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Summary

A combined logistic regression and life-table analysis is presented on age-at-onset data for Huntington disease.
Covariates included in the analysis were sex of the at-risk individual, parental age at onset, and sex of
transmitting parent. Parental age at onset and parental sex were found to be significant covariates for age at
onset in the offspring, and the appropriate logistic regression functions are calculated by maximum likeli-
hood methods. These regression functions permit a more precise evaluation of carrier risks and likelihoods
than hitherto was possible by simple computational means. We further introduce a novel method to account
for sibship correlations in the significance assessment, using log-likelihood differences between different
models.

Introduction

Huntington disease (HD) is an autosomal dominant,
neurodegenerative disorder that is manifested in invol-
untary movements, dementia, and psychiatric anoma-
lies. The prevalence of HD is approximately 1 in
20,000 among Caucasians, with considerably lower
rates being observed in Asians and African blacks
(Hayden 1981) and in the Finnish population (Paolo
et al. 1987). The gene mutation causing HD has been
located genetically to the distal region of the short
arm of chromosome 4 (Gusella et al. 1983), but the
structure and function of the putative HD gene still
remain unknown. However, a number of closely
linked DNA markers have been reported that improve
the accuracy of risk assessment, and these may serve
as starting points for the molecular genetic search for
the HD gene (Gilliam et al. 1987; Smith et al. 1988;
Wasmuth et al. 1988; MacDonald et al. 1989).
One of the most remarkable features of HD is its

delayed onset, usually occurring around the fourth

Received March 4, 1991; revision received May 24, 1991.
Address for correspondence and reprints: Dr. Michael Krawc-

zak, Institute of Human Genetics, Konstanty-Gutschow-Strasse 8,
W-3000 Hannover 61, Germany.
i 1991 by The American Society of Human Genetics. All rights reserved.
0002-9297/91 /4904-0006$02.00

decade but in several cases ranging from early child-
hood to after the age of 70 years. This variation is of
considerable relevance for both scientific purposes and
genetic counseling, and several studies have therefore
been performed in order to estimate the statistical dis-
tribution of age at onset (AO) for HD. Some of these
studies, however, yielded strikingly different results,
with mean AO ranging from 33.8 to 51.6 years (for
review, see Hayden 1981). The reasons for these
differences may be manifold, but in part they can
be attributed to diagnostic and statistical problems.
The definition of onset ofHD is not unique at all, and,
if the most conservative approach is adopted-i.e.,
the first appearance of any neurological or psychiatric
signs- the accuracy of AO assessment is largely de-
pendent on patients or families themselves. Further,
some of the studies mentioned above considered only
affected individuals, which would consequently result
in a downward bias in the estimation ofAO distribu-
tions. Carriers with late onset were systematically ex-
cluded from these studies, either because they had died
or were lost to a study or because a study had simply
been completed before manifestation actually took
place. While the first problem is more a question of
satisfying definitions and ascertainment criteria, the
second problem- i.e., that of censored data- can be
overcome by the choice of appropriate statistical
methods.
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In principle, two methods were proposed to obtain
unbiased estimates ofAO distributions in a retrospec-
tive manner. One is the use of remote cohorts, includ-
ing only those affected individuals who were born be-
fore a certain early date. This approach, adopted in
an early study by Wendt (1959), might control for the
bias which is introduced by censoring due to the end
of a study, but other sources (e.g., death) are not ex-
cluded. Thus, as noted also by Adams et al. (1988),
studies based on remote cohorts do not seem to deal
adequately with the censoring bias. Another, statisti-
cally more reliable approach is the use of life-table
techniques. This method, which has been applied be-
fore by several other authors (Newcombe 1981; Ad-
ams et al. 1988; Cupples et al. 1989), deals with haz-
ard rates within a certain time interval, instead of with
empirical distribution functions. Life tables are known
to yield unbiased results (if censoring is independent
ofAO) and should therefore be preferred forAO anal-
yses.

