derivative p'(f) at ¢ = r. A common
example is Brownian motion with a broken-line drift,
for which C(s,) = min(s,t) for s,t = 0 and p(t;7) = pot
+ 8(t — )*. Here a* = max(a,0). Most of the examples
of this paper are covariance stationary and have a mean
value function of the form p(t7) = ER(t — r) with
a change point at r. The special case that R(¢)
= exp(—B|t|) and € = 0 is called the “Ornstein-Uhlen-
beck process.”

In the following discussion there are some unstated
technical regularity conditions on the function R(t),
which are trivially satisfied in all cases of interest, where
R(?) is a finite linear combination of exponentials with
positive coefficients (see Leadbetter et al. 1983, chap.
12). Some of the mathematical details will be discussed
elsewhere.

Proposition 1. Let {Z,, —c0 <t < o0} be a stationary
Gaussian process with mean 0 and covariance function

Cov(X,,X,) = 6*R(t — s), (A1)

where R(0) = 1. Assume
f |R(t)|dt < oo .

Let &, r be arbitrary and let

wer) =ER(t—1). (A2)

Let P, denote the distribution of {Z, + u(t;r), —oo <t
< o0 }. Then the likelihood function is

W 2) = explez, /o ~ E/207).

dp

Proof. The proof is a straightforward application of the
representation given by Parzen (1961, theorem 7A) or
can be derived from first principles by passing to the
limit from the finite-dimensional case.

Lemma 1. Let Z, be a stationary Gaussian process pro-
cess with mean 0 and covariance function (A1). Assume
thatast = 0,

R@) =1~ Bt +o(]t]). (A3)

Let 0 < x < b and define #* to be the unique positive
solution of the equation R(#*) = xb™*. Let t; > 0. Let b
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and x be large, and assume that ¢* is contained in (0,t,)
and is bounded away from the upper endpoint. Then

P{max Z, = b|Z, = x}

O<t<ty

~ BIR()|"exp[-(b* — x%)/267] .

When x is close to b, approximation (A4) can be ex-
pressed in the form

P{max Z, = b|Z, = x} ~ exp[—(b — x)x/c?] (AS)

O<t<ty

when0 < b — x = 0.

Proof. In the special case of an Ornstein-Uhlenbeck pro-
cess these results are essentially equivalent to results
that Siegmund (1985, chap. 4) gives for Brownian mo-
tion. In the general case they can be derived by suitable
modifications of the methods of Woodroofe (1976,
1982) and Siegmund (1985). These arguments also yield
appropriately modified approximations for the case
when t is limited to a discrete set of values. See Proposi-
tion 4 below.

Proposition 2. Let Z, be a covariance-stationary Gauss-
ian process with covariance function (A1) satisfying
equation (A3) and with mean value

E(Z,) = ER(t— 1), —00 <t < o0 . (A6)
For any fixed 0 < r </ and large b and &,
P{gl?: Z,/Jo>b}=1-®b-E/o)
+¢(b—E/0)2€/0)" — (€/c + b)'[1 + o(1)].
(A7)

Proof. The argument is similar to that of the proof of
equation (32) of James et al. (1987) or corollary (4.19) of
Siegmund (1985), so we briefly sketch it. The first term
of equation (A7) accounts for the possibility that Z,
> bo. The argument is completed by (i) conditioning
onZ, = x < bo, (ii) observing that, by Proposition 1, if r
is known, then Z, is sufficient for &, so the conditional
process behaves like a mean zero process under the
same conditioning, and (iii) using approximation (AS5)
of Lemma 1 three times: to account for the possibilities
that Z, > bc for some value of ¢ > 7, for some value of ¢
< 1, and for both. Technical aspects of the proof in-
volve showing that only values of x in the range where
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approximation (AS) is applicable make a non-negligible
contribution.

Remark. Proposition 2 does not apply directly to
the statistic max Z}/o of statistic (11) (ie., ©
= 67 + 62)"/% since in that case the mean and covari-
ance function do not have the relation in covariance
function (A1) and equation (A6). Nevertheless, by a
slightly different argument—that, if instead of equation
(A6), we have E(Z,) = ER,(t — r), where R,(1) = 1 — B, | ¢|
+ o(|t]), then

P{max Z; > bo} ~ 1 — Db - /o)
+ (b — &£/0){2Bo/B:&
= [Eo7'2By/B - 1) + b1},

(A8)

provided that (1 — B,/B)&/(bo) < 1. This restriction on
the range of £ is immaterial for most applications. The
process Z; of statistic (11) is the special case p = 16A/3,
B, = 4, 0® = 3/16.

Proposition 3. For a covariance-stationary Gaussian
process {Z,} satisfying covariance function (A1) and
equations (A3) and (A6) with 0 < r <, for large values
of Z* = max,_,Z,, an approximate 1 — y confidence
region for r is the set of all v, 0 < v < satisfying

2B|R(t* — v)| lexp[—(Z** = Z))/26%] = v,

where R(t* —v) = Z,/Z*.

Proof. We follow the argument of Siegmund (1989).
We first consider a test of the hypothesis that 7 = v that
rejects if Z* — Z, > ¢, for an appropriate value of c.
Under the hypothesis, it follows from Proposition 1
that Z, is a sufficient statistic for the nuisance parame-
ter &, so the conditional probability P{Z* - Z,> ¢|Z,}
does not depend on the unknown value of &. If we
choose ¢ = ¢(Z,) so that this conditional probability is
equal to v, then the set of values v that are not rejected
by the test gives a confidence region for 7. If we use
approximation (A4) to approximate the required proba-
bility, then the resulting approximate confidence re-
gion is the one described in the proposition.

Proposition 4. Let Z, be the stationary Gaussian process
described in Lemma 1. Let / > 0. Suppose that b = oo,
A — 0 in such a way that bA'/? converges to a finite
constant. Then
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P{max 67'Z;, = b} ~ Blbp(b)o[b2BA)/?], (A9)

O<iAsl

where v is a special function described by Siegmund
(1985, p. 82). In the limiting case of continuous obser-
vation, the corresponding asymptotic result is

P{max 67'Z, = b} ~ Blbg(b) .

O<t<l

(A10)

Proof. The result follows by integrating the appropriate
version of approximation (A4) of Lemma 1, which, for
a discrete time process, contains the additional factor
v[b(2BA)!/?]. In fact, a complete proof of approxima-
tion (A4), along the lines suggested in Lemma 1, begins
with a derivation of the discrete-time result and re-
quires additional technical arguments to obtain the con-
tinuous-time version as well. Alternatively one can
avoid reference to approximation (A4), by applying di-
rectly the method of proof of Lemma 1 to the uncondi-
tional probability in approximation (A9).

Remarks. (i) The implication of the condition that bA!/?
converges to a finite limit is that the argument of the
function v should not be extremely large. As a practical
matter, it entails that the number of markers per chro-
mosome should not be too small. (ii) Approximations
(6) and (22) contain, in addition to expressions (A9) and
(A10), a boundary term to account for the possibility
that Z, > bo. For small values of A—e.g., in the limiting
case of continuous mapping when A = O—this term
plays a comparatively insignificant role, but for larger
values it can make an important contribution to the
overall approximation. (iii) The approximation (AS)
version that is suitable for a discrete-time process is

P{max 07'Z, = b|c7'Z, = x}
O<iA<ty

~ exp[—(b — x)x]o[b2BA)'/?] .

For discussion of a similar approximation in a related
context, see the work of James et al. (1987) or Sieg-
mund (19885, chap. 9). This approximation can be com-
bined with the proof of Proposition 2 to give an ap-
proximation to the power of the test proposed in the
Combining Different Classes of Relatives subsection,
when observations are made at a discrete set of markers
spaced at distances A along a chromosome. In the case
where r is at zero recombination distance from a
marker, the argument is completely straightforward
and leads to an approximation where the first term in
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square brackets in (A7) is simply multiplied by the cor-
rection factor V[b(2BA)/?], while the second term is
multiplied by the square of the same correction factor.
In the case that 7 lies in the interval between two
markers, the situation is slightly more complicated and
involves a numerical integration. The details are omit-
ted. (iv) A more complicated calculation along the lines
of Proposition 4 gives approximations to the false-posi-
tive rate for statistic (21). If W, , and W,, both satisfy
the conditions of Lemma 1—with the parameters B,
and B,, respectively—on a chromosome that is un-
linked to the trait of interest, then the probability that
statistic (21) exceeds b approximately equals

27YB, + BIb exp(—b*/2)[b/4 + 2m)V/2] . (A11)

Approximation (A11) is also appropriate in the context
of the work of Lander and Botstein (1989), if one con-
siders the progeny of an F, intercross and permits a
dominance component in the model.

Appendix B

In this appendix we generalize some of the calculations
by Risch (19904, 1990b), to family constellations con-
sisting of three members. As in the body of the paper,
we assume no dominance effect.

Let @, denote the phenotype of the jth member of a
family, i.e., ¢; = 1 or 0 according as the jth member is
affected or not. Let K = E@; be the probability of an
individual’s being affected. In the absence of a domi-
nance effect we have the representation

¢, =K+ f. tf,, (B1)

where f,. (f,) is the centered penetrance of the allele
inherited from the x(y) parent. “Centered” means that
K /2 has been subtracted from the actual penetrance, so
Ef. = Ef, = 0. See Kempthorne (1957, p. 330 ff.). Let
Ky be the conditional probability that a type-R relative
of an affected is also affected, so KKz = E(¢,9,), and
let A = Kr/K be the relative risk of a type-R relative of
an affected. By simple manipulations Risch (following
James [1971]) observes that

Ar = 1 + K %cov(0,,0,) ,
and

cov(P,9,) = (2 P F2Vx - (B2)

Here p, is the Hardy-Weinberg frequency of allele
aand Yg = P(x; = x)) + P(x; = y) + P(y; = x5)
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+ P(y, = vy,), where (x; = x,), etc., denote identity by
descent of the indicated alleles; y is four times the
coefficient of parentage (Kempthorne 1957, pp. 73-
74). Some additional manipulations allow Risch to ex-
press Ag for various relations R in terms of A, the spe-
cial case of parent and offspring. He then uses Bayes’s
formula to give an expression involving A, for the con-
ditional probability of a particular identity-by-descent
relation between two relatives, given that both are af-
fected. When we assume Risch’s (1990b) model, the
parameter a is a simple function of this conditional
probability. In the special case of siblings, if there is
only one allele of Hardy-Weinberg frequency g having
positive penetrance, then

a=0R —1)/Ag=(1-¢q)/1+3q)),

which is independent of the value of the penetrance.
To consider three relatives, we begin by evaluating
the relative risk that all three are affected,

K7E(@,0,9;) = 1 + K™ X cov(g;,0,)
j<k

(B3)
+ K~E[(9, — K)(¢, — K)(¢; — K)].

Using representation (B1), we can easily evaluate the
final expectation in equation (B3) as

[Z P fiP(xy;=x,=x3)+...+ P(y, =y, =y,)].
(B4)

For three siblings, the first and last probabilities appear-
ing in formula (B4) each equal 1/4, and the other six
equal 0 (because the population is assumed to be
outbred).

To compute via Bayes’s formula the conditional
probability of an identity-by-descent configuration
given three affected, we must also evaluate the covari-
ances and final expectation in equation (B2), condi-
tional on the identity-by-descent configuration. For
three siblings, when we condition on three positive
identity-by-descent comparisons for each of the two
alleles, the probabilities in formula (B4) sum to 2. They
sum to 1 when given three positive identity-by-descent
comparisons on one allele and one positive comparison
on the other. Given one positive identity-by-descent
comparison on each allele, the coefficient vy, in equa-
tion (B2) equals 2/3; given three positive identity-by-
descent comparisons on one allele and one on the
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other, it equals 4/3. Other coeflicients can be evalu-
ated similarly, with the result that, for sibling triples,

a=[K?2Xp, f2+ QK" 2 p. £/
[1+3K23 p, f2+Q2K)' 3 pfll.

In the special case of a single allele having positive pene-
trance, this becomes

a=[1+qg-2¢8/[1 +99+ 64 .
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