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Summary

Controversy over the impact of multiple testing procedures in linkage analysis is reexamined in this report.
Despite some recent claims to the contrary, it is shown that testing multiple markers decreases the posterior
false-positive rate among significant tests, rather than increasing it; this is true whether the trait of interest
is simply monogenic or complex, or even if the genetic model is misspecified. However, if the true mode
of inheritance is complex, or if the genetic model is misspecified, the power to obtain a significant result when
linkage is present may be reduced, while the significance level is not, leading to an inflation of the posterior
false-positive rate. Furthermore, the posterior false-positive rate increases with decreasing sample size and
may be unacceptably high for very small samples. By contrast, testing multiple genetic models, by varying
either mode-of-inheritance parameters or diagnostic categories, does lead to an inflation of the posterior
false-positive rate. A conservative correction for this case is to subtract loglot from the obtained maximum
lod score, where t different genetic and/or diagnostic models have been tested.

Introduction

The lod score method of linkage analysis (Morton
1955) was originally devised as a sequential test of
linkage. Among the advantages of the method are (a)
the ability to include general pedigrees of any form in
the analysis and (b) the additivity of the statistical
evidence (lod score) across pedigrees. The sequential
nature of the analysis was assumed to occur through
the sequential ascertainment and analysis ofpedigrees.
On the basis of the theory of Wald (1947), Morton
(1955) derived the lod score criterion of 3, with the
goal of obtaining a posterior false-positive rate among
reported linkages that was <5%. The value of 3 re-
flects the fact that the prior probability that two ran-
domly selected loci are syntenic and within reasonable
mapping distance (say, recombination fraction [0] < .3)
is small, on the order of2% (Elston and Lange 1975).
In fact, linkage analysis is not often performed sequen-
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tially; investigators usually have a collection of infor-
mative pedigrees which they analyze simultaneously,
a procedure which may be more similar to a fixed-
sample-size test. Nonetheless, the lod score method
and the criterion of 3 have been shown empirically
to indeed produce a small false-positive rate among
reported linkages (Rao et al. 1978).
As originally described, the statistical criteria were

based on the analysis of a single trait-and-marker com-
bination. Since the advent of RFLP and other DNA
polymorphism technologies, the number of genetic
markers available for linkage analysis in humans has
skyrocketed. With the myriad markers now available,
concern has been raised that testing for linkage with
multiple markers inflates the posterior false-positive
rate; that is, given multiple unlinked markers, the
probability that at least one of them will produce a
(false) positive lod score >3 increases the probability
of a false claim of linkage. To remedy this situation,
Kidd and Ott (1984) suggested using a lod score crite-
rion of 3 + logio(g), where g is the number of markers
tested. Subsequently, Thompson (1984) produced a
more precise correction for the number of markers
tested, but she basically corroborated the conclusions
of Kidd and Ott (1984).
However, Ott (1985) subsequently noted that,

when multiple markers are tested, not only does the
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chance of a false lod score of + 3 increase, but so does
the prior probability of linkage to one of the markers.
Ott (1985) showed that, when g markers are tested,
the prior probability of linkage increases slightly more
rapidly than does the significance level ag, although
the significance level should not be allowed to increase
without bound. He therefore concluded that the lod-
score-of-3 criterion was still applicable when <100
markers are tested but that if >100 markers are tested
the corresponding critical lod score value should be 3
+ logio(g - 100).
However, Edwards and Watt (1989) have recently

again raised the issue of linkage testing with multiple
markers and have concluded that the critical lod score
needs to be raised by logio(g), where g is the number
of markers tested, as originally suggested by Kidd and
Ott (1984). Furthermore, they have suggested that
lack of account ofmultiple marker testing in the Amish
study of affective disorder (Egeland et al. 1987) may
have led to a false-positive linkage claim.

Testing of multiple markers is not the only multiple
testing procedure that has been employed in linkage
studies. For complex diseases, where the true mode of
inheritance -and perhaps even the diagnostic bound-
aries between affected and unaffected-is unknown,
multiple analyses may be performed by using different
mode-of-inheritance parameterizations and different
diagnostic classifications. In the present note, I discuss
the issue of when and how it is appropriate to modify
the conventional critical lod score value of 3 (or how
to interpret obtained lod scores) when multiple testing
procedures are employed for various purposes.

Multiple Markers for Mendelian Traits

First consider the case of a simply inherited, homo-
geneous genetic disease. In this case, a single locus is
sought through linkage analysis, and mode-of-inheri-
tance parameters are well defined. The usual proce-
dure is to employ a collection of pedigrees and system-
atically test a collection of markers from different
locations in the genome. It is interesting that such a
procedure is typically not sequential with regard to
analysis of the pedigrees, which are analyzed simulta-
neously, but can be viewed as sequential with regard
to the markers being tested. When markers give suffi-
ciently negative lod scores (e.g., <- 2) with the trait,
corresponding regions ofthe genome are excluded and
then other regions are examined. When positive lod
scores (>3) occur, the general genome search is
stopped, although other nearby markers may be ex-

amined to increase the information regarding linkage
and the precise location of the trait locus.

For simplification, in the following assume that the
markers of interest are both evenly spaced and span
the entire genome. A maximum mappable distance of
0 = .3 corresponds to a map distance of w = "-34.5
cM when Kosambi's (1944) mapping function is used.
Hence, if each locus spans a distance of 2w = 69 cM,
and if one assumes a total genome length of 3,300 cM
(Renwick 1971), then a total of M = 48 markers will
span the genome. Since the marker loci are 69 cM
apart, the 0 value between adjacent markers is .44
(by Kosambi's function), so that the marker loci are
essentially independent. The prior probability that a
trait locus lies within 0 = .3 from any marker of inter-
est is 1/48 - .02, similar to the prior probability of
linkage for 0 < .3, given by Elston and Lange (1975).

Suppose that, for the ith marker locus tested, the
probability of getting a significant lod score (>3) when
the marker is unlinked to the trait locus, on the basis
of its level of polymorphism, is ai (the significance
level), while the probability of getting a significant lod
score (>3) when the marker is linked to the trait locus
(with 0 < .3) is 1 - Pi3 (the power). Also suppose that
g markers have been tested, with the first g - 1 giving
nonsignificant lod scores, while the gth marker gives
a significant lod score. The question is, What is the
probability that this significant test is a false positive,
i.e., that the gth marker is actually unlinked to the
trait? Let 4 represent the posterior probability that a
significant linkage finding is false (which we call the
posterior false-positive rate, as opposed to a, which is
the conditional probability of a false-positive result),
and let R represent the obtained result. Then

0 = Prob(unlinked to marker g R)
= x/(l +x), (1)

where, by Bayes's theorem,

_ Prob(R and unlinked to marker g)
Prob(R and linked to marker g)

Now,

Prob(R and linked to marker g)
1 g-l(1 - g) f (1 - ai)M i=1

since the first g - 1 tests were not significant and since
the trait is unlinked to the firstg - 1 marker loci. Also,
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Prob(R and unlinked to marker g) =
g-1

L Prob (R and linked to marker i) +
i-1

Prob(R and unlinked to all markers)

1 g-1 1 g-1= ag L (I) U (1-a,)
M i=1 -hai j=1

- g-1
+-aggU((1-aj)

j=1=

ag 1I (1 - aj) [M Epi/(l - aj) +(l- )

Therefore,

x 1 [Efi/(1-a)+(M-g)

Since the a, are generally quite small, an excellent ap-
proximation to the above formula is given by

x 1 g [(M-g)+ z pi

(2)- [(M-1)-(g-l)(1-0 ,

where 1 + 1, is the average power for the first g - 1
loci tested. It is obvious from formulas (1) and (2) that
¢ = x / (1 + x) decreases with increasing g, provided
that the a and J3 values of the markers tested are the
same for each marker. The value of x decreases with
the 1 - , of all g - 1 markers tested so far; it also
depends on the specific characteristics of the gth locus,
namely, ag and 4g. Therefore, even though the trend
is for x to decrease with g, the value of x for the gth
marker may still be high if ag is large and if 1 - fig is
small.
The 4 for practical situations was determined by

using formulas (1) and (2) as follows: A fixed sample
ofN fully informative gametes was assumed, ofwhich
R are recombinant. Values of N and R were chosen
to give lod scores just above the significance threshold
of + 3. For given values of N and R, the significance
level a (the probability of obtaining a lod score >
+3 when no linkage, or 0 = .5, is assumed) was
calculated as

( 2)N i=o(N ) (3)

1 = A, which is the probability of obtaining a signifi-
cant lod score (> +3) when linkage with 0 < .3 is
assumed, was calculated as follows: A uniform distri-
bution for 0 < 0 < .3 was assumed. Although it is
probably more accurate to assume that the map dis-
tance, as opposed to the 0 value, is uniformly distrib-
uted, the close correspondence between the two when
0 < .3 suggests that a uniform prior distribution for 0
gives an excellent approximation. In fact, the analysis
described below was also performed by assuming a uni-
form prior distribution for the map distance and the
Kosambi mapping function relating the 0 value and
map distance; the results were negligibly different
from those described below.
When a uniform distribution for 0 on the interval

[0, a] is assumed, the probability, in a sample of size
N, of a significant lod score (> + 3), which is obtained
with AR recombinants, is given by

1R-=
i=O a Joi

(N=~_ 0Oi(l _ 0)N idO
a 0 \i/ Jo

1 R (N 1 1
a i=Oi / +1

[l - (N1- a)N+ _(N +1)a(1-a)N_

-( + 1 R(j-a)N+1 R]]

-1 +1 iE [1 - S(a;N + 1,R)] ,
aN+1 i=o

(4)

where S(a;N + 1 ,R) is the sum of the first R + 1 terms
in the binomial expansion of [(1 -a) +a)N+l.
Formulas (2)-(4) with a = .3 were used with vari-

ous values ofN and R to determine a, 1 - A, and 4 for
a single tested marker. The results are given in table
1. Note that, for small N, a is large and 1 - 13 is small,
so that 4 is large, as high as 14.5%. In other words, for
linkage findings based on small samples, the posterior
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Table I

a, I -A, and 4, for Single Marker in Fixed Sample
of N Fully Informative Gametes

N R- a 1-

10 .... 0 .000977 .297 .145
16 .... 1 .000259 .388 .033
20 .... 2 .000195 .471 .021
23 .... 3 .000237 .548 .022
30 .... 5 .000162 .645 .013
39 .... 8 .000147 .733 .010
50........ 12 .000153 .821 .010
61 .... 16 .000132 .873 .008
71 .... 20 .000152 .914 .009
81 .... 24 .000159 .941 .009
91 .... 28 .000156 .959 .008
101 .... 32 .000148 .971 .008

a Maximum number of recombinants to obtain a lod score > + 3.

probability of their being true is smaller than it is for
findings based on larger samples. The 4 value appears
to stabilize at close to 1% when N > 30, at which
point a stabilizes at rv.00015.
To examine the effect of testing multiple markers,

a value of a = .00015 and a common value of 13 for
all markers was assumed. The 4 value when the gth
marker is the first to show a significant lod score was
calculated by using formulas (1) and (2) withM = 48.
The results are given in table 2. In all cases, the 4 value
among significant linkages decreases with increasing
g. The decrease is most rapid, however, when 1 - 13
is high. It should be noted that, even when all 48
markers have been tested and only the last provides
significance, there is a positive probability that this
conclusion is false, especially when 1 - 13 is low. For
example, when 1 - 13 = .1. 4 = 6.6% for the first

marker tested but decreases to only 6.0% when the
last (48th) marker is the first one that is significant.
This is because there is a high probability that a sig-
nificant test for a truly linked marker was missed,
whereas, when 1 - is high, missing a true linkage
is less likely. The value of 1 - depends not only on
the polymorphism content of the markers but also on
the distance between the markers (and hence on the
region spanned by each marker). For more closely
spaced markers, 1 - is higher, but also the prior
probability of being within the nonoverlapping region
of a given marker is lower. Closely spaced markers are

not independent, so that consecutive linkage tests with
adjacent markers may not be independent but may be
positively correlated. For such a case, one would still
expect to decrease with g-but perhaps not as rap-

idly as indicated in table 2.

