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Summary

Chromosome 21 contains genes relevant to several important diseases. Yeast artificial chromosome (YAC)
clones, because they span >100 kbp, will provide attractive material for initiating searches for such genes.
Twenty-two YAC clones, each of which maps to a region of potential relevance either to aspects of the Down
syndrome phenotype or to one of the other chromosome 21-associated genetic diseases, have been analyzed
in detail. Clones total - 6,000 kb and derive from all parts of the long arm. Rare restriction-site maps have
been constructed for each clone and have been used to determine regional variations in clonability, methyla-
tion frequency, CpG island density, and CpG island frequency versus gene density. This information will be
useful for the isolation and mapping of new genes to chromosome 21 and for walking in YAC libraries.

Introduction

Chromosome 21 is the smallest of the human chromo-
somes and is postulated to be relatively low in gene
content. Nevertheless, genes contained within the long
arm of the chromosome appear to be involved in a
number of medically, biologically, and socially sig-
nificant diseases. These include familial Alzheimer
disease (FAD), amyotrophic lateral sclerosis (ALS),
progressive myoclonus epilepsy (PME), holoprosen-
cephaly (HP), and Down syndrome (DS) (Pueschel
1982; Epstein 1986; St George-Hyslop et al. 1987;
Estabrooks et al. 1990; Lehesjoki et al. 1991; Sid-
dique et al. 1991).

Candidate genes are not available for most of these
diseases (but see Goate et al. 1991; Schellenberg et al.
1991); however, a search for such genes is feasible for
two reasons. First, the genetic and physical maps of
the chromosome are quite advanced (Cox et al. 1990;
Gardiner et al. 1990b; Owen et al. 1990; Burmeister
et al. 1991), and the DS phenotypic map continues to
be refined (McCormick et al. 1989; Rahmani et al.
1989; Korenberg et al. 1990,1992; Korenberg 1991).
As a result, a region of interest can generally be limited
to a few megabases or less, containing several known
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probes. Second, yeast artificial chromosome (YAC)
clones are becoming available and widely distributed
for much of the chromosome (Patterson 1991).
Hence, it is relatively straightforward to obtain a YAC
or YACs, potentially containing relevant genes, that
map to a region of interest.
We have selected 22 YAC clones from human chro-

mosome 21, obtained from the St. Louis human li-
brary under the auspices of the International Joint
YAC Screening Effort (Patterson 1991). Together,
these clones comprise >6 megabases (Mbp) of DNA
(15% of the long arm) and derive from all regions of
the chromosome. Each YAC is well placed with re-
spect to candidacy for a specific disease or aspect of
DS. We have constructed pulsed-field restriction maps
for these clones and used them to investigate regional
variations in (1) distribution of unique sequences cur-
rently on the map, (2) patterns in methylation fre-
quency, (3) rare restriction-site and potential CpG is-
land distribution, and (4) gene size and presence of
CpG island. This analysis should aid in choosing gene
isolation procedures and in pursuing investigations
into human genome organization.

Material and Methods

YAC Clones

YAC clones listed in tables 1 and 2 (except for those
for D21S65) were identified by PCR screening of the
St. Louis human YAC library (Brownstein et al. 1989;
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Table I

YAC Clones with Limited Analysis

Size
YAC Probe (kb) Reason for Not Pursuing

B231C4 ......... D21S120 120 Larger alternative available
B126C4 ......... D21S120 200 Larger alternative available
A120D9 ......... D21S120 260 Larger alternative available
B148E8 ......... D21S120 280 Larger alternative available
B254A9 ......... D21S120 410 Possibly identical
B207B4 ......... D21S12 100 Larger alternative available
A233D1 ......... D21S12 100 Larger alternative available
A47C3 ......... GART 350 Chimeric
A62H12 ......... D21S65 320 Larger alternative available
A200E11 ........ D21S3 900 Chimeric
B136H7 ......... D21S13 385 Map divergencea
A168D10 ........ APP 335 Map divergence-a
D56F5 ......... D21S111 620 Map divergence;a chimeric (FISH)
D112A5 ......... SOD1 185 Small and chimeric (R,v)b
A165D7 ......... D21S65 200 Within C14B2
C4C10 ......... D21S65 250 Within C14B2
BI19G7 ......... D21S65 1,300 Chimeric; 250 kb within C14B2
B234B10 ......... D21S55 185 Map divergencea
NOTE. -Listed are the YAC clones discarded after preliminary analysis.
a Pulsed-field map significantly different from that obtained for other, nonchimeric YACs containing

the same probe (for other YACs, see table 2 and fig. 3).
b V = Vectorette PCR; and R = right end.