Intrafamilial correlations of AO of HD have been
observed in several studies showing that both the AO
(Myers et al. 1982, 1985; Ridley et al. 1988) and the
sex of the transmitting parent (Brackenridge 1973;
Newcombe et al. 1981; Myers et al. 1982, 1985) are
of considerable influence on the AO in the children.
These findings suggest that onset appears earlier in
children of male transmitting parents and that the AO
is positively correlated between parents and children.
The influence of such covariates on the AO has been
accounted for by Chase et al. (1986) in a life-table
design. A Cox proportional hazard model was used
by these authors modeling annual hazards as a specific
function of sex and race. Race, however, did not ap-
pear to be a statistically significant covariate.

In the present study, we adopt an approach similar
to that of Chase et al. (1986), using sex of the at-risk
individual, parental AO, and parental sex as covari-
ates. Again, annual hazard rates are modeled as func-
tions of the covariates, but with logistic regression
applied instead of a Cox proportional hazard model.
Logistic regression has several theoretical advantages
over other models, and the application to genetic
problems has been outlined in detail by Bonney
(1986). Information on the offspring of at-risk individ-
uals will also be included in our calculations, in order
to adjust their prior risks. As a result of the analysis,
we present regression functions on AO that will allow
easy AO-based carrier risk assessment and likelihood
calculation, accounting for intrafamilial correlations.

Material and Methods

Data Analysis
Life-table techniques involve the estimation of haz-

ard rates, h(t), which are defined as the probability of
an individual at risk getting affected at time t, given
that he or she has onset not earlier than t (Kalbfleisch
and Prentice 1980). This can be written as h(t) =
Prob(AO = t given AO > t - 1). From the h(t), the
distribution ofAO can be calculated using the follow-
ing formula:

t- 1

Prob(AO = t) = h(t) f [1 - h(i)].
i=1

h(t) can be estimated from a set of data in different
ways. As empirical distribution functions, they can be
calculated directly as the number of individuals with
onset at time t, divided by the total number of individ-
uals who are at risk prior to time t. So, unaffected
at-risk individuals censored at time to will contribute
to all h(t) with t < to. To include covariates, data
have to be split into classes depending on the distinct
covariate levels. However, if either the number of co-
variates or the number of classes per covariate is large,
some of the classes may not contain enough observa-
tions to obtain reliable results. Further, borderline
cases are difficult to evaluate for continuous covari-
ates.
A more convenient approach with respect to practi-

cal applications is to fit a specified function, h(t, w),
of time t and covariates w to the h(t). For this ap-
proach, the data need not be split into smaller subsets,
but the reliability of the results depends on the choice
of an appropriate regression function. A method
widely used in epidemiology for the analysis of binary
outcomes (e.g., affected/unaffected) is linear logistic
regression. For a set of covariates w = w1, . .. , Wn
this kind of calculus is based on the assumption that
the logarithm of the risk ratio

R(w) = Prob (affected given w)
Prob (unaffected given w)

(1)

is a linear combination of the covariates included in
w, i.e.,

log R(w) = T(w) = ao + a1w1 + . . . + anWn . (2)
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Rearranging equalities (1) and (2) yields

Prob (affected given w) = expT(w) (3)
1 + expT(w)

allowing maximum likelihood estimation of the pa-
rameters aj from a set of affected and unaffected indi-
viduals for which the covariates wj are known.

Life-table methods and logistic regression can be
combined by assuming that the logarithm of the risk
ratio

R~~tw)= h(t, w)R(tw) -(t= ) (4)

is again a linear combination, log R(t, w) = T(t, w),
of t and the covariates w. Similar to equality (3) we
get

h(t, w) =
expT(t, w)

1 +expT(t, w)

Now, let ti denote either AO or age of censoring for
individual i. From ti, the covariates wi, and the prior
carrier risk pi, the likelihood, Li, of observing individ-
ual i is calculated as

t -1

Li = h(ti, wi) I [1 - h(j, wi)] (6)
j=i

if the individual is affected and

ti - I

Li = pi 1f [1 - h(j,wi)] + 1 - pi (7)
j=l

if the individual is unaffected. The joint likelihood, L,
of the whole data set is taken to be equal to the product
of all individual likelihoods Li. From this and formulas
(6) and (7), the factors aj of the regression function T(t,
w) can be calculated by maximum likelihood methods.