Multiple Markers and Complex Traits

A critical assumption in the foregoing discussion is
that the trait is due to the same single locus in all
pedigrees. If the mode of inheritance is complex, how-
ever, this assumption may not hold. For example, for
a genetically heterogeneous disease, even with a uni-
form mode of inheritance, several distinct loci may be
involved. Or perhaps the trait is due to a complex
interaction among several contributing loci. What
effect does such complexity have on the preceding ar-

guments? The essential effect is that the power to de-
tect true linkage (i.e., 1 - 1) is decreased, while a

may remain the same. The impact, in terms of loss of
power, however, will also depend on N. For example,
if a disease is heterogeneous, and if only a subset is
linked to the marker of interest, 1 - may be drasti-
cally reduced whenN is small, compared with a homo-

Table 2

4 Among Significant Linkages for Sequential Multiple-marker Tests

1 1-D =.9 1-0=.7 1-0 =.5 1-.0=.3 1-0 =.1

2 .008 .010 .014 .023 .066
2 .008 .010 .014 .023 .066
51 .007 .009 .013 .022 .065
10 .006 .009 .013 .022 .065
20... .006 .007 .011 .020 .063
40 .002 .004 .008 .017 .061
48 .001 .003 .007 .016 .060

NOTE.-a = .00015 for each marker.
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Table 3

I - 1 and O for Single Marker in Fixed-sized Sample of N Fully Informative
Gametes of Which q Are Linked

q=.9 q=.7 q=.5

Na 1 - 4) 1 - (ti 1 -13 1

10 .... .187 .212 .069 .422 .023 .687
16 ... .261 .049 .087 .133 .022 .378
20 .... .344 .028 .125 .075 .030 .251
23 ... .428 .028 .178 .064 .045 .214
30 .... .525 .016 .252 .032 .063 .117
39 .... .637 .012 .367 .020 .106 .067
50 .... .740 .011 .495 .016 .175 .043
61 .... .804 .008 .582 .012 .239 .028
71 ... .857 .009 .661 .012 .315 .024
81 .... .893 .009 .719 .011 .382 .021
91 ... .919 .009 .763 .010 .439 .018
101 .... .938 .008 .798 .009 .489 .015

a a Values for each value of N are given in table 1.

geneity situation, but 1 - ,B may be reduced only
negligibly when N is large.

Specifically, consider the case where only a propor-
tion q of families are due to a particular locus, while
the remainder are associated with other causes. If fam-
ily sizes are small and if all families are combined, the
apparent 0 will be increased from its true value in
linked families to qO + (1 - q)/2 in all families com-
bined. Therefore, for the map of 48 evenly spaced
markers as defined above, the span of possible 0 values
will not be 0-.3 but, rather, from (1 - q)/2 to .3q +
(1 - q)/2. For this case, 1 - , can be calculated in a
fashion similar to the derivation of formula (4);
namely,

1 a- +( q)=2 ( 1

R
a N + iE0 [(S[(1- q)/2;N + 1,i]
a N+ 1 io

- S[aq + (1 - q)/2;N + 1,i]] . (5)

Formula (5) with a = .3 was used to generate values
of 1 - IB and of the corresponding X, for three values
of q ( = .9, .7, and .5) and for various values of N, the
number of fully informative gametes. The value q =
.9 corresponds to an apparent 0 of .05-.32; q = .7
corresponds to a range of .15-.36; q = .5 corresponds
to a range of .25-.40. The results are given in table

3. Two features are quite apparent from the numbers
in table 3: 1 - 13 and 4 are quite sensitive to the
proportion of linked families (i.e., q) and to N. Under
heterogeneity, small samples (N < 20) can be disas-
trous, with unacceptably high 4 values. With only half
of gametes linked, an N of 50 is required to maintain
4) < 5%. The conclusion here, as in the homogeneity
case, is that significant linkages based on smallN must
be viewed cautiously.
Although table 3 was generated under a model of

heterogeneity, the principles derived from it apply
more generally to other types of genetic complexity.
Since it is difficult, ifnot impossible, to correctly model
the mode of inheritance for linkage studies of complex
traits, the general trend will be to inflate the apparent
o with linked markers, decreasing 1 - 13 and inflating
4. Furthermore, multiple contributing loci, epistasis,
phenocopies, etc. will decrease the linkage informa-
tion in a sample, reducing both the effective N and 1
- 1. Therefore, when analyzing non-Mendelian
traits, one should be particularly conservative in eval-
uating significant linkage findings based on small N.

Furthermore, in this case as in the monogenic case,
4 is never increased by testing multiple markers but is
decreased, provided that there is a locus to be found
and that 1 - 13 > a. In the limiting case that no locus
exists to be found (i.e., very low 1 - 13), all positive
results will be equally false, independent of g. There-
fore, as pertaining to the comments of Edwards and
Watt (1989) regarding the Amish study, a more logical
explanation of a false-positive finding of linkage in
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that study is that the basic assumption of simple mono-
genic inheritance as modeled in the analysis is not cor-
rect, rather than that multiple markers were tested. In
the absence of prior evidence of a monogenic mecha-
nism, it may be prudent to increase the lod score re-
quired for significance, to balance the potential effect
of a decreased value of 1 - P.

Multiple Models and Diagnostic Classifications

The issue of testing multiple genetic models with
different parameterizations and/or different diagnos-
tic classification schemes for affected is not directly
analogous to the multiple-marker situation. For this
case, assume that t different models and/or diagnostic
classifications are examined and that the t lod scores
obtained are independent. Although the assumption
of independence will not generally hold, the results
derived with this assumption will be conservative. For
a single marker tested, the maximum lod score across
the t different models is used for the significance test.
As before, suppose that, for each model tested, the
probability of a significant result when linkage is ab-
sent is a. Further, suppose that for the ith model the
power to detect true linkage is 1 - Di. In this case, X
= x/(1 + x), where

x= (l- Y)[ -(l-a)t] (6)

i=1

and where y = 1 /M.
Typically, the 1 - Pi will be highest for that model

(i.e., ,) most closely reflecting the true situation,
whereas other values of 1 - 13 will be much smaller.
Hence, if the (nearly) "true" model is included among
the t tested, the denominator of formula (6) will be
approximately 1 - Di = 1 - I; if the "true" model
is not included, the denominator will be close to 0
(i.e., a very high 4).

If one assumes that the "true" model is included,
formula (6) becomes

x = U1 )l_(-Y)]
YO1-13)

which, provided that a is small compared with 1 / t, is
well approximated by

x= Ul -Yp)at. (7)
YUl- 3)

Therefore, x, the posterior odds of a false positive,
is directly proportional to t. Hence, if one wishes to
preserve the same 4 in this situation, one can use a
significance level of a' = a/t, which gives the same 4
as does testing a single (true) model. In terms of lod
scores, an a' = a/t can be achieved by using z +
logio(t) for a significance level, or 3 + logio(t) corres-
ponding to the conventional criterion of 3. This cor-
rection, originally suggested by Kidd and Ott (1984)
for the multiple-marker situation, is conservative.
When, in fact, different models produce positively cor-
related lod scores, the effective value of t would be
reduced, and a smaller number than logio(t) would be
added. A more precise approach to this problem has
also been described by Ott (1990).

Discussion

Linkage analysis with simple, Mendelian traits has
not often been befuddled by confusing and retracted
results. Indeed, Rao et al. (1978) showed that, when
a lod score criterion of 3 was employed, 4 for reported
linkages was preserved at a low rate, as predicted.
Certainly, in these reported linkage studies, multiple
markers must have been tested before linkage was
found; yet 4 was not inflated. Although the lod 3 crite-
rion was derived for a sequential test of linkage, it has
been shown both here and elsewhere (N. E. Morton,
personal communication) that it is robust as a fixed-N
test criterion as well.
By contrast, linkage results with several non-

Mendelian disorders have led to controversy, with
nonreplicable results. As the discussion above sug-
gests, it seems that, rather than concluding that a
multiple-marker testing artifact accounts for nonrepli-
cated results for these disorders, it is more reasonable
to conclude that the basic assumptions underlying the
analysis (monogenic inheritance with known mode of
inheritance parameters, one model tested) are incor-
rect. Although no further protection in lod score anal-
ysis is required for the testing of multiple markers, a
higher lod threshold may be prudent, to protect
against low 1 - 1. When multiple models/diagnostic
categories are tested, a conservative correction is to
subtract logio(t) for t tests from the obtained loci score.
The explanation for the difference in the way multiple
testing procedures are handled for the multiple-
marker case versus the multiple-model case lies in the
fact that, when multiple markers are tested, the prior
probability oflinkage increases as does the significance
level, and so no correction is necessary. With the test-
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ing of multiple models, however, the prior probability
of linkage does not increase, and the 1 - I, although
it may increase to some degree, does not increase lin-
early -and, in fact, may be near its ceiling with one
or a small number of models. Therefore, as indicated
by formula (7), the linear increase in the significance
level creates an increased 4.

In addition, it should be noted that a critical as-
sumption underlying the multiple-model analysis de-
scribed above is that the models are specified a priori
and that new models are not chosen on the basis of
observed results from previous models. Such an ap-
proach would appear to be beyond statistical correc-
tion.
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