Green and Olson 1990). YACs for SOD1 and GART
have been reported (Imai and Olson 1990; Gnirke et
al. 1991). YACs for D21S120, D21S111, and APP
(Dl 10G6) were obtained by B. Brownstein (Washing-
ton University, St. Louis). The remainder were ob-
tained by the Chromosome 21 International Joint
YAC Screening Effort (headed by D. Patterson, Elea-
nor Roosevelt Institute). YACs containing D21S65
were identified by F. Tassone using the pulsed-field
gel/Southern blot method (Mendez et al. 1991). All
clones were routinely grown in selective medium to
assure maintenance of the YAC. YAC DNA was pre-
pared, as previously described, in agarose plugs at
a concentration of 7 x 10R cells/ml. To determine
whether the ends of the YAC clones mapped to chro-
mosome 21, three different procedures were used.
Vector-Alu PCR with primers TC65, 517, and 278
(Nelson et al. 1989); vectorette PCR analysis (Riley et
al. 1990) using BgIIH, BamHI, and BclI; left-end rescue
methods (Burke et al. 1987); and fluorescent in situ
hybridization (FISH) (Trask et al. 1989) were all used
essentially as described. End clones for the ETS2 YAC
were obtained and mapped to chromosome 21 by M.
Brennan (National Institute of Mental Health); FISH
with the CD18 YAC was done by W.-L. Kuo and J.

Gray (University of California at San Francisco) and
with the D21S17 YAC by J. Gingrich (Lawrence
Berkeley Laboratory). Both size of the YAC con-
taining D21S120 and the presence of D21S48 and
D21S16 were originally determined by S. Rider
(UCSF). YAC addresses are given in tables 1 and 2.
For brevity, YACs analyzed in detail (table 2) are re-
ferred to by the name of the probe used to identify the
clone, e.g., yD21S65 is clone C14B2 and contains
probe D21S65. Where two YACs with the same probe
are discussed, they are designated as "L" and "S," for
the larger and smaller, respectively.

Pulsed-Field Gel Electrophoresis (PFGE)

Sizing ofYAC chromosomes and separation ofcom-
plete digests were done on the TAFE system (Gardiner
et al. 1990b); partial digests were separated in the ED
system, a modification of the original Schwartz device
(Schwartz et al. 1989). Both gel types used 0.25 x
TBE buffer (10 x TBE = 0.9M Tris-borate/20 mM
EDTA). Electrophoresis conditions are given in the
figure legends. Size markers were concatamers of
lambda (48.6 kb), the chromosomes of the host Sac-
charomyces cerevisiae strain AB1380, and the 90-
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Table 2

Analysis of YAC Clones

Size
YACa Probeb Otherc (kb) Regiond Chimerisme

B251H6 ....... D21S120 D21S16, D21S48, and Not50 410 I Yes (f)
B236A6 ....... D21S12 250 I No (f; R,v)
A109F12 ...... D21S13 265 I No (f)
A210B6 ....... D21S52 D21S59 520 I Yes (v)
B47F7 ........ D21S52 150 I?
A300D8 ....... D21S110 310 I No (f)
B2B3 ........ D21S11 D21S1 500 I Yes (f)
D11OG6 ....... APP Eagll8-1 835 I No (v)
A151E3 ....... D21S12 D21S99 and D21S111 350 I No (v)
A228D8 ....... D21S93 265 I No (f; L,v)
D142H8 ...... GART SON 600 II No (ep)f
C14B2 ........ D21S65 450 II No (ep and va)
A222A12 ..... D21S17 270 III No (f)f
B134B9 ........ D21S55 330 III No (v)
A125B12 ...... ERG D21S60 285 III No (v)
B19C12 ....... ERG 145 III No (v)
A196B6 ....... ETS2 250 IV No (ep)f
B258F4 ........ D21S15 165 IV No?
B208G3 ....... D21S64 D21S53 300 IV Nog
B45F3 ........ D21S19 210 IV No (f)
B45A8 ........ CBS CRYA 125 IV No?9
A228B4 ....... CD18 330 IV No (f)

a Address in the St. Louis library.
b D locus used to isolate the YAC.
c Additional probes found in the YAC.
d See fig. 2.
' f = FISH; v = vectorette PCR; ep = cloning of end probes; va = vector Alu PCR; and R = right end and L = left ends, respectively.
'Information from personal communications by A. Gnirke (GART) (Gnirke et al. 1991), J. Gingrich (D21S17), M. Brennan (ETS2),

and W.-L. Kuo and J. Gray (CD18).
g Not likely to be chimeric, because of the positions of unique sequences within the YAC. For discussion of chimerisms, see the text.

1,600 kb chromosomes of S. cerevisiae strain yPH149
(provided by P. Hieter).

Enzyme Digestions
NotI, Sf$, and NruI were purchased from Strata-

gene; SstII from BRL; and others from New England
Biolabs. Complete digests were done according to a
method described elsewhere (Gardiner et al. 1990b) by
using - 30 units of enzyme. Partial digests were done
according to a method described elsewhere (Burke et
al. 1987), for 3 h and using three or four different
concentrations of enzyme, generally ranging from
0.01 to 20 units, depending on activity and lot number
of the enzyme. The map for yGART is from Gnirke
et al. (1991), with the addition of EagI and SstII sites.

Probes

Chromosome 21 unique sequence probes are listed
in table 1 and are from the collection used in previous

studies (Gardiner et al. 1990b). RT1 is a full-length
cDNA clone, containing the entire coding region and
the 3' untranslated segment, for the 751 form of the
APP gene (a gift from R. Tanzi); RT1-1.1 is a 1.1-kb
EcoRI fragment of this clone, containing the 3' se-
quences found in the original APP cDNA, FB63 (Tanzi
et al. 1987); RT1-2.1 contains the 5' sequences.
CH49/39 is a 2.7-kb PstI fragment from cosmid 49
(Brahe et al. 1990). Sequence analysis (F. Tassone,
unpublished data) indicates that it contains the pro-
moter of the APP gene (Salbaum et al. 1988). H08 is
a 3.5-kb HindIII fragment from cosmid ICRFc-
102H08124, isolated from the ICRF library (Lehrach
et al. 1990) by screening with D21S65. SON3 is a
cDNA mapping to 21q22.1 (Berdichevskii et al.
1988). LambdaNotSOPvu3 is a 4-kb EcoRI/PvuI frag-
ment, and lambdaEagl 18-1 is a 1-kb EcoRI fragment;
both are from lambda clones previously reported (Gao
et al. 199lb). The pYAC4 left- and right-arm vector-
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specific pBR fragments used in analysis of partial di-
gestions have been described elsewhere (Burke et al.
1987). The 2.6-kb fragment is specific for the trp (left)
arm of the vector, the 1.6 for the ura (right) arm.
Probes were labeled by the random primer method to
specific activities of 108_109 cpm/gg (Feinberg and
Vogelstein 1989).

Results

Preliminary YAC Analysis

Forty YAC clones from the St. Louis human library,
representing screening for 22 probes, were subjected
to all or part of the following analysis: (1) determina-
tion of size, by pulsed-field analysis; (2) examination
of probe content, based on current physical maps; (3)
investigation of chimerism, by end-cloning, vectorette
PCR, vector-Alu PCR, or FISH; and (4) construction
of pulsed-field maps, using nine rare-cutting restric-
tion enzymes. Only the largest YAC obtained with
each probe was pursued initially; further YACs were
added as chimerism or other ambiguities made the first
choice less attractive. On this basis, the YACs have
been divided into two groups. Table 1 lists those for
which only limited analysis was done, and it gives the
reason for not pursuing each further. Table 2 gives
detailed information for the 22 YACs on which de-
tailed analysis has focused. These YACs represent
screening for 19 probes. All clones appeared stable
during prolonged growth in selective medium.
Of the clones listed in table 2, 17 are nonchimeric;

the smallest is 125 kb, and the largest is 835 kb. For
several YACs, lack of chimerism was determined by
FISH, and it is true that this method may not detect
small segments mapping elsewhere. If some of these
YACs are indeed chimeric, it is likely to be a small
region and does not affect the further analysis. YACs
were sequentially hybridized with total human DNA,
with the probe used to screen the library, and with
additional probes previously mapped to the same re-
gion. Table 2 gives the information on size, probe
content, and chimerism.
Nine YACs contained one to three additional

probes. For most of these, proximity had already been
established by pulsed-field linkage (Gardiner et al.
1990b); however, this was often on fragments of con-
siderable size (e.g., D21 S52 and D21 S59 on fragments
approaching 2 Mbp, ERG and D21S60 on >800 kb,
etc.). Thus, YAC analysis has refined the physical
mapping data for many of these probes. In addition, it
also points out that this collection ofprobes is perhaps
even more closely clustered than previously expected,
in particular, in 21q21 (see fig. 2 and Discussion).

Figure 1 shows the location of each YAC along the
chromosome. Positioning is based on physical map-
ping data previously obtained for probes within the
YACs (Gardiner 1990; Gardiner et al. 1990b). Regions
I-IV had also been determined, using pulsed-field and
base-compositional data, to have the following char-
acteristics: region I (21cen-proximal 21 q22. 1)-AT
rich and gene poor; region II (distal 21 q22. 1)- CG
rich and gene rich; region III (21q22.2)-AT rich and
gene rich; and region IV (21q22.3), very CG rich and
very gene rich (Gardiner 1990; Gardiner et al. 1990a,
1 990b). Regional localization of the YACs is of inter-
est in considering possible disease gene associations and
for predicting possible CpG island and gene densities.

Construction of Pulsed-Field Maps
To identify clusters of rare sites that may indicate

CpG islands (and thus the 5' end of gene sequences)
and to obtain information relevant to methylation pat-
terns, pulsed-field maps were constructed for each of
the 22 clones. Nine enzymes that cut infrequently in
human DNA were used: NotI, BssHII, MluI, NruI,
EagI, SstII, ClaI, Sall, and Sfil. These enzymes were
chosen because they have been used in genomic pulsed-
field analysis of the same probes (Gardiner et al.
1 990b).
Each YAC was digested to completion with all nine

enzymes and hybridized sequentially with total hu-
man, left- and right-end vector-specific sequences, and
appropriate unique sequence probes. Partial diges-
tions were carried out with each YAC for each enzyme
with more than one site, and hybridizations again were
done sequentially with left-end, right-end, and unique
sequence probes. For YACs up to - 400 kb, sites were
confirmed from both ends of the YAC. For small YACs
(250 kb), this could be done with a single pulse time;
for larger YACs, short pulse times were used for sites
near the ends, and longer pulse times were used for
the more distant sites. For YACs >450 kb (GART,
D21S52, D21S11, and APP), the verification of sites
by overlap could be done only for the central region.
Examples are shown in figure 2. Notable features in-
clude the small number of Sall and ClaI sites in the
relatively large (410 kb) yD21S120 YAC (fig. 2a), the
suggestion of a cluster of BssHII and EagI sites in
yD21S65 (fig. 2b), and the large number of MluI sites
in the 120-kb yCBS (fig. 2c) and NotI sites in yCD18
(fig. 2d).
Maps for all 22 YACs, with the nine enzymes, are

shown in figure 3, grouped by chromosomal region
and listed in order from centromere to telomere. In
examining these maps, there are several points to note.
(1) In region I, yD21S120 appears to be chimeric by
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Chromosome 21 YAC Clones

FISH. However, the additional hybridization is seen
near the centromere of either chromosome 14 or chro-
mosome 15 and therefore may be due to pericentro-
meric sequence homology as reported by Van Camp
et al. (1992). In region IV, the situation with yD21 S15
is similar, showing hybridization to 21q22 (where
D21S15 maps) but also to 21qcen. (2) yD21S11 ap-
pears to be chimeric by FISH, with sequences also
mapping to chromosome 6 or chromosome 7, near the
centromere. Vectorette PCR and left-end rescue were
unsuccessful in generating useful end probes from this
YAC. Although a triply chimeric YAC is not suggested
here by FISH, for further analyses we used the con-
servative estimate that only -200 kb surrounding
D21S11 and D21S1 is from chromosome 21. (3) The
map of yAPP provides information' on the size of the
APP gene. Previously APP had only been determined
to be >50 kb in size (Lemaire et al. 1989), because not
all introns had been cloned in their entirety. In EagI
digests of yAPP Dl1OG6, probes for the promoter, 5'
and 3' cDNA fragments together detect five fragments
(data not shown). Comparison of these data-and of
similar data, which resulted from use of Sall, BssHII,
and SfiI- with the map in figure 3 implies that the
entire gene minimally spans >300 kb. When all non-
duplicated chromosome 21 material is considered,
YACs from the AT-rich, gene-poor region I contain
2,870 kb of DNA; those from the GC-rich, gene-rich
regions II and IV contain 1,050 and 1,375 kb, respec-
tively; and those from the AT-rich, gene-rich region
III contain 1,010 kb.

Implications for Methylation
The only DNA modification seen in mammalian

DNA is 5'Me-C, occurring largely in CpG dinucleo-
tides (Bird 1986). Currently, too few unique sequences
are available from these YACs to directly determine
the methylation status of the majority of rare sites
shown in the maps of figure 3 (for methylation ofCpG
islands, see below). However, some indications of the
frequency of methylation in the different regions can
be obtained by comparing average sizes of fragments
seen in the YACs with those obtained from analysis of
human lymphocyte DNA. We used the maps in figure
3 to calculate the number and size of the fragments in
each YAC seen with seven enzymes (ClaI and Sall were
excluded). Data were pooled for YACs within a single
region, because they share similar base composition
and rare-site frequencies (Gardiner 1990; Gardiner et
al. 1990a, 1990b). In regions I and III, a more realistic

picture was obtained by also considering end frag-
ments, because the number of internal fragments was
often small (because ofthe low frequency of rare sites).
A similar inclusion did not affect data in regions II and
IV. Genomic pulsed-field data (for human lymphocyte
DNA) were obtained from previously published physi-
cal maps (Gardiner 1990; Gardiner et al. 1990b) and
include information for additional probes mapping to
the same regions as these YACs.

Results of these comparisons are shown in table 3.
In regions I and III, most enzymes give fragments
10-20 times larger in genomic DNAs, implying that
90%-95% of the rare sites are methylated. In regions
II and IV, this remains true for MluI and NruI only.
For the sites most frequently seen in CpG islands
(NotI, BssHII, EagI, and SstII) (Bird 1989), however,
fragments are not so much larger. They exceed those
seen in YACs only by a factor of 3-6, implying that,
for these enzymes, on the order of 65%-80% of sites
are methylated. Sf1 sizes are roughly the same in the
YACs and in genomic DNA, as expected for a site that
is largely lacking in CpG. YACs from regions I and
III, however, contain three or four times as many Sfil
sites as expected, suggesting some methylation. This
is consistent with the observation of Butler et al.
(1992) for the region around D21S13 and D21S16. In
summary, not only are sites for most rare-cutters less
frequent in regions I and III, but they are also less
frequently unmethylated.

Potential CpG Islands

Scanning the YACs for potential CpG islands- and
thus the 5' ends of genes (Bird 1987)-may give in-
sights into variations in gene density. Bird (1989) has
shown that four of the enzymes used in this analysis
(NotI, BssHII, EagI, and SstII) are statistically more
frequently found in CpG islands, while others, such
as MluI and NruI, are more often found outside CpG
islands. In characterizing potential islands, we defined
a strong cluster of sites as one containing three or
more coincident "island" sites and defined a moderate
cluster as one containing two.

Inspection of the maps in figure 3 shows that four
YACs (GART, D21S65, CBS, and CD18) stand out
as having both large numbers of island sites and large
numbers of island-site clusters. This is in general not
surprising, because previous studies indicated that
these probes map to the gene-rich region of the chro-
mosome and that D21S65, CBS, and CD18 also map
to GC-rich regions (Gardiner 1990; Gardiner et al.
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Table 3

Implications for Methylation

SIZE OF FRAGMENTa
(kb)

Region I Region III Region II Region IV

Y G Y G Y G Y G

NotI ..... >320 2,000 >336 1,300 210 330 76 550
BssHII 113 1,750 108 800 40 120 55 300
EagI 100 800 115 800 45 110 30 80
SstII 100 1,000 75 800 65 150 40 250
MluI 160 2,000 100 1,900 140 1,300 35 700
NruI 170 2,460 80 1,500 100 1,500 100 650
Sfil 110 480 70 200 90 90 45 100

NOTE.-YACs were classified as belonging to one of four regions as indicated in fig. 1.
a y = average sizes observed in YAC clones of internal and end fragments calculated by inspection

of the maps in fig. 3; and G = average sizes of fragments observed in human genomic DNA for probes
mapped to these regions (from Gardiner et al. 1990b). Note that I and III are the AT-rich regions; these
YACs contain a single NotI site. The most striking regional differences are for the CpG island sites: NotI,
BssHII, EagI, and SstII.

1990a, 1990b). Together, these YACs comprise
1,500 kb, with 26 island clusters, i.e., an average of
1 cluster/60 kb.

Seven other YACs (D21S120, D21S110, D21S12,
D21S93, D21S17, D21S15, and D21S19) are in stark
contrast. They also total 1,500 kb of DNA, but they
contain no island clusters. Probes within four of these
YACs map to 21cen through proximal 21q22.1, and
D21S17 maps within 21q22.2-both AT-rich re-
gions. D21S19 is anomalous; it is located in 21q22.3,
a very gene- and GC-rich region. The remaining YACs
(D21S13, D21S52, D21S11, APP, D21S55, ERG,
ETS2, and D21S64) together contain >3,000 kb and
typically show low frequencies of island sites, together
adding only 11 more clusters.

Are Island-Site Clusters Methylated?
Strictly speaking, rare-site clusters constitute a CpG

island only if they are unmethylated. We can directly
assess the methylation status of some of the observed
clusters by comparing fragment size in the YAC with
fragment size previously observed in human lympho-
cyte DNA.

Previous physical mapping data indicate that the
cluster in yD21S13, the left-end strong cluster in
yD21S65 (Gardiner et al. 1990b; Gao et al. 1991a),
the NotI sites and two moderate clusters between them
in yGART (Lutfalla et al. 1992; S. Cheng and K. Gar-
diner, unpublished data), and the left-end strong clus-
ter in yAPP (Brahe et al. 1990; F. Tassone, unpub-

lished data) are all unmethylated. In contrast, the
cluster in yD21S52, clusters in yD21S65 at 60 and 110
kb, and those in yERG, yD21S55, and yETS2 are
all methylated (Gardiner et al. 1990b; F. Tassone,
unpublished data), because of the large fragments seen
with these probes in lymphocyte DNA.

How Does the Cluster Frequency Relate to Gene Frequency?

Fourteen genes are contained within 10 YACs (for
anonymous transcribed sequences, see Davidson et al.
1985; Neve et al. 1987; Stefani et al. 1988). Table 4
specifies whether a CpG island association is observed
for each of the 14 genes and also gives the cluster
density within each corresponding YAC. Cluster den-
sity was calculated on the basis of 300 kb because this
approaches the average size for these YACs. Zero,
low, and high cluster density was assigned by inspec-
tion of the maps in figure 3.

Forty-five percent (6/ 14) of the genes are within the
four YACs (1,500 kb) that show high cluster densities
averaging one cluster/60 kb. Twenty percent (3 / 14)
of the genes are located in areas with much lower
cluster densities averaging 1/300 kb. A significant
35% (5/14) are in regions with no clusters observed
within 300 kb. Because most housekeeping and many
tissue-specific genes are associated with CpG islands
(Bird 1987; Gardiner-Garden and Frommer 1987),
it is possible that this analysis is actually reflecting
differences in gene size and that in many cases the
attendant CpG islands are merely outside the YACs
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Table 4

Gene and CpG Cluster Associations

Cluster Densityc
Genea CpG Islandb (no./300 kb)

D21S13 ............. Yes Low (1)
APP ............. Yes Low (1)
D21S93 ............. No Zero (0)
GART ............. Yes High (4)
SON (GART) ....... Yes High (4)
AML1 d (S65) ........ Yes High (5)
D21S17 ............. No Zero (0)
D21S55 ............. No Low (1)
D21S60 (ERG) ..... No Low (1)
ERG ............. Yes? Low (1)
ETS2 ............. No? Low (1)
CBS ............. Yes High (5)
CRYA (CBS) ........ Yes High (5)
CD18 ............. Yes High (9)

a From YAC studied (in parentheses is given the name ofthe YAC,
if different from that of the gene).

b Yes = putative CpG island is present near the gene; and No =
no apparent CpG island is in the vicinity of the gene. Status is
determined by inspection of maps in fig. 3.

c Determined by inspection of the maps in fig. 3.
d Sources: Gao et al. (1991a) and Myoshi et al. (1991).

analyzed. Perhaps, then, apparently gene-rich regions
are merely home to smaller genes. Alternatively, the
data may be indicating a significant collection of genes
lacking CpG islands or possessing more subtle CpG
islands that are not detected by using these rare-cutting
enzymes.

Discussion

We have characterized 22 YAC clones distributed
throughout the long arm of chromosome 21. YACs
were selected on the basis of their physical map posi-
tion and are biased toward larger, nonchimeric YACs
(average size 350 kb; 17/22 are nonchimeric). Only
four YACs are confirmed chimeric, but each contains
significant amounts of chromosome 21 material. In
total, the collection contains - 6,000 kb of chromo-
some 21 DNA. All clones appeared stable during pro-
longed growth, and no trivial sequence rearrange-
ments were observed. We can therefore conclude that
these YACs provide reasonable starting material for
the examination of sequence organizational features
and for undertaking comprehensive gene searches.

Pulsed-field restriction maps of all 22 clones were
used to investigate probe density, methylation pat-

terns in human lymphocyte DNA, frequency of poten-
tial CpG islands, and the correlation between gene
density and CpG island frequency. Nine YACs con-
tained a total of 12 additional probes already placed
on the physical map. Eight of these probes were found
in five YACs mapping to region I. One YAC contains
four probes within <275 kb, a second contains three
within <150 kb, etc. All together, 13 probes of the 36
placed on various physical maps (Cox et al. 1990;
Gardiner et al. 1990b; Owen et al. 1990) are clustered
in - 1 Mbp of the >20 Mbp covered by the maps
spanning 21cen through 21q21. It appears that the
proximal two-thirds of the chromosome has been
largely refractory to cloning, save for subregions from
which most probes have been obtained. Reasons for
this anomaly may be understood after further se-
quence analysis of additional YACs from this region.
In contrast, in spite of the greater probe density in the
distal one-third, very few probes are found clustered
in the >3,000 kb of DNA analyzed.
As expected, all YACs contained many more rare

sites than observed in genomic DNA, but the discrep-
ancy was again greater both for YACs and probes
within the proximal two-thirds and also for those
mapping to 21q22.2. Methylation in these regions ap-
pears to be 90%-95% of rare sites, while in the re-
maining regions it is 65%-80%. This is inversely re-
lated to the gene density in gross terms and therefore
conceivably reflects the difference in (unmethylated)
CpG islands found in the latter regions.
When potential CpG island densities were consid-

ered, YACs were divided into three groups-those
with clusters every 60 kb, those with clusters every
300 kb, and those with clusters spaced at >300 kb.
While all YACs with high cluster densities map in the
gene-rich region, the converse is not true. Roughly
1,500 kb of YAC DNA (half that analyzed from the
distal one-third) showed few or no clusters, in spite of
being within the gene-rich region. Furthermore, of the
14 genes mapped to these YACs, 8 map in YACs show-
ing clusters >300 kb apart. This group of eight in-
cludes five genes within the distal one-third ofthe chro-
mosome.

These observations lead to an interesting specula-
tion regarding gene size and gene density. It remains
perfectly possible that many genes on chromosome 21
do not have CpG islands as detected by rare restriction
sites. Alternatively, the average gene size may vary
considerably by region. For example, the APP gene is
>300 kb in size; the GART gene is 40 kb (Gnirke et
al. 1991). Both genes possess CpG islands, but APP
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resides in a region where they are, on average, 300 kb
apart, GART where they are 60 kb apart.

All YACs analyzed here are potentially relevant to
chromosome 21-associated diseases. In particular,
those mapping to regions II-IV are likely to contain
genes affecting various aspects of the DS phenotype
(McCormick et al. 1989; Korenberg 1991; Korenberg
et al. 1992). Genes within yCD1 8 may be good candi-
dates for HP, those within yGART or yD21S93 for
ALS, those within yD21S19 for PME, and those cen-
tromeric for FAD (St George-Hyslop et al. 1987; Esta-
brooks et al. 1990; Lehesjoki et al. 1991; Siddique et
al. 1991). Rare restriction maps of these YACs, their
CpG island distributions, and methylation patterns
will be of assistance in the isolation and mapping of
such genes, and nonchimeric YACs will form the basis
for walks through the regions in searches for addi-
tional genes.
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