Data Material

The present study was based on the analysis of
1,230 at-risk individuals (274 affected) and their
affected parents. These data were collected over a pe-

riod of 20 years in West Germany and the United
Kingdom. The vast majority of data come from south
Wales, where complete ascertainment has been an aim
for a period of 10 years. At-risk individuals are from

445 sibships ranging in size from one to 11. AO, as
documented in the surveys included in the present
study, was determined by the presence of the first neu-
rological signs (e.g., ataxia, impairment of balance,
uncoordinated behavior, chorea, etc.). A considerable
amount of data were collected in a retrospective man-
ner from relatives, through questionaires phrased in
terms of the patient's functioning.

Likelihood calculations were performed using the
following variables and covariates: t, individual's AO
or age at censoring; wi, parental AO; w2, sex of trans-
mitting parent; and w3, individual's sex. Sex was
coded as 0 for males and as 1 for females. A time
scale of 1-year intervals was used for time t. Only
individuals for whom all three covariates were known
were included in the study. For 345 unaffected at-risk
individuals, offspring data were used to modify the
prior risk of being a carrier for-HD. Any affected off-
spring changed this risk to 100%, i.e., new mutations
were excluded, since they are known to be very rare
(Wolff et al. 1989). From unaffected offspring, prior
risks were modified using Bayes' formula applied to
the published AO distribution given by Adams et al.
(1988). This procedure resulted in a total mean prior
risk of .494 (SD = 0.04) for unaffected at-risk individ-
uals.

Significance Assessment

Covariates were tested for significant influence on
AO in a stepwise manner. Different nested models
were compared by a maximum likelihood ratio test,
making use of the fact that twice the log-likelihood
difference approximately follows a x2 distribution.
The number of df equals the difference between the
numbers of parameters entered into the models. This
type of significance testing is, however, problematic if
siblings are not independent under given covariates.
Sibship correlations in AO have been reported ranging
from .28 (Reed and Chandler 1958) to .64 (Bell 1934),
which means that the significance of covariates will be
systematically overestimated if the total sum of indi-
vidual log likelihoods is used for x2 approximation.
The log likelihood for an individual who has siblings
in the data set would contribute too much to the total
log likelihood if a considerable AO correlation within
a sibship were present. In the most extreme case,
where AOs within a sibship were strictly correlated
(i.e., correlation coefficient r = 1), any individual log
likelihood must be scored with 1 / n, n denoting sibship
size, to obtain the correct log likelihood of the corre-
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sponding sibship. Similar scores, derived for lower
correlation coefficients, should be larger than 1 / n, ap-

proaching unity if r becomes zero. In fact, this scoring
approach can be extended to any degree of positive
correlation if AO for HD follows a normal distribu-
tion. A detailed description of this procedure is given
in the Appendix. The scoring factors derived there are

1 / [1 + (n - 1 )r]. These scoring factors, however, do
not yield the correct log likelihoods, but they will re-

sult in lower limits for the log-likelihood differences
between different models (see Appendix). For compar-
ison of different models, different correlation coeffi-
cients have to be used. If one model (I) is nested within
the other (II), then the appropriate r for comparison
is the partial sibship correlation coefficient, r,,, for
which all covariates included in model II are excluded
from r. The approach outlined above and in the Ap-
pendix may also be useful for other types of analysis
dealing with observations that are not independent
per se.

Likelihood Maximization

In order to calculate the maximum likelihood esti-
mates of the parameters involved in the logistic regres-

sion, we first tried nonlinear programming making use

of the gradient of the likelihood function (e.g., the
BFGS method). These algorithms, however, failed be-
cause of the complex structure of the function, so that
we had to apply a direct-search method, the Nelder-
Mead algorithm (Nelder and Mead 1964). To max-

imize a function with m variables, this algorithm starts
with a simplex of m + 1 points within the parameter
space. If Lmax denotes the maximum value of the func-
tion attained on the simplex, the procedure attempts
to find in each step a point which yields a value larger
than Lmax. This search proceeds along the line between
that point of the simplex which yields the lowest value,
amin, and the point of gravity of the remaining points.
If the search is successful, the new point replaces amin;

otherwise, the simplex is reduced. This search is re-

peated until all points of the simplex are within a given
distance from each other.

Results

In order to validate the derivation of the scoring
factors (see Appendix), AO data for the 274 affected
individuals were first tested for normality. The
Shapiro-Wilk statistic W (Shapiro and Wilk 1965) was
calculated as W = .9827, indicating a good fit to

a normal distribution with mean 36.4 years and SD
11.8.
Pearson correlation coefficients for AO, together

with relevant partial correlation coefficients, were cal-
culated from affected siblings and their affected par-
ents by using the CORR procedure of the SAS software
package (SAS Institute Inc., 1988). The results are
given in table 1. In order to account for parental sex
in the likelihood maximization, the sibship correlation
coefficients, r and rw1, were also calculated separately
for male and female transmitting parents. Individual
log likelihoods were scored using these correlation co-
efficients whenever models including parental sex as a
covariate were compared (see table 2). Two correla-
tion coefficients, r1 and r2, from samples of size ni and
n2, respectively, can be compared using

Itanh- I(r1) - tanh-1(r2)I
[1/(n1 -3) +1/(n2- 3)]05

This z value follows a standard normal distribution
under the hypothesis ri = r2 (Pfanzagl 1974). For the
sibship correlation coefficients listed in table 1 we ob-
tain z = 1.102 (p = .27, two-sided) for rm versus rf
and z = 2.665 (P = .007) for ru/n versus rw{.
As outlined above, the model for logistic regression

was extended stepwise by those covariates that yielded
the maximum X2. Model descriptions, regression esti-
mates, and log likelihoods are presented in table 2. As
can be inferred from table 3, parental AO turns out to
be a highly significant covariate (model lb vs. lIla; x2

Table I

Correlation in AO between Siblings and Partial
Correlation Coefficients Excluding
Parental AO

Sex of Transmitting Correlation
Parent and Abbreviationa Coefficient

r .......... ................. .43
rw1 ............ ............... .32

Male:
rM ............................ .46

rwT..39rw1 ....................................3
Female:

rf ............................................. .36
rwf..121w ...."-""-"",",...............1

a r = sibship correlation coefficient; rwi = partial correlation
coefficient with parental AO excluded from r; superscripts m (male)
and f (female) indicate sex of transmitting parent.
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Table 2 Table 3

Logistic Regression Analysis ofAO

Model, Correlation Regression
Coefficient(s), and Factor - Log
Factors Included Estimate Likelihooda

Ia, 0:
Constant ............... - 6.79 1,298.98

t .......................... .37 x 102.
Ib, rwa:

Constant ............... - 6.71 722.60
9.......................... .43 x 10-2 .

Ic, rm and rf'
Constant ............... - 6.77 663.44

t9.......................... x.5 10 663.44
II, 0:

Constant ............... - 6.77
t .................. . 9.39 x 10-2 1,298.88
W3 ............... - 6.51 x 10-2

Illa, rwi:
Constant ............... - 4.19
t .................. . 1.15 x 10-' 695.67
WI ............ .... - 7.13 x 10-2

IlIb, rwml and rwf:
Constant ............... - 3.87
t ................... . 1.17 x 10-1 765.98
WI ............ .... - 8.07 x 10-2

IV, rm and rf:
Constant ............... - 6.48
t ................... . 9.52 x 10-2 660.04
W2 ............... -5.36 x 10-1

V, rwIl and rwf:
Constant ............... - 3.59

t .................... . 1.19 x 10-1 758.82
W7 ....................... - .97 x 10
W2 ............... -7.41 x 10-1

a Imprecise values (only used for x2 approximation).

= 53.86, 1 df, P < 10 - 1) for AO in the offspring. The
same holds true for the sex of the transmitting parent

(model Ic vs. IV; X2 = 6.80, 1 df, P = 9.1 x 10-3)
but not for the individual's sex (model Ia vs. II; X2 =

0.20, 1 df, not significant). It should be noted that the

Comparison of Logistic Regression Models for AO

X2
- 2 Log-Likelihood

Models Compareda Difference P, 1 df

Ia vs. ...............I .20 6.56 x 101
Ib vs IIIa 5.............. 3.86 <10-5
Ic vs. IV .............. 6.80 9.10 x 10-3
IIIb vs. V .............. 14.32 1.54 x 10-4

a Covariates included in different models are individual's sex
(model II), parental AO (models III and V), and sex of transmitting
parent (models IV and V).

influence of individual's sex on AO was tested without
consideration of any sibship correlation.Thus, the (in-
significant) x2 value of 0.20 still represents an overesti-
mate. If parental AO, the most significant covariate, is
included in the regression model, a further significant
effect remains for parental sex (model ITIb vs. V; x2 =
14.32, 1 df, P = 1.54 x 10-4).
The regression model finally adopted is model V,

with regression factors as presented in table 2. Vari-
ances and covariances of the factor estimates can be
calculated approximately from the inverse of the so-
called information matrix, obtained from the second
derivative of the log-likelihood surface at the maxi-
mum likelihood estimate (Silvey 1987). Approxima-
tions of the variance-covariance components for
model V are given in table 4, but these figures only
represent upper limits for the true variances and co-
variances; the log-likelihood surface resulting from the
scoring procedure is flatter than the true one, and
therefore the corresponding second derivatives are too
small. From table 4 and the fact that maximum likeli-
hood estimates are approximately normally distrib-
uted (Silvey 1987), we also get approximate 95% con-
fidence intervals (mean + 2 SD) for the regression
factors involved in the final model (table 5).

Table 4

Variance-Covariance Approximation for Regression Model V

Constant t WI W2

Constant .... 1.66 x 10-1 - 4.74 x 10-4 - 3.08 x 10-3 - 2.38 x 10-2
t ............... 5.48 x 10-1 -2.99 x 10-1 -7.00 x 10-1
WI 9.25 x 10-1 2.16 x 10-4
W2 ............ 3.43 x 10-o
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Table 5

Approximate 95% Confidence Limits for
Regression Factors in Model V

Factor Regression Estimate ± 2 SD

Constant .............. - 3.59 ± .82
t .............. .119 + .014
WI ......................... -.0797 + .018
w ......................... . -.741± .370

Discussion

In the present paper, we have confirmed previous
findings on the parental effects on AO for HD. Onset
appears significantly earlier in the children of male
transmitting parents, with an annual risk ratio Prob
(getting affected)/Prob(remaining unaffected) that is
exp(.741) = 2.10 times higher for fathers than for
mothers. The corresponding AO distributions for
differing sex of transmitting parent are presented in
figure 1. The regression parameters used for the calcu-
lation of these AO distributions are those from model
IV (table 2), which yield mean AO + SD of 38.30 +
12.20 years and 43.62 + 12.67 years for children of
male and female transmitting parents, respectively.

1

0,8 K

0,6

0,4

0,2

These figures are in good agreement with those pre-
sented by other authors (Myers et al. 1982, 1985;
Chase et al. 1986). In figure 1, the AO distribution
derived through life-table methods by Adams et al.
(1988) is also included. Up to the age of 50 years, this
distribution is also close to the average distribution
calculated from our data, but above this age point it
is shifted to the right. There may be several explana-
tions for this finding.

1. Linear logistic regression may generate regression
functions that are not flexible enough to allow for the
obvious linearization of the upper tail of the distribu-
tion function as observed by Adams et al. (1988). If
the latter phenomenon is to be confirmed by others,
then results from linear logistic regression would have
to be used with care for the evaluation of carrier risks
for old unaffected at-risk individuals. A possible solu-
tion to this methodological problem would be the use
of regression functions of higher order. However, as
this will increase the number of parameters that have
to be estimated simultaneously and will make the
structure of the log-likelihood surface more complex,
a larger amount of data will be required in order to
obtain reliable results.

2. Probands were excluded from the analysis by
Adams et al. (1988), to control for ascertainment bias,

0 10 20 30 40 50 60 70

Age (years)
Figure I Cumulative AO distributions in offspring of male (--) and female ( -E ) transmitting parents, compared with cumula-
tive AO distribution in offspring studied by Adams et al. (1988) (C ).
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which, by preferentially considering older family
members, may cause an additional upward shift of the
AO distribution. We do not, however, regard ascer-
tainment to be a major source of bias for the study of
AO here. HD has been well known and characterized
for a long period of time, and therefore the chance
of ascertainment of any HD family-and, hence, its
structure of intrafamilial AO correlation -will hardly
be influenced by the AO ofthe proband through which
the family has come to clinical attention. Evidence for
this suggestion also comes from a study by Cupples et
al. (1989), in which only minor changes were found
in the estimates of mean AO under different proband-
exclusion strategies. Finally, as already mentioned
above, the majority of our data come from a region
where ascertainment can be assumed to be nearly com-
plete.

3. Adams et al. (1988) did not consider offspring
information for unaffected at-risk individuals in order
to modify their prior carrier risks, as was done in our
study. This means that some of the older potential
gene carriers might have contributed to the estimates
of h(t), although their actual carrier risk was low.
However, as both distributions are in good agreement
for younger at-risk individuals, using the results of
Adams et al. (1988) for prior risk modifications in our
sample appears to be justified. Most (97%) unaffected
offspring used for these modifications were younger
than 55 years.

In figure 2, some selected AO distributions are pre-
sented for varying parental sex and AO. Positive corre-
lation between parental and offspring AO, as reflected
by these figures, has been noted by several authors
(Myers et al. 1982, 1985; Ridley et al. 1988), and our
results also indicate a highly significant influence of
parental AO on offspring AO. Each year until parental
onset had taken place reduces the annual risk ratio
by a factor of exp (- .0797) = .92. Linear logistic
regression is, however, unable to quantify anticipation
effects controlling for parental sex. Additional param-
eters would again be required to allow for this ap-
proach, which in turn would reduce the reliability of
the regression parameter estimates, for the reasons
noted above.

Several genetic and nongenetic (environmental)
factors could contribute to the consistently observed
parent-offspring correlation in AO for HD. Although
the sex of the transmitting parent appears to be a sig-
nificant covariate, sex-linked genetic factors can be
excluded from playing an important role here, as no
differences in AO were observed between male and

female HD patients. Ridley et al. (1988) discussed in
detail the possible effects that different methylation
patterns inherited through the male and female germ
line might have on the expression of the HD gene
("genomic imprinting"). These authors claim that
age-dependent demethylation of the mutant allele in
somatic cells may cause onset of symptoms when a
certain threshold is reached. Similarity in methylation
status would result in similarities of the demethylation
process- and, therefore, in AO similarities between
patients and their affected offspring. A lower, or
"more defective," degree of methylation in paternally
derived germ cells would explain earlier onset in off-
spring of affected males.
A higher sibship correlation in AO for paternally

inherited HD, as observed in our study, would further
imply that the variability of the parental imprinting
effect is smaller for male than for female transmitting
carriers. This either could be due to a more variable
demethylation process for maternally derived HD al-
leles or may reflect a higher influence of the "genetic
background" in these cases. Further, if paternal HD
genes are "remethylated" during embryonal oogen-
esis, in order to indicate their "maternal origin" (Rid-
ley et al. 1988), then this may contribute a higher
variability to the methylation status than would a simi-
lar but less "restorative" mechanism acting on mater-
nally derived mutations during spermatogenesis.
One of the major advantage of our regression analy-

sis ofAO data is that individual carrier risks can quite
easily be calculated even on a programmable pocket
calculator, without the use of extensive risk tables.
Given the corresponding covariates w, the annual haz-
ard rates h(t, w) result from formula (5) (see Methods)
with the appropriate regression function selected from
table 2. From the h(t, w), the risk of an unaffected
offspring of an affected carrier is calculated as

Z(to, w) = Prob(AG > to given w)
Prob(AO > to given w) + 1

where to is the age of the at-risk individual and

to
Prob(AO > to given w) = I [1 - h(i, w)]

i=1

denotes the probability of onset after time to, given
that the individual is a carrier. If in a line of inheritance
the most recent affected individual dates back more
than one generation, i.e., if the parent of the at-risk
individual is not affected, then the probability Prob
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Figure 2 Cumulative AO distributions in offspring of male (a) and female (b) transmitting parents, controlling for parental AO of
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(AO > to given w) has to be replaced by the average
probability taken over all possible AOs in the parent,
conditional on the covariates from the grandparent.

In any case, the results presented here will allow a
more precise quantification of both carrier risk and
likelihood in both genetic counseling and scientific
studies. For the purposes of linkage analysis, logistic
regression functions could either be incorporated di-
rectly into existing computer programs or be used to
calculate the penetrances for predefined liability
classes. Such applications need not be limited to the
study of HD but can also be extended to other traits,
for which AO and penetrance depend on familial or
environmental covariates.

vector (m, . .. , m), and C is the variance-covariance
matrix

v

C = c

c

c

v

V

c
cl
v1'

with v denoting variance and c denoting covariance
of AO for any two siblings. The variable part of the
function HMC(X) can now be factorized as

fj. (X,-M)2 = (X-M)tC-1(X-M). (Al)
i=1 V
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Appendix
Maximum Likelihood Comparison of Models
under Positive Sibship Correlation of AO

Positive sibship correlation of AO would result in bi-
ased estimates of the significance of covariates if sib-
lings are regarded as independent. To compare any
two nested models, such correlations must be taken
into account, and the main idea of our approach is to
add only a fraction of an individual's log likelihood to
the overall log likelihood, depending on the correla-
tion coefficient and the sibship size. Let AO for HD
follow a normal distribution with mean m and vari-
ance v. Then an individual's AO distribution is given
by the density.

hmvx)= 1 [pp(x-m)21hMAvX) = exp - I
V~nv 2v

For a sibship of size n, the joint distribution of AO is
given by the vector-valued density

The second factor on the left side of equation (Al)
equals the variable part of HMC(X) for a sibship corre-
lation of zero (i.e., independence of AO between sib-
lings). Now

v+(n-2)c

C-'= 1 -c
D :

-c

-c ...

v+(n-2)c ...

-c

-c

-c

withD = v- (n - 1)C2 + (n - 2)-c. So equation
(Al) becomes

f n

' (xirM)2=

1 -n n n_[v +(n -2)c]j](xi- M)2_C cX,_5i-M)(Xj_-m) A,
D i=1 i=lj=1 J

joi

and the factor f can be calculated as

v[v + (n - 2)c]
D

1 +(n-2)r
D*

f = f(xi, * *.X.)

cvz=E =1 Z = I(xi -m)(xj -m)I is

j 0iDZ'%i(x5-rM)2
rZ'~1 Z~j 1(XI - rn)(xj - rn)

D*Z7'=1(x, - rn)2

HMC(X) = d expt-)[ 2(X- M)'C 1(X-M) ,

where X is an n vector (xi, . . . , xn), M is the mean

with D* = 1 - (n - 1)r2 + (n - 2)r = (1 - r)
[1 + (n - 1 )r] and r = c/v, the sibship correlation
coefficient of AO. Now, by replacing xi and xj with
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the maximum Xmax in the nominator and replacing xi
with the minimum xmin in the denominator, we get

1 +(n-2)r rn(n-1)(xmax-rm)2<f
D*- D*n(Xmin -M)2

Thus, f is minimal if Xmax = Xmin = X.

fmin 1-[1 + (n - 2)r - (n - 1)r]
D*-

1-r 1
D* 1+(n-1)r

Let us now consider a sibship X of affected individuals
and two joint distributions H1 and H2 with different
means and variance-covariance matrices but with the
same correlation coefficient r. IF HI; and H* denote
the corresponding density functions when we assume
the independence of siblings (i.e., covariance c = 0),
then

logHd(X) - logH2(X)l

= If(X)I x IlogHW;(X) - logHW2(X)
IfminI X |IlogH* (X)-logH*2(X)J

It can easily be shown that the same inequality also
holds true for the corresponding log likelihoods if
some unaffected at-risk individuals are present in the
sibship, too. Thus, a lower limit for the log-likelihood
difference between two models can be obtained by
regarding siblings as independent but with their indi-
vidual log likelihoods weighted with the correspond-
ing factorfmin. If two nested models (I included in II)
will be compared by maximum likelihood methods,
then the appropriate correlation coefficