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Summary

Ehlers-Danlos syndrome (EDS) type IV is a dominantly inherited disorder that results from mutations in the type
III collagen gene (COL3A1). We studied the structure of the COL3A1 gene of an individual with EDS type IV
and that of her phenotypically normal parents. The proband was heterozygous for a 2-kb deletion in COL3A1,
while her father was mosaic for the same deletion in somatic and germ cells. In fibroblasts from the father,
approximately two-fifths of the COL3A1 alleles carried the deletion, but only 10% of the COL3A1 alleles in
white blood cells were of the mutant species. The deletion in the mutant allele extended from intron 7 into
intron 11. There was a 12-bp direct repeat in intron 7 and intron 11, the latter about 60 bp 5' to the junction.
At the breakpoint there was a duplication of 10 bp from intron 11 separated by an insertion of 4 bp contained
within the duplicated sequence. The father was mosaic for the deletion so that the gene rearrangement occurred
during his early embryonic development prior to lineage allocation. These findings suggest that at least some
of the deletions seen in human genes may occur during replication, rather than as a consequence of meiotic
crossing-over, and that they thus have a risk for recurrence when observed de novo.

Introduction

Ehlers-Danlos syndrome type IV (EDS type IV; the arte-
rial or ecchymotic form of Ehlers-Danlos syndrome) is
a dominantly inherited connective tissue disease char-
acterized by severe tissue fragility that leads to prema-
ture death as a result of arterial, bowel wall, or uterine
rupture (Beighton 1970; Rudd et al. 1983; Pope et al.
1988; Byers 1989), the consequences of mutations in
the COL3A1 gene that encodes the chains of type III
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procollagen (Tsipouras et al. 1986; Byers 1989; Superti-
Furga et al. 1989; Kuivaniemi et al. 1991). The muta-
tions include multiexon deletions in the COL3A1 allele
(Lee et al. 19914; Vissing et al. 1991), small in-frame
deletions (Richards et al. 1992a), missense mutations
that result in substitution for glycine in the triple-heli-
cal domain by other residues (Tromp et al. 19894,
1989b; Kontusaari et al. 1990b; Johnson et al. 1992;
Richards et al. 1991, 1992b), and point mutations that
result in splicing errors (Cole et al. 1990; Kontusaari et
al. 19904; Kuivaniemi et al. 1990; Lee et al. 1991b).
We recently identified a 4-exon (2-kb) deletion in
one COL3A1 allele from a 13-year-old girl with EDS
type IV whose asymptomatic father was mosaic for the
mutation. At the breakpoint in the mutant COL3A1
allele, there was a unique gene rearrangement, a pattern
that may help to distinguish deletions that arise during
DNA replication from those that occur as a result of
homologous recombination during meiosis. These find-
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ings suggest that de novo deletions due to nonhomolo-
gous recombination have a risk for recurrence in sib-
lings, because the deletions occurred during mitotic
DNA replication and prior to meiosis.

Subject and Methods

Clinical Summary

The proband was the product of a normal-term ges-
tation and was the first child born to a nonconsan-
guineous couple. Delivery was induced because of amni-
otic fluid that leaked for the 2 d prior to birth. There
were no postnatal difficulties, and the infant went
home at 3 d of age. Easy bruising was noted as she
began to crawl. Healing of cuts occurred with keloids, a
trait she shared with her father. She was well, until 13
years of age when she presented to the emergency room
with periumbilical and suprapubic pain of about 8 h
duration. Abdominal ultrasound demonstrated a possi-
ble pelvic mass. On laparotomy a “probably” perfo-
rated fallopian tube was identified and removed. She
remained hospitalized for 3 wk, because of large fluid
requirements. Free air under the diaphragm prompted
reoperation, and 2 liters of purulent fluid was identi-
fied, but no perforation of the gastrointestinal (GI)
tract could be found. Multiple adhesions and friable
bowel were noted. Four days later, an upper-Gl series
was obtained that suggested perforation of the upper
jejunum. At surgery, the region of the jejunum was ex-
ternalized to create a jejunostomy. Two weeks later, a
lower-GI series was suggestive of leaking either from
the sigmoid or from the distal ileum. She subsequently
improved without further surgery and was released. She
has had no further complications. At the time of hospi-
talization, physical examination documented height of
5°2” and weight of 110 pounds. She had translucent
skin with visible vessels over the chest and with discrete
hypopigmented keloid scars of the lower extremities
and the upper arms. There were scattered bruises. Her
fingers were long and thin, and hyperextensibility was
limited to the midphalangeal joints. There were no
other affected family members.

Radiolabeling of Fibroblast Cultures and Analysis of
Collagens

Skin biopsies were taken from the proband and her
parents, with appropriate consent. Growth and mainte-
nance of dermal fibroblasts, labeling of collagenous
proteins, and their analysis were performed as de-
scribed elsewhere (Bonadio et al. 1985).
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Table |

Sequence of Oligonucleotide Primers

Primer Sequence
E6D....... 5-AAGAATTCTCCCCAGTATGATTCATATG-3
E7D....... 5'-GGGCATGCCCCCCTGGTACATCTGGT-3'
E8U ....... 5-GGGGATCCTTGGTATCCTGGAGATCC-3
E11D ..... 5'-AGGTCGACCTGGGATACCTGGATTCC-3'
E12U...... "“TTGGATCCAGGAGCACCTGTTTCACC-3
E25U...... 5" -CTGGTCGACCACTTTCTCCTTGACT-3'

NoOTE.—The underlined nucleotides represent the restriction sites
used to clone the amplified fragments, when necessary.

Restriction-Endonuclease Analysis of Genomic DNA

DNA was prepared from fibroblasts, white blood
cells, or sperm by standard methods (Maniatis et al.
1982), except that 10 mM DTT was added to the sperm
sample during proteinase K digestion. Very little DNA
was isolated from the father’s semen samples (<1 pg),
consistent with a low sperm count (<2 X 10° sperm/
ml) thought to be secondary to mumps orchitis in ado-
lescence. Aliquots of genomic DNA from cultured der-
mal fibroblasts, lymphocytes, and semen were digested
with HindIIl or BamHI (New England Biolabs) accord-
ing to the manufacturer’s specifications. The fragments
were separated by gel electrophoresis in 0.8% agarose
and then were transferred to a Nytran membrane
(Schleicher and Schuell) (Maniatis et al. 1982). The filter
was hybridized separately with the partial proal(II)
cDNA probe, HpL14 (Superti-Furga et al. 1989), and
with a 3.5-kb internal Hindlll fragment from the
COL3A1 genomic fragment, IDF-1 (Benson-Chanda et
al. 1989). The hybridization probes were labeled with
a-[>*P]dCTP (New England Nuclear) by using a ran-
dom-primer labeling kit (Biorad).

DNA Sequence Determination

Total RNA was prepared from dermal fibroblasts of
the proband (Chomczynski and Sacchi 1987). The se-
quence of oligonucleotide primers used for amplifica-
tion (table 1) was derived from the published cDNA
sequence for the COL3A1 gene (Ala-Kokko et al. 1989;
Benson-Chanda et al. 1989). The cDNA was prepared
by using an oligonucleotide complementary to exon 25
(E25U) of the COL3A1 gene, as a primer for reverse
transcription (Willing et al. 1990). The cDNA was used
as a substrate for amplification by PCR (annealing at
56°C, extension at 72°C, denaturation at 96°C, for 1,
2,and 1 min, respectively, for 28 cycles) with GeneAmp
reagents (Perkin Elmer Cetus) by using primers located
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in exon 6 (E6D) and exon 12 (E12U). The amplified
DNA was purified, and the double-stranded DNA was
sequenced by the dideoxy-chain termination method
by using T7 polymerase (Sequenase; U.S. Biochemicals)
as described elsewhere (Sanger et al. 1977).

The region of the mutant COL3A1 allele between
exon 7 and exon 12 was amplified from the proband’s
DNA by using primers E7D and E12U. The amplified
fragment was purified and was cloned into M13 phage,
and single-stranded DNA was sequenced by the di-
deoxy-chain termination technique (Sanger et al. 1977).
Intron 7 from the normal COL3A1 allele was amplified
by using primers in exon 7 (E7D) and exon 8 (E8U), and
intron 11 was amplified by using primers in exon 11
(E11D) and exon 12 (E12U). The amplified products
were purified by both electrophoresis through low-
melting-temperature agarose and passage through
Chroma Spin™-100 column (Clon Tech, Palo Alto,
CA), and the DNA sequence was determined, as above,
with the primers used for amplification.

Results

Dermal Fibroblasts from the Proband and Her Father
Secrete an Abnormal Type Il Collagen

Dermal fibroblasts from the proband and from her
mother and father synthesized and secreted normal
amounts of type I procollagen (fig. 1A). In contrast,
cells from the proband secreted very little type III pro-
collagen. While the mother’s cells secreted normal
amounts of type III procollagen, those from the father
secreted approximately half the amount of the control
cell strain. Following partial proteolysis with pepsin of
the secreted and intracellular collagens, the type I1I col-
lagen synthesized and secreted by the proband’s cells
was heterogeneous. There was a small amount of type
III collagen with a normal electrophoretic mobility and
a similar amount with a faster than normal mobility (fig.
1B). The father’s cells secreted approximately 30% of
the normal amount of electrophoretically normal type
I collagen, as well as a lesser amount of an abnormally
migrating type Il collagen that comigrated with the
abnormal form secreted by the proband’s cells. The
mother’s cells secreted normal amounts of a normally
migrating type III collagen.

Deletion in One COL3A| Allele in the Proband and the
Father

Southern analysis of fibroblast DNA by using a par-
tial proal(Ill) cDNA probe (HpL14) identified novel
Hindlll and BamHI fragments in the DNA from the
proband’s cells and the father’s cells (fig. 2A). The nor-
mal BamHI fragments were 14 kb, 9 kb, and 7 kb in
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Figure | Proa and a chains synthesized by cultured fibro-
blasts. A, Proa chains of type I and type III procollagen separated
under reducing conditions. Cells from the proband (P) secrete much
less type III procollagen than do cells from the control (C) or from
either the mother (M) or the father (F). B, Chains of type I and type Il
collagen separated under nonreducing conditions. Type III collagen
migrates as a disulfide-bonded trimer. Cells from the proband secrete
both a small amount of type 11 collagen with a normal mobility and
an equal amount of type llI collagen with a faster-than-normal mobil-
ity. There is a small amount of material that migrates between the
two bands and that probably represents heterotrimers that contain
both normal and abnormal chains. Cells from the father secrete less
normal type Il collagen and a small amount of the abnormally mi-
grating protein.

size. The novel BamHI fragment present in the pro-
band’s DNA was approximately 5 kb, and there was a
decrease in intensity of the 7-kb BamHI fragment, com-
patible with deletion of about 2 kb from within the
7-kb fragment (see figs. 2C and D). The novel HindIIl
fragment present in proband DNA was larger than the
7-kb HindlIll fragment normally present, compatible
with deletion of a HindlIIl restriction site (see fig. 2C).
The deletion mapped to the region of the gene that
encodes the amino-terminal end of the triple-helical
domain. The same novel bands were present in DNA
from the father’s fibroblasts. The proportion of the
mutant and normal alleles in the fibroblast DNA from
the father and the proband was similar.

The location of the deletion was confirmed by using
the 3.5-kb Hindlll genomic probe, IDF-1 (fig. 2B and
C). DNA from the proband and her father contained
novel fragments present on both digests, corresponding
to the deleted allele. Single HindIll and BamHI frag-
ments were identified in fibroblast DNA from the
mother (and from a control; data not shown) when
probed with IDF-1.

Frequency of the Deleted COL3AI Allele in Different
Tissues from the Father

DNA from white blood cells of the proband con-
tained the mutant allele and the normal allele, in equal
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Figure 2 Location and quantitation, in different tissue

sources, of the COL3A1 gene deletion. A, Fibroblast DNA cleaved
with Hindlll or BamH]I and probed with a partial cDNA sequence.
The presence of a new Hindlll band at 8.9 kb (arrow) and a new
BamHI band at 5.7 kb (arrowbhead) is compatible with deletion of a
Hindlll site within the 7.9-kb BamHI fragment near the §’ end of the
domain that encodes the triple helix of the proal(Ill) chain. The two
alleles are of equal proportion in the DNA from proband (P) and are
of near equal proportion in the DNA from the father (F). B, Genomic
DNA from white blood cells, cleaved with HindlIll or BamH]I and
probed with a partial cDNA sequence. The mutant and normal alleles
are present in equal amounts in DNA from the proband, but only a
small amount of the mutant allele is present in DNA from the father’s
white blood cells. The mutant allele is not present in DNA from the
mother’s (M) white blood cells or in that from the unaffected sister
(S). C, Fibroblast genomic DNA cleaved with HindIIl or BamHI and
probed with the 3-kb genomic HindIll-Hindlll fragment (IDF-I). D,
Partial restriction map of the COL3A1 gene, the approximate loca-
tion of the sequences that encode the major regions of the proa1(IlI)
chain, the probes used, and the location of the genomic deletion
(thick black bar).

proportion. The deletion allele represented about 10%
of the COL3A1 alleles (fig. 2). DNA derived from the
white blood cells of both the mother and the unaf-
fected sibling contained only normal COL3A1 alleles.
The mutant allele was represented in sperm DNA from
the father, but precise quantitation was difficult be-
cause of the small amount of DNA available (data not
shown).

Sequence Determination of the Deleted Message and
Gene

To determine the extent of the deletion, cDNA was
synthesized from RNA obtained from the proband’s
fibroblasts, and primers in exon 6 and exon 12 were
used to amplify the cDNA. Two fragments were ampli-
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fied, one of approximately 315 bp and the other of
approximately 95 bp. The 95-bp fragment contained
the sequences of exon 7 and exon 12 but lacked those
of exons 8-11 (fig. 3A). The appropriate Gly-X-Y read-
ing frame was maintained in the shortened fragment.
The larger fragment contained only the normal
COL3A1 cDNA sequence.

Primers in exon 7 (E7D) and exon 12 (E12U) were
used to amplify a 660-bp fragment from genomic DNA
of the proband. The normal allele of approximately 3
kb did not amplify efficiently under the amplification
conditions. The deletion junctions were approximately
50 bp from the 3’ end of exon 7 in intron 7 and 250 bp
from the 5’ end of exon 12 in intron 11. At the break-
point in intron 7 there was a 12-bp sequence that was
identical to a sequence approximately 60 bp 5’ to the
breakpoint in intron 11; a 5-bp motif (CAAAA) con-
tained in the repeat was also contained in DNA just 3’
to the breakpoint in intron 11 (see fig. 4). At the break-
point itself, there were both a duplication of the se-
quence from intron 11 and a 4-bp insertion.

Discussion

During the cell divisions required to go from a single-
cell embryo to an adult, a number of mutations must

A cDNA
ACGTACGT

B Genomic DNA
ACGT

Exon 8 Exon 12
ntron 11
— tatgcaaaatcaaac
Exon 7 Exon 7
Normal * Mutant ntron 7
Exon 7
Figure 3 DNA sequence of cDNA of the normal and mutant

alleles and of genomic DNA derived from the mutant COL3A1 allele,
through the deletion junctions. A, cDNA sequence. The cDNA was
amplified by using primers in exon 6 and exon 12, and the double-
stranded product was sequenced by using the exon 6 primer. The
sequence of exon 7 is directly adjacent to that of exon 12 in the
mutant allele. B, Sequence of the mutant COL3A1 allele in exon 7
and intron 7/11.
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EXON 7 Intron 7

GGTACATCTGGTCATCCTGGTTCCCCTgtaagtatagccattggtggtgttttccttcctcattttjagaaaaat

GGTACATCTGGTCATCCTGGTTCCCCTgtaagtatagccattggtggtgttttccttectcattttag t

cggacgttgaatthctagtgcataaagtactcttgaaaaatatcgttttccttactaccactathagaaaa.tcung::

Intron 11

Milewicz et al.

taatatattctgctataattcagccattccagcatgce

atgcaaaatcaaactatgcaaaatatttcgtacattc

tatgcaaaatatttcgtacattc

acattttgtgaattatgttttttattgacttaatatgatttattgattgagttgaacaactttattc

~690 bp

E -

COL3AT1 750
—
200bp
Figure 4 Top, Sequence of the normal COL3A1 allele (top and bottom) and of the mutant allele (center). The 12-bp identical domains in

intron 7 and intron 11 are boxed, the duplication at the junction is underlined, and the inserted sequence (caaa) is left unmarked. The DNA
sequence deleted between the 12-bp duplication and the duplicated region in intron 11 is placed below the bottom line. Exon sequence is in
uppercase letters, and intron sequence is in lowercase letters. Bottom, Schematic arrangement of the segment of the COL3A1 gene in which the
rearrangement occurred. The exons appear as boxes, and the introns appear as lines. The X in intron 7 and intron 11 marks the position of both
the duplicated 12-bp sequence and the boundaries of the deletion. Exons 7-12 contain 54 bp each. The size (in bp) of each intron is indicated.

occur within all normal individuals. Clonal expansion
of these mutation-bearing cells gives rise to somatic
and/or germ-line mosaicism. Germ-line mosaicism has
been used to explain the birth to unaffected parents of
more than one child affected with a dominantly in-
herited or X-linked recessive disorder (David 1972;
Fryns et al. 1983; Edwards 1986; Byers et al. 1988).
With molecular probes, germ-line and somatic mosaic-
ism for mutations has been demonstrated in several
disorders, including Duchenne muscular dystrophy
(Bakker et al. 1987; Darras and Francke 1987; Wood
and McGillivray 1988; Lebo et al. 1990), different
forms of osteogenesis imperfecta (Constantinou et al.
1989, 1990; Cohn et al. 1990; Wallis et al. 1990), or-
nithine transcarbamylase deficiency (Maddalena et al.
1988; Legius et al. 1990), hemophilia A (Higuchi et al.
1988; Gitschier et al. 1989; Brocker-Vriends et al.
1990), factor IX deficiency (Taylor et al. 1991; Solera et
al. 1992), von Willebrand disease (Murray et al. 1992),
and EDS type IV (Kontusaari et al. 1992; Richards et al.
1992b). In McCune-Albright syndrome, mosaicism for
a dominant lethal mutation appears to result in the con-
dition (Weinstein et al. 1991). In other dominantly in-
herited single-gene disorders in which recurrence
among siblings can be explained best by germ-line mo-
saicism for the mutation in one parent (e.g., achondro-
plasia [Fryns et al. 1983], pseudoachondroplasia [Hall
et al. 1987], Crouzon syndrome [Rollnick 1988; Na-
varrete et al. 1991}, hemoglobin Kéln disease [Bradley
et al. 1980], and Apert syndrome [Allanson 1986],
among others), there is substantial evidence that this
mechanism is surprisingly prevalent (Hall 1988).

The risk of recurrence for a dominantly inherited
disorder among siblings in a family in which one parent
is mosaic for the deleterious mutation depends on the
proportion of gametes that carry the mutation, which,
in turn, reflects the time at which the mutation oc-
curred during embryogenesis and the proportion of
cells carrying the mutation that were allocated to the
germ line (Hartl 1971; Cohn et al. 1990; Wijsman
1991). We sampled three tissues in the mosaic father in
this family—skin, germ cells (sperm), and leukocytes in
blood. Because the deletion allele was represented in all
three, the mutation occurred prior to segregation of
cells to the germ line and different somatic cell lineages.
About 10% of the COL3A1 alleles in leukocytes and
40% of the COL3A1 alleles in the fibroblasts we stud-
ied were the mutant species. We could not estimate the
proportion of the mutant allele in sperm, because of the
very small amount of DNA available. The difference in
proportion of normal and mutant alleles in white cells
and skin fibroblasts could result from a difference in
allocation of cells early in embryogenesis or, alterna-
tively, reflects sampling from a clonally derived region
in skin enriched for cells that contained the mutant
allele. If progenitor cells that contained the mutant
COL3A1 allele were not selected against, and if they
divide at the same rate as cells that contained only the
normal allele, then the proportion of mutant alleles in
blood indicates that the mutation occurred when at
least five founder cells were available to form the
embryo.

Despite the relatively high proportion of the mutant
COL3A1 allele in the DNA from the father’s fibro-
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Table 2

Effect of Mosaicism on Production of Type Il Procollagen Molecules That Contain All Normal or All Mutant Chains
NORMAL PROPORTION OF RATIO OF
ALLELE/ PROPORTION OF CELLS MOLECULES* MOLECULES® NORMAL
MUTANT PROCOLLAGEN

ALLELE Normal:Normal Normal: Mutant N, A, (N3:A,) (%)

S/S 0 1 12 A2 1:1 12.5

S55/.45 ... 1 9 .21 11 2:1 21

6/4 ...l 2 8 .30 .10 3:1 30

T/3 e A4 6 48 .08 6:1 48

8/2 ool .6 4 .65 .05 13:1 65

9/1 L .8 2 .83 .02 33:1 83

1.0/0.......... 1 0 1 0 100

2 N; = molecule that contains three normal chains; and A; = molecule that contains three mutant chains.

blasts, his cells produced considerably more normal
type III collagen than did his daughter’s cells. The cells
from the father were a combination of those that con-
tained only the normal allele and those that contained
the normal allele and the mutant allele. As the propor-
tion of cells that contain the mutant allele decreases
from 100% (in the heterozygote), there is a rapid in-
crease in the ratio of the normal type IlI collagen mole-
cules to trimers that contain only the product of the
mutant allele, assembled by the different cell popula-
tions (see table 2). In light of these findings, it is conceiv-
able that some individuals with multiple aneurysms but
without evidence of skin abnormalities of EDS type IV
could be mosaic for a deleterious COL3A1 mutation,
reflecting the presence of populations of cells with the
mutant allele.

Multiexon deletions that produce disease vary in fre-
quency among different genes. For example, X-linked
ichthyosis, due to steroid sulfatase deficiency, results
from deletions in >80% of affected individuals (Balla-
bio et al. 1989; Shapiro et al. 1989), Duchenne muscular
dystrophy results from deletions within the dystrophin
gene in about 60% of individuals (Kunkel et al. 1986;
den Dunnen et al. 1987), and 5%-10% of individuals
with EDS type IV may have deletions (Superti-Furga et
al. 1989), but deletions in type I collagen genes are rare
causes of osteogenesis imperfecta (Barsh et al. 1985;
Chu et al. 1985; Byers et al. 1988; Willing et al. 1988;
Wenstrup et al. 1990).

DNA sequences at deletion breakpoints differ sub-
stantially among mutations. There may be extensive ho-
mology for up to 200 bp (e.g., Alu-Alu-mediated dele-
tion in the low-density lipoprotein receptor gene
[Lehrman et al. 1985, 1986)), short regions of homol-

ogy as little as 14 bp (e.g., factor IX deletion [Chen and
Scott 1990)), very short direct repeats of 4-7 bp in the
retinoblastoma gene (Canning and Dryja 1989), and
short inverted repeats at deletion junctions (e.g.,
COL1A1 deletion in lethal osteogenesis imperfecta
[Barsh et al. 1985; Chu et al. 1985] and globin deletions
in B-thalassemias [Henthorn et al. 1990]). In addition,
deletion endpoints may occur in A-T-rich domains
that have little or no sequence homology (Willing et al.
1988; Weinreb et al. 1990). The time at which deletions
occur has not been determined in most instances. Dele-
tions could occur during DNA replication prior to lin-
eage determination (as occurred in the father of our
proband), during expansion of the germ-line pool, or
during meiosis in the final stages of gametogenesis. It
may be possible to identify the time at which recombi-
national events occur by characteristic features of the
rearranged DNA sequence. For example, the types of
deletion we identified, in which (1) there are sequences
distant to the breakpoints that provide some homology
and (2) new sequence is generated at the breakpoint, are
most likely to arise as replication events with templates
derived from a single chromosome. In contrast, dele-
tions that involve homopurine or homopyrimidine
tracts, causing either unequal sister-chromatid ex-
change (Weinreb et al. 1990) or extensive homology at
the breakpoints, could derive from either meiotic or
mitotic recombination and are more likely to involve
both chromosomes.

If DNA deletions occur during replication, then the
risk of recurrence of the disease in siblings of the pro-
band will depend on the timing of the mutation. In any
case, the recurrence risk for the disorder in sibships is
unlikely to be zero, although it may be low. Search for
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evidence of the deletion in somatic and, when available,
germ cells would help to define recurrence risk and to
clarify the time at which these mutations occur.
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