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Summary

An analytic method is described for estimating phenotypic correlations between pairs of members of specific
relationships in pedigrees. In estimating correlations, this new method allows simultaneous adjustment for
available covariates such as age, gender, environmental factors, and variables reflecting ascertainment mode,
through mean- and variance-regression models. The estimated correlations and regression coefficients cor-
responding to covariates are consistent and asymptotically normally distributed. Differing from a full-
likelihood approach, this new method does not require the assumption of a particular joint distribution of
phenotypes from a pedigree, such as the multivariate normal distribution, but instead only requires correct
specification of mean- and variance-regression models. Within this framework, missing data, if they are
missing completely at random, can be ignored without biasing estimates. The method is illustrated by an
application using nevus-count data from 28 Utah kinships. The results from the analysis are that covariate-
adjusted nevus counts are correlated between parents and children (correlation .22; P < .001) and between
siblings (correlation .32; P < .001), while the correlation of — .04 between husband and wife is not
significantly different (P = .31) from 0. This result is consistent with a genetic etiology of nevus count.

Introduction

Human pedigrees, defined as clusters of blood rela-
tives and their spouses, are frequently collected in hu-
man genetic studies. Such studies are often concerned
with the estimation of the degree of the familial resem-
blance of a particular phenotype, between paired rela-
tives of a given relation (e.g., mother and daughter,
brother and sister) (Falconer 1989, 148-162). A com-
monly used measure of familial resemblance is the cor-
relation coefficient; it is particularly useful for quanti-
tative phenotypes, since it has a simple interpretation
and has been widely used in many other biometric
applications. Recently, it has been argued that, despite
its boundary, the correlation is also useful for binary
phenotypes (Zhao and Prentice 1990).
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Despite its apparent simplicity, the development of
analytic methods for estimating correlations in com-
plex human pedigrees has been difficult. To avoid
complex structures of general human pedigrees, many
researchers, including Rosner et al. (1977), Konish
and Khatri (1991), Karlin et al. (1991), and Srivastava
et al. (1988), have considered a special family struc-
ture where each family pedigree has only one parent
and several children. Their proposed estimates of the
correlations between parent and child and between
siblings have been reviewed by Eliasziw and Donner
(1990; Donner and Eliasziw 1991). Other research-
ers, including Donner and Koval (1981), Rao et al.
(1985), and Shoukri and Ward (1989), considering a
nuclear family structure with two parents and several
children, proposed maximum-likelihood estimates of
correlations derived under the assumption of a multi-
variate normal distribution.

With no distributional assumption, an intuitive and
consistent estimate of a correlation between a specific
pair of relatives is the estimate of the Pearson product-
moment correlation. To obtain this estimate, one lists
all possible pairs who have the same specific relation-
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ship in each pedigree and then computes the Pearson
correlation of these paired relatives’ phenotypes. This
estimate has been criticized for being dispropor-
tionally influenced by large pedigrees (Smith 1980);
and its statistical properties are not well understood,
because the resulting pairs from the same pedigree are
not independent (Rosner et al. 1977).

Statistical methods for the analysis of dependent
datahad not been well developed until the recent intro-
duction of the estimating equations that evolved from
the generalized linear model (GLM) (Nelder and Wed-
derburn 1972) and quasi-likelihood (Wedderburn
1974). Both the GLM and quasi-likelihood were pro-
posed to unify apparently diverse regression tech-
niques. Their properties and applications have been
summarized by McCullagh and Nelder (1989). The
GLM approach requires two assumptions: (1) the
mean of a response variable is a known function of
a linear combination of covariates with a vector of
regression coeflicients to be estimated; and (2) the dis-
tribution of the response variable, given the covari-
ates, arises from a known member of the exponential
family of distributions. Under the GLM, the score-
estimating equations are completely specified by the
mean and variance of the response. The estimated co-
efficients from solving the score-estimating equations
are consistent and have an asymptotic normal distri-
bution with an easily estimable variance matrix when
all assumptions are true. It is found that, even if the
response arises outside the exponential family of dis-
tributions, the estimates from the score-estimating
equations continue to have these desirable properties.
This robustness property led to the conceptual devel-
opment of quasi-likelihood: by assuming only the
function for the mean and variance of the response,
one will obtain consistent and normally distributed
estimates of regression coeflicients, from the score-
estimating equations. Recently, Liang and Zeger
(1986; Zeger and Liang 1986) extended the GLM and
quasi-likelihood approaches to the estimating-equa-
tions approach for multivariate analysis of longitudi-
nal responses. Let y = (y1, . . . , ¥,) denote a vector
of  longitudinal responses. The estimating equations
approach assumes that the marginal distribution of
each response, y;, follows the GLM with a correctly
specified mean, p;, conditional on observed covari-
ates, and variance, o, of the jth response. The mean
is indexed by a vector of p regression coefficients,
af = (&, ..., 0p), and is of particular interest. Let
W = (u1,...H)and o’ = (04, ..., 6,), where o; is
the square root of the variance. These longitudinal
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responses are correlated. Let R = ||7||.x» denote a
“working correlation matrix” that need not be cor-
rectly specified, where y; = 1 if i = j and where y;
equals the “working correlation” between y; and y; if
i# j. The estimated regression coefficients in the mean
vector satisfy the estimating equations

OW e oy
Z%W (y-u)=0, (1)

where the summation X is over all independent sam-
ples, dp’/da is a p x n matrix of derivatives of the
mean vector with respect to the regression coefficients,
and the weight matrix W = diag(c) x R x diag(c)
and diag(c) is a diagonal matrix with the diagonal
elements 6. The degenerated estimating equations (1)
for a single response are the score-estimating equations
under the GLM. Prentice (1988) formalized Liang and
Zeger’s idea of estimating R by an additional set of
estimating equations. In summary, the essence of the
estimating-equations approach is that, without mak-
ing distributional assumptions about the correlated
responses, the estimated regression coeflicients from
the estimating equations (1) are consistent and have
an asymptotic normal distribution, provided that only
the model for the mean is correctly specified. Follow-
ing the same idea, Zhao and Prentice (1990; Prentice
and Zhao 1991) extended Liang and Zeger’s estimat-
ing equations to a set of estimating equations for
jointly estimating parameters in mean-, variance-, and
correlation-regression models, since the second-order
moments, especially the correlation, are of particular
interest in many scientific disciplines, such as genetics
(Zhao and Prentice 1991).

Acknowledging the complexity of general human
pedigrees, we propose an analytic method for as-
sessing patterns of familial resemblance by estimating
those specific correlations of interest, on the basis of
amodification of Zhao and Prentice’s estimating equa-
tions. This new method is illustrated by an application
to the analysis of nevus-count data in Utah kindreds.

Data and Method
Data

Notation. — Consider m independent pedigrees. In
the ith pedigree, there are #; individuals. The pheno-
type of the jth individual in the ith pedigree is denoted
by y;, while the ijth individual is characterized by a
vector of p covariates, x§ = (xj1, . . . , X;), including
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age, sex, and other demographic or environmental
variables. In the ith pedigree, the jth and kth individu-
als are related through a particular genealogical rela-
tionship, denoted by G(j, k), where G(j, k) takes values
1,2, ..., G corresponding to G exclusive types of
relationships. Let S;; denote the set of all pairs of indi-
viduals from the ith pedigree who have a specific rela-
tionship of type g, i.e., S = {(j,k)|G(j, k) = g over all
possible pairs in the ith pedigree}, where g = 1,
2, . . ., G numerate all G-exclusive relationships.
Complex relationships such as double first cousins
may be treated simply as relationships of their own
kind and have their own index value g. Also, let yi =
(¥, . + . » ¥in;) denote a vector of #; phenotypes, and
let x{ = (xi1,...,xin) denote a p X n; matrix of co-
variates.

Nevus-count data in the Utah kindreds.—This set of
nevus-count data from Utah kindreds was contributed
to the seventh genetic analysis workshop (MacCluer
et al. 1992). An updated version of this data set was
made available to the authors by Dr. D. Goldgar from
the University of Utah (personal communication).
The updated data set includes only 28 kindreds, a
subset of the pedigrees provided to the workshop. De-
tails of the study design and results of the previous
analyses have been reported elsewhere (Meyer et al.
1988; MacCluer et al. 1992). In brief, the first group
of 12 kindreds was obtained by referral of families
having two or more cases of melanoma or dysplastic
nevus syndrome in first- or second-degree relatives.
An additional 16 kindreds were identified through se-
quential melanoma cases. On average, each kindred
has about 23 individuals, except that two particularly
large kindreds, 1764 and 1771, have 165 and 126
individuals, respectively.

The total nevus count, which is believed to be asso-
ciated with melanoma (Green and Swerdlow 1989),
is the trait chosen for analysis here. The covariates
included in the analysis are age, sex, skin type, hair
color, eye color, proband status, an indicator for the
two ascertainment modes, and variables for the ascer-
tainment correction.

Accompanying this data set are the issues of ascer-
tainment bias and missing data. In this example, the
pedigree data are ascertained on the basis of the occur-
rences of either melanoma or dysplastic nevi syndrome
(DNS), while the total nevus count is the phenotype
of interest. Since the nevus count has been found to be
associated with both melanoma and DNS, ignoring
melanoma or DNS status might yield biased estimates
of correlations. We propose below (see the Ascertain-
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ment Correction Subsection) to perform a conditional
analysis that includes an indicator variable for pro-
band status as a covariate. By including the proband
indicator, we are actually estimating correlations in
the subpopulation of individuals who are not the pro-
bands, and the estimated correlations are thus general-
izable (at least under the modeling assumptions).

The problem of missing either outcomes or covari-
ates is common in human genetic studies. In this data
set, information on nevus count or age was missing on
128 individuals. One of the main reasons for missing
data is outmigration, which is unlikely to be associated
with nevus count or with other important covariates.
Another reason for missing data is death. For those
subjects who are deceased because of causes other than
melanoma, missing data are again unlikely to be asso-
ciated with the total nevus count. Overall, the missing
data due to the outmigration or death of other diseases
are approximately missing completely at random,
since the missing information does not depend on ei-
ther the missed data or the observed data (Little and
Rubin 1987). Missing data due to death from mela-
noma are not missing completely at random, since
they probably influence the nevus-count data. Fortu-
nately, the mortality from melanoma is relatively low,
and the small percentage of such missing data presum-
ably has a limited influence on estimates. Therefore,
in either situation, the missing data can be simply ig-
nored without biasing estimates. Note that the esti-
mates are generalizable only to those subjects who are
more than 15 years old, since this study measured
nevus counts in them only.

Method

Rationale. — Our primary concern is with the estima-
tion of the correlations, of phenotypes, between
paired relatives due to unexplained shared environ-
mental and genetic factors. For example, consider a
quantitative phenotype y; determined by an unex-
plained factor U;; and an observable random covariate
x; through a linear model y; = ao+ aix;+ U +¢€;,
where (a0, @) are parameters, €; is a random error,
(Uj, €;) are assumed to have mean zero, and (Uj, x;,
g;) are independent of each other. The mean and vari-
ance of the phenotype y;, given x;;, are expressed as W;;
= ao+yx;, and 6% = o©%;+ 62, respectively, where
oZ; is the variance of U; and 62 is the error variance.
The covariance between y; and y;, given x;, is given
by the covariance between U and Uy, denoted by (.
Thus, the correlation of interest is given by v = G/
Vo’ok. Note that if the jth and kth individuals share
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acommon factor, i.e., U; = Uy, the correlation above
is simplified to be v;z = 6%/(0%+ 62), which is the
intraclass correlation (Falconer 1989, pp. 148-162).

An appropriate estimate of the correlation vy re-
quires the correct specification of the mean, given the
observable covariate x;; otherwise, the estimate may
be asymptotically biased. One such misspecification
can be due to ignoring the observable covariate x;.
Ignoring the observable covariates would make the
mean and variance of the phenotype equal a, and
afoZ + o2 + o2, respectively. The resulting covariance
between y; and yi would equal [Li + cov(xj,xi)].
Since the correlation is influenced by the covariance
between x; and x;, it is necessary to specify correctly
the mean, by including all relevant x;; as covariates in
the regression model for means. Even if the covariate
x’s are independent of each other, i.e., the covariance
of (x;xi) equals zero, the correlation may still be in-
fluenced by the variance var(x;), since the variance is
involved in the calculation of correlations above. It is
therefore necessary to specify correctly the variance
as well, by including x; in the regression model for
variances.

Correlation-, mean-, and variance-regression models. — Let
a binary indicator b, take the value 1 if the jth and
kth individuals are relatives of gth type from the ith
pedigree, and let it take the value of 0 otherwise. The
vector of G binary indicators bl = (D1, - - . » PikG)
takes the values (1,0,...,0),(0,1,...,),...,(0,
0,...,1)correspondingtog = 1, 2,. .., Grelation-
ships, respectively. The correlations corresponding to
G types of relationships can be combined into one
regression model; for example, the linear correlation
regression model is y;x = b8, where 8 = (84, . . .
8¢) is a vector of G parameters of interest. Each §, in
this model corresponds to the correlation for paired
relatives of the gth type.

The correlation-regression model can be generally
expressed as

Yie = ¥(h5ud) , (2)

where y(e) is a specified function. A chosen function
may be nonlinear. For example, a hyperbolic function
Y(a) = [1 - exp(—a)]/[1 + exp(— a)] ensures that
the correlation falls in (—1,1).

The vector b may be extended to include other
covariates for testing certain hypotheses. For example,
one may wish to compare the other correlations with
the first correlation: Hy: 8,=8:,8=2, ..., Gin the
above formulation (2). To perform such a test, one

181

may include a constant term in by, such as b = (1,
birzs . . . 5 birc). Under the model (2) indexed by
parameters 8' = (8,, . . . , 8¢), the parameter 8, is an
intercept and 8,(g>2) corresponds to the differences
(85— 81). To test the hypothesis, one may equivalently
test Ho: 8;= 0. Another example arises from this study
with the nevus-count data. As described earlier, the
ascertainment of the first 12 kindreds is different from
that of the remaining 16 kindreds. To test the consis-
tency of estimates from the two different ascertain-
ment modes, one may include an additional binary
covariate, hjirc+1, for describing ascertainment. To
test the hypothesis, one introduces this variable as a
covariate in the correlation-regression model.
Consider a mean-regression model

Hj = Wxja), 3)

where p(e) is a specified function, x; is a vector of p
covariates, a subset of the covariate vector x;, and
a' = (04, . ..,q;)is a vector of p parameters. The
choice of this function p(e) is up to investigators. If
scientific theory does not provide the function, investi-
gators might wish to choose some appropriate and
flexible function with limits that are equal to the range
of the response variable (some examples of such func-
tions have been given in McCullagh and Nelder 1989).
Consider a variance-regression model

o} = o(xiB,u;) (4)

where o(e) is a specified function, %; is a vector of
p covariates, also a subset of x;, and B* = (B4, . . .,
Bs) is a vector of p parameters. The specified variance-
regression model may depend not only on the covari-
ates %; but also on the mean p;. Note that, for a binary
phenotype, the variance is fully specified, by the mean,
as 6} = pi(1 — p;) and thus is not subject to any further
modeling.

Regression models for nevus-count data. — The correla-
tion-, mean-, and variance-regression models (2)-(4)
arerather general and can be applied to either continu-
ous or discrete phenotypes. In the following, we con-
sider a set of specific models for nevus counts. The
mean- and variance-regression models are chosen for
consistency with the analysis by Thomas (1992).

The correlation-regression model considers the esti-
mation of the correlations between parent and child,
between siblings, and between parents and is ex-
pressed by the covariate vector b = (b1, bijwz, Pije3)s
which equals (1,0,0), (0,1,0), and (0,0,1), respec-
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tively. The covariate vector b will be extended to
include a binary indicator for the two ascertainment
modes, as described in the previous section. A linear
function y(e) is useful for exploratory modeling and
is chosen here for its simple interpretation.

The mean-regression model is used for nevus
counts; we use an exponential regression model p; =
exp(xa) to ensure that the estimated mean is positive.
The inclusion of a covariate in the covariate vector x;
depends on whether its association with the average
nevus count is of interest, whether it influences the
estimated correlations (by comparing two estimated
correlations with and without adjusting for the covari-
ate), and whether it is part of the ascertainment correc-
tion. For example, age and sex are included in %; as
covariates, both because their association with the av-
eraged nevus count is of interest and also because ig-
noring these covariates may influence the estimated
correlations. Indicators for ascertainment correction
are also included (and are discussed in the Ascertain-
ment Correction Subsection).

The variance-regression model 6} = pexp(xiB)
allows dependence of the variance on the mean and
also ensures a positively estimated variance (6% > 0)
by the exponential function. Count responses (such as
total nevus count) are often assumed to arise from the
Poisson distribution. The variance of such a count re-
sponse equals the mean. Thus, the assumed variance-
regression model above can be thought of as a Poisson
variance with an extravariability factor, exp(%;B). The
criterion for including a covariate in the variance-re-
gression model is the same as that for including a co-
variate in the mean-regression model.

Estimation. — A recently developed extension of the
method for estimating equations (Zhao and Prentice
1990, 1991; Prentice and Zhao 1991) is used to esti-
mate the parameter vector (5, a, B), the estimates of
which are denoted by (8§,4,8). The estimates (5,4,B)
satisfy a set of (G+p + f) equations

SXF =0, (5)

i=1

where the summation X%, is over all m independent
pedigrees. The design matrix X! is a block-diagonal
matrix with diagonal block elements of b} = (. . .,
h,‘jk, .. .), xf = (5C,'1, [N ,.‘x,‘,,,-) and x,’ = (5&,’1, « e ey
%in). The vector F; is a concatenation of the three vec-
tors (2 — &), (yi— W), and (s? — 6?), where a vector of
covariances & = (. . ., G . . .), a vector of means
wi = (Wi, . - . » Mim), and a vector of variances (6?) =
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(64,...,06%). In F, s? = (y;—w;)*is an n; x 1 vector
of unbiased estimates of the variances 67, since
E(s?) = o?,given u; 2t = (..., 2, . . .) includes all
relevant pairs in S, where each zji = (y;j— ;) (yie —
i) is an unbiased estimate of the covariance {;, since
E(zi) = G, given p; and i

The expression for the estimating equations (5) is
rather compact. To describe this expression more ex-
plicitly, let us consider a simple pedigree with six sub-
jects (fig. 1) and detail the vectors and matrices in-
volved in the estimating equations (5). The size of the
ith pedigree is six (7, = 6). If our primary interest is
in the correlations between parents, between parent
and child, and between siblings, then there are only
nine relevant pairs (G; = 9): (1,2) and (4,5) (husband,
wife); (1,3), (1,4), (2,3), (2,4), (4,6), and (5,6) (par-
ent, child); and (3,4) (sib,sib). Suppose that the mean
u; of the phenotypes depends on sex and age, the vari-
ance 67 depends on sex, and the covariance {; depends
on the familial relationship and an additional covari-
ate that is constant within the pedigree (with value .2
for this kinship). The matrices b;, x;, and %;, and vec-
tors (zi— &), (yi— wi) and (s? — a?) for this kinship are
given in the Appendix, as are the F; and X;. The 4,
matrix is easily modified to estimate more specific
correlations. For example, to estimate sex-specific
parent-child correlations, one replaces the single vari-
able b for parent-child by four binary variables—

30

1 0
48 39
20 10
|
4 (s)
0 1 0
27 25 24
2 13 3
0
2
2

Figure | Pedigree used to demonstrate the configuration of
vectors and matrices for the ith contribution to the estimating equa-
tions illustrated in the Appendix. The number inside the square or
circle is the individual’s index number; the numbers beneath are,
respectively, sex, age, and number of nevi (the phenotypic trait, y;).
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one each for father-son, father-daughter, mother-son,
and mother-daughter.

It can be shown, in a way similar to that described
by Zhao and Prentice (1990), that the estimates
(8,8,B) are consistent and have an asymptotic normal
distribution as the number of pedigrees m increases.
The asymptotic variance matrix, X, may be estimated

by

3= A(SXFFX)A™,
i=1

where A = X7, A, and A; is a derivative matrix
of X!F; with respect to parameters (3,a,8). In £, the
diagonal elements are the estimated variances for
the estimated parameters, while the off-diagonal ele-
ments yield the estimated covariances. The estimates’
asymptotic normal distribution allows one to con-
struct test statistics for testing correlations, as well as
regression parameters, in the mean- and variance-
regression models.

Also, note that the estimating equations (5) include
only those pairs of correlations that are present in
Sepi=1,...,mg =1,...,G, in contrast to all
possible pairs of correlations in the estimating equa-
tions proposed earlier by Zhao and Prentice (1990;
Prentice and Zhao 1991). To differentiate it from
other methods, we call this method a “pairwise method.”
By the pairwise method, one can focus on the relevant
correlations of interest.

A program PFR (Patterns of Familial Resemblance)
for this pairwise method has been written in GAUSS
(Aptech System 1984), on a personal computer. The
computing time depends on the sizes of pedigrees and
the numbers of covariates. In most of our analysis on
the pedigree data from 28 Utah kindreds, the comput-
ing time for fitting a model on an IBM PS2/model 70
386 is less than 20 min. The program also allows the
user to specify several different functions for correla-
tions, means, and variances.

Ascertainment correction.— Human pedigree data are
frequently collected according to a particular ascer-
tainment mode. Two modes are discussed here. One
is that the ascertainment of a particular pedigree de-
pends only on one or more relatives’ phenotypes, who
are known as probands. Let (yo, y1, . . . , ym) denote
a vector of relatives’ phenotypes, where y,, . . . and y,,
correspond to nonproband relatives’ phenotypes, and
Yo is a scalar phenotype corresponding to a single pro-
band (but can also be a vector of phenotypes corre-
sponding to multiple probands). The information
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from these phenotypes may be characterized by the
conditional distribution function f{y1, . . . , Ym|Yo)-

The other ascertainment mode is that the ascertain-
ment of a particular pedigree depends on one or more
probands’ covariates. Let (xo, X1, . . . , X») denote a
vector of relatives’ covariates. The quantitative infor-
mation from these phenotypes can be characterized
by the conditional distribution function f{yo,y1, . . . ,
YmsX1, - - - Xm|%0). The second ascertainment mode is
emphasized in the following discussion, since the Utah
kindreds were ascertained on the basis of the occur-
rence of melanoma or DNS, while the phenotype of
interest is the total nevus count.

The conditional distribution function, f{yo,y1, . . . ,
Ymsy X1y « « « 5 Xm|%X0), is proportional to f{ye, y1, . . . »
Ym|X0sX15 « . - 5 Xm), since the former function can be
decomposed into the product of the latter function
with the conditional distribution function, f(xi, . . .,
Xm|%o), which is unlikely to contribute relevant infor-
mation. In view of the estimating equations described
earlier in this paper, the quantitative information may
be characterized by the conditional moments: the con-
ditional mean E(y;|xo, . . . , xm), the conditional vari-
ance var(y;|xo, . . . , Xm), and the conditional covari-
ance cov(y;,Y|%o, - - . » Xm). A conditional analysis
using the estimating equations would yield valid infor-
mation about the familial resemblance of the pheno-
types, given the covariates. Additional assumptions,
however, are needed in order to appropriately model
these conditional moments.

With any method of estimation, correct ascertain-
ment adjustment depends on the underlying mecha-
nism that produced the data. In practice, it is prefera-
ble to consider alternate ascertainment corrections, in
order to see whether the estimated correlations have
changed. One such a correction assumes that

» Xm) = E(yjlx;) ;

s Xm) = var(y|x;) ;

E(yjlxo, . . .
var(yj|xo, . . .

COV(Y; Ykl|X0s « « + 5 Xm) = COV(Yjs Ve|2jp%e)

that is, these moments, dependent on only their own
covariates, are independent of the other relatives’ co-
variates. The dependence of these simplified moments
on the covariates can be modeled easily by the mean-,
variance-, and correlation-regression models and can
be estimated by using the estimating equations (5).
This conditioning constitutes an ascertainment correc-
tion for pedigree data that are ascertained by using
either single or multiple probands.
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An alternate model assumes that

E(yj|xoy . « . y Xm) = E[yjlxj, rel(xj,xo)] ;

var(y|xo, . o . 5 Xm) = var[yjlxj,rel(x,-,xo)] ;

COV(Y),ilX0, - . - 5 Xm) = cov|y;, ye|x; rel(x;,x0),

xk, rel(x4,%0)] 5

where rel(x;,x,) indicates the genealogical relation be-
tween the jth relative and one or more probands. It is
expected that, if the inclusion of x;’s do not adequately
account for the ascertainment, the conditional mo-
ments may, in addition, depend on the genealogical
relations, rel(x;, xo), with probands. These dependen-
cies can be modeled and tested, and biases in estimat-
ing correlations — biases that are due to ignoring such
relations—can be observed. To specify the relations
as covariates in respective regressions, one may create
avector of indicators for the genealogical relationships
with probands. If pedigrees are ascertained through a
single proband, the creation of indicators is straight-
forward, by, e.g., binary indicator variables speci-
fying whether a subject is a parent, sibling, child, or
spouse of the proband. If data are ascertained by using

Table |
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multiple probands, additional indicators may be cre-
ated.

Ascertainment correction is important in the devel-
opment of methods for pedigree data analysis, since
misspecifying it can invalidate parameter estimation.
For example, a simple attempt at a correction might
be to exclude probands, i.e., the analysis based on the
likelihood function f{y1, . . . , y) for the analysis of
data ascertained by the first ascertainment method.
The resulting estimate may be biased, since the actual
likelihood function flyi, . . . , ya|yo) is conditional.
Similarly, the same analysis on the data ascertained by
the second ascertainment method would be based on
Y1y s Ym|x1,. .., xm), which is again different from
the actual likelihood function f{y1, . . . , Ym|yo,x0,x1,

.+« » Xm); and consequently the estimates might be
biased.

Results

Under the assumed regression models for correla-
tions, means, and variances, the estimated correla-
tions and parameters for mean and variance models
are presented in table 1. The estimated correlations of
.20 between parent and child and .32 between siblings

Estimated Correlations between Parent and Child, between Siblings, and between Husband and Wife and
Estimated Parameters in Mean-Regression Model p; = exp(xfo), and Variance-Regression Model,

oh = uy exp(x )

Coeflicient
Covariate Coding (standard error) P

Correlations:

Between parent and child ............. 1 = Yes; 0 = no .20 (.04) <.001

Between sibling and sibling = Yes; 0 = no .32 (.06) <.001

Between husband and wife ........... 1 = Yes; 0 = no —.08 (.05) .10
Means:

Intercept ......cooeieiiiiiniiiniiniiinenne. 1 3.27 (.15) <.001

Ascertainment ..........c.ooeeiviiiniiinns 1 = Multiples; 0 = single .12 (.09) 21

Proband ..........ccoevniiiiiiiiiiiinne. 1 = Yes; 0 = no .50 (.08) <.001

AE vttt eeaas Age/10 .39 (.08) <.001

Age? (age/10)? -.07 (.01) <.001

N SRR 1 = Male; 0 = Female .01 (.06) .93
Variances:

Intercept ......cccovviniiiiiiniiniiniinnen. 1 2.36 (.25) <.001

AsCertainment ...........ceceeeveenenennns 1 = Multiples; 0 = single .40 (.23) .08

Proband 1 = Yes; 0 = no —.03 (.41) .95

ABE e Age/10 43 (.21) .04

AE? o (age/10)? —-.05 (.04) 22

SEX teterieriiieiieieree e ae e aaaaan 1 = Male; 0 = female -.27 (.21) .19
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are significantly different from zero, suggesting that
familial aggregation of nevus count is due to shared
environment or genes. The latter correlation is sig-
nificantly greater than the former correlation (not
shown). The —.08 correlation between husband and
wife is not significantly different from zero.

In the mean-regression model, both estimated pa-
rameters .39 and - .07, corresponding to the linear
and quadratic terms of age, respectively, are sig-
nificantly different from zero. The combination of lin-
ear and quadratic terms can be approximated as
—.07(age — 30)? plus a constant; taken at face value,
it suggests that the nevus count increases with age up
to 30 years and decreases after that. This is consistent
with the known growth pattern of nevi (Green and
Swerdlow 1989). The average nevus count does not
differ between males and females (P = .93), nor does
it differ across the two ascertainment processes (P =
.21). The estimate of .50 for the effect of proband
status is significantly different from zero (P < .001),
implying an association of nevus count with mela-
noma or DNS status. Ignoring proband status might
therefore affect the estimates of the correlations. It
would be preferable to include the occurrences of mel-
anoma and DNS, instead of the proband indicator, in
the regression model, since the occurrences of these
two diseases were the ascertaining criteria and since
their association with the nevus count would be of
interest. Unfortunately, a large proportion of partici-
pants were not examined for the occurrence of DNS.

In the variance-regression model, it appears that the
variability of nevus counts increases with age (P =
.04) but not with the quadratic term of age (P = .22).
The variability from pedigrees ascertained through
multiple cases is marginally significantly greater than
that ascertained through a single case (P = .08). The
variability of nevus counts is not significantly associ-
ated with either gender or proband status (P = .19
and .95, respectively).

After excluding insignificant covariates from the
mean- and variance-regression models, we next inves-
tigated the associations of means and variances with
skin types, hair color, and eye color separately (in
table 2), as well as the effects on estimating the correla-
tions by the inclusion of these covariates in the mean-
and variance-regression models (not shown). In the
first four rows of table 2, the association with skin
type is investigated, with skin type 1 as a reference.
The estimated parameters .34 and .39, of skin types
2 and 3, respectively, are significantly different from
that of the skin type 1 (P = .01), while skin type 4 or
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Table 2

Estimated Parameters Corresponding to Skin
Type, Hair Color, and Eye Color, in
Mean-Regression Model p; = exp(xfo) and
Variance-Regression Model o} = pexp(x iB)

MEAN VARIANCE
COVARIATE Coefficient Coefficient
CODING (standard error) P (standard error) P

Skin:

Type 1 (reference) ... 0 0

Type 2 34 (.12) .01 .06 (.29) .84

Type 3 .39 (.15) .01 -.02(.35) .96

Typedor$5 ........... .04 (.19) .62 -.93(.38) .01
Hair color:

Black (reference) ..... 0 0

Brown .......cceceuneen. .04 (.14) .77 .12(.28) .67

Blond ..........ccueeee. .04 (.13) .75 12(.25) .63

Red ..oovvnrvnenennncnnnns -.46 (.20) .02 .08 (.22) .71
Eye color:

Blue (reference) ....... 0 0

Green .....cceceeennnnns -.12(.15) .40 .51(.31) .10

Hazel .................... 02 (.10) .83 .33(.20) .10

Brown or grey ........ -.07(.10) .49 -.16(.26) .53

5 is not significantly different from skin type 1 (P =
.62). The variability of nevus count with skin type 4
or § is significantly different from that of skin type 1
(P = .01), while those of skin types 2 and 3 are not
significantly different from that of skin type 1 (P =
.84 and .96, respectively). In the fifth to eighth rows,
the association with hair color is investigated, with
black hair as a reference. The coefficient — .46 for red
hair is significantly different from that for black hair
(P = .02), suggesting that individuals with red hair
tend to have a lower nevus count. The rest of the
estimated parameters in either means or variances are
not significantly different from zero. In the last four
rows, eye color is investigated, with blue eyes as a
reference. None of the estimated parameters in mean-
and variance-regression models are significantly dif-
ferent from zero. Finally, the estimated correlations
after adjustment for skin type, hair color, and eye
color individually are not much different from those
without any adjustment.

After including these significant terms in the mean-
and variance-regression models, we estimated the cor-
relations again; the results are listed in the second to
fourth rows of table 3. The estimated correlation .22
between parent and child is slightly increased over the
previous value of .20 in table 1, while the estimated
correlation of .32 between siblings is the same as the
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Table 3

Zhao et al.

Estimated Correlations between Parent and Child, between Siblings, and

between Husband and Wife

Covariate Coeflicient (standard error) P

Correlations:*

Parent and child.......... .22 (.05) <.001

Sibling and sibling .32 (.06) <.001

Husband and wife —-.04 (.04) 31
Correlations without ascertainment correction:?

Parent and child................... .22 (.05) <.001

Sibling and sibling ....... .32 (.06) <.001

Husband and wife........ -.07 (.05) 15
Correlations with misspecified mean:®

Parent and child................... .10 (.04) .01

Sibling and sibling .36 (.06) <.001

Husband and wife -.07 (.07) .28
Correlations with misspecified variance:*

Parent and child................... .23 (.05) <.001

Sibling and sibling................ .31 (.06) <.001

Husband and wife................. —-.05 (.05) 31

* Estimated under specified mean p; = exp(xja) and variance 6% = p; exp(%iB).
b Estimated under misspecified mean p; = exp(a).
¢ Estimated under misspecified variance 6% = p; exp(B).

previous value. Both estimated coefficients are signifi-
cantly different from zero, but the difference between
them is no longer significantly different from zero. The
correlation — .04 between husband and wife is not
significantly different from zero (P = .31).

To quantify the effects of the ascertainment correc-
tion on the correlations, the binary-indicator variable
for proband was excluded from the mean-regression
model. The fourth to sixth rows of table 3 give the
estimated correlations. The estimated correlations be-
tween parent and child and between siblings have
changed only slightly. The estimated correlation be-
tween husband and wife, however, is biased away
from the null, while the Pvalue decreases to .15. Over-
all, the adjustment for ascertainment in this data set
has not substantially altered the estimated correlations
of nevus counts. To further check the validity of this
ascertainment correction, we fitted another model in-
cluding four indicators (for parent, sibling, child, and
spouse) into the mean- and variance-regression models
(not shown). Each indicator variable takes the value
1 if a proband has the specified relation with the sub-
ject and takes the value 0 otherwise. The variability
among the spouses of probands is significantly lower
than that among other subjects, while the rest of the
indicators affect neither the variability nor the mean.

After adjustment, the estimated correlations between
parent and child and between husband and wife de-
creased from .32 and — .04 to .27 and - .03, respec-
tively, while that between parent and child remained
unchanged. Such modest changes suggest that simply
including the proband indicator as a covariate was
an adequate adjustment for these data, and further
modeling on ascertainment correction was not at-
tempted.

To demonstrate the effect of misspecifying the mean
and variance functions, the correlations were esti-
mated without adjusting for covariates in the mean-
and variance-regression models. The 9th-11th rows
of table 3 give the estimated correlations under the
assumption of a constant mean p; = exp(a). The cor-
relation between parent and child is biased toward
zero, while that between siblings is biased away from
zero; the correlation between husband and wife is
hardly affected. In the next three rows of table 3, the
correlations are estimated by using the variance func-
tion o} = pyexp(B). It appears that the estimated corre-
lations are only slightly affected.

An approximate test for heterogeneity due to the
two different ascertainment processes was made by
including a binary-indicator variable and relevant
cross-products with relationship variables in the
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correlation-regression model; the .30 correlation be-
tween parent and child in the first 12 pedigrees appar-
ently is significantly different from the —.02 correla-
tion between parent and child in the other 16 pedigrees
(P < .01). The correlations between siblings and be-
tween spouses are not much different between these
two groups (P = .10 and .43, respectively).

Discussion

We are proposing a new analytic method for esti-
mating correlations between members of specified re-
lationships in complex human pedigrees. This method
requires correct specification of the mean-, variance-,
and correlation-regression models but does not other-
wise require assumptions concerning the joint distri-
bution of correlated phenotypes. The estimates of
parameters in these regression models have an asymp-
totic multivariate normal distribution that can be used
for statistical inferences.

The estimating equations proposed by Zhao and
Prentice (1990) and Prentice and Zhao (1991), which
are presumably more efficient than the pairwise
method, can be expressed as

SXIDWF, = 0, (6)

i=1

where D; is a derivative matrix of covariances, means,
and variances with respect to linear combinations
h#8,x%a and %4 and where W is a chosen weight ma-
trix. The choice of this weight matrix does not, in
general, alter the consistency of the estimates (8, @, f)
but determines the efficiency of estimation. Indeed,
the estimates are fully efficient if the weight matrix
is proportional to the variance matrix of F;, which
involves knowing the third- and fourth-order mo-
ments in addition to the first- and second-order mo-
ments (Prentice and Zhao 1991). In other words, for
fully efficient estimates the specified third and fourth
moments in W; should equal their true values, which
may require unattainable knowledge about the exact
joint distributions of relatives’ phenotypes. The appli-
cations of the more efficient estimating equations (6)
to arbitrary and large human pedigrees, however, may
be limited. In the estimating equations (6), both D;
and W;are (2n; + p;) x (2n;+ p;) size matrices, where
pi = .5n{n;— 1) is the total number of possible pairs in
the 7th pedigree. Thus, the size of the matrices rapidly
increases with the pedigree size ;. For example, a
pedigree (Utah kindred 1764) with 165 individuals
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may involve a 13,860 x 13,860 matrix W;. Matrix
inversion or even multiplications of matrices can be a
formidable task. This limitation, however, does not
prohibit the application of equations (6) to pedigree
analysis of many but small pedigrees. In fact, in such
circumstances the estimating equations (6) may be pre-
ferred to equations (5), for the gain of statistical effi-
ciency.

Estimated correlations from the estimating equations
are comparable with the Pearson product-moment
correlations. In the simplest case with no covariates
and with linear correlation and mean- and variance-
regression models, an estimated correlation of a type
g relationship, from the estimating equations (5), is
identical to the corresponding Pearson correlation and
is given by

Z 2 (v A)ya—R)/ 6%,
i=1 (k)ESg
where
1 m n
a - th:l’ j=ly‘p
N = i n;
i=1
P2 L3 Symnr
= N4 A Yij .

To account for covariates in the means of the re-
sponses, the estimated correlation from the estimating
equations with covariates in the mean-regression
model and with a constant variance is similar to the
Pearson correlation of the regression residuals, (y; — f1;),
where [i; are the fitted values from the usual regression
of responses on the covariates. However, the use of
the estimating equations (5) allows one to adjust both
the means and variances for covariates and to perform
a regression analysis on correlations. This approach
yields estimates of asymptotic variances that can be
used for statistical inference.

The estimating-equations technique differs from
maximume-likelihood estimation in several ways. Maxi-
mum-likelihood estimation requires restrictive assump-
tions about joint distributions. Our estimating-equa-
tions approach requires models only for first- and
second-order moments. For the use of maximum like-
lihood, even if one were to assume a distribution which
is determined by its first- and second-order moments
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(e.g., the multivariate normal distribution), one im-
plicitly would be specifying all higher-order moments.
These moment assumptions may be unrealistic and
often are not checked in practice. (We note that the
almost universal assumption of multivariate normal-
ity in correlation analyses stems from the mathemati-
cal simplicity that accompanies it.) If the assumptions
of these nuisance components fail to hold, the maxi-
mum-likelihood estimates may not be consistent. Even
if they are consistent in some cases, their standard
errors may be quite inaccurate, and the likelihood ra-
tio test can be misleading. Moreover, the computation
of maximizing a complicated likelihood function for
complex human pedigrees can be a formidable task.
In contrast, the pairwise method is straightforward
in implementation, can be used for the analysis of
pedigrees with either continuous or discrete pheno-
types, and does not require making distributional as-
sumptions. The results are easily interpreted, since
they are simply estimates of parameters in mean-,
variance-, and correlation-regression models. Alter-
native models can be used to assess the robustness of
the correlation estimates.

In exchange for the simpler computations and the
robustness in inference is a potential loss in statistical
efficiency. First, the method of unweighted estimating
equations (5) may not be as efficient as the method of
maximum likelihood. For example, an assumed multi-
variate normal distribution with specified means, vari-
ances, and correlations implies all higher-order mo-
ments, which are not assumed in the estimating
equations. These higher-order moments may carry
some relevant information about the correlations,
which is captured by the likelihood function but not
by the estimating equations. To gain efficiency, one
can extend the estimating equations to include those
implicitly specified higher-order moments, at the ex-
pense of greatly increased computations.

Second, this pairwise method as presented here esti-
mates correlation only for specific pairs of relation-
ships, ignoring those relationships that are not explic-
itly included in the model. This is both a strength and
aweakness. At the cost of assumptions concerning the
exact functional relations of different pairwise correla-
tions, information from additional pairs might be
pooled into a single estimate. Consider the correlation
between grandparents and grandchildren. A variable
might be included in the matrix b; to estimate this
correlation without using assumptions concerning its
relation to the parent-child correlation; estimated sep-
arately, it gives no information about the parent-child
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correlation. If one were willing to assume some func-
tional relation—e.g., that is equal to the square of
the parent-child correlation—the »; matrix could be
suitably modified to allow pooling of information
across both pairs of relationships, to estimate one cor-
relation. The degree of efficiency, then, depends on
the assumptions that the investigator is willing to bear,
and each assumption must be specified explicitly. This
additional flexibility to the pairwise method is cur-
rently under investigation, and the associated proce-
dure for estimating such parameters will be developed.

This new method was applied to the analysis of
nevus-count data in 28 Utah kindreds. The results
suggests that nevus counts are correlated between par-
ent and child and between siblings, with correlations
.22 and .32, respectively (P’s < .001). These nonzero
correlations could be due to shared genes as well as
due to other common environmental factors which
have not been accounted for. It appears that the shared
adult environment may not contribute much to this
familial resemblance: the correlation between hus-
band and wife, who share many aspects of adult envi-
ronment, is actually negative, although not signifi-
cantly different from zero.

There are reasons to be cautious in interpreting these
results. First of all, the estimates of correlations may
be influenced by the method of sampling. As described
earlier, the first 12 pedigrees were ascertained through
multiple cases of either melanoma or DNS, while the
other 16 pedigrees were ascertained through single
cases of melanoma. Of the three correlations esti-
mated, it was found that the parent-child correlation
from the first 12 pedigrees apparently was significantly
greater than that from the remaining 16 pedigrees.

Second, the estimated correlations can also be af-
fected by seriously misspecifying the mean and vari-
ance functions. We found that ignoring the covariates
related to the mean number of nevus counts biased the
parent-child correlation toward zero and biased the
sib-sib correlation away from zero. Deliberately mis-
specifying the variance function had little effect on
the estimates of the correlations, although a general
conclusion of such is not warranted.

In summary, this newly proposed method allows
one to assess patterns of familial resemblance, by esti-
mating specific correlations of interest. The relatively
simple computations for estimating correlations allow
one to thoroughly explore patterns of familial aggre-
gation in complex human pedigrees. Since the exact
joint distribution of phenotypes need not be specified,
the investigator is free to concentrate on the more rele-
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vant scientific aspects of the problem: the dependence
of familial correlations, means, and variances on co-
variates.
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Appendix

Matrices and Vectors Involved in ith Contribution
to Estimating Equations (5) from Sample Pedigree in
Figure 1

x;isthe 6 x 2 (n;, = 6 and p = 2) matrix for
response means E(y;), while x;isthe 6 x 1 (n; = 6 and
p = 1) matrix for response variances E(s;):

Sex Age  Member Index Sex
48
39
27
25
24

2

X = X .

SO OO
ANnNAbDhWN =
SO R OOm

bh; for covariancesis a9 x 4 (P, = 9and G; + 1
= 4) matrix of pair relationships plus one pedigree
covariate:

Parent- Sib- Husband- Pair
Child Sib Wife  Covariate Indices
0 0 1 0.2) 1,2

1 0 0 0.2 1,3
1 0 0 0.2 1,4
1 0 0 0.2 2,3
b = 1 0 0 0.2 2,4
0 1 0 0.2 3,4
0 0 1 0.2 4.5
1 0 0 0.2 4,6
1 o 0 02)  56.

The vector F; is a concatenation of a 9 x 1 vector
(zi=&), a 6 x 1 vector (y;— ), and another 6 x 1
vector (s? — 67), in which z;, y;, and s; may be expressed
as
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¥ =(20,10,2,13,3,2) ;

(s?) = [(20 — pa)*, (10 — p2)%, (2 = pna)?,
(13 = wia(3 = wis)% (2 - wis)ls

Z = [(20 = pa)(10 = pi2), (20 — pa)(2 — pa),
(20 — pia)(13 = pia), (10 — ui2)(2 = i),
(10 — pi2)(13 = pia), (2 — His)(13 = pia),
(13 = pia)(3 = pis), (13 — pia)(2 = Wis),
(3 = mis)2 — wis)] -

The resulting X; and F; are a (Gi+1+p+p) X
(P: + 2n;) block-diagonal matrix and a (P;+2#;) x 1
vector, respectively, and may be expressed by

b,‘O 0 Zi—Ci
Xi=|[0x0 and |[yi—p |.
0 0 X% st —of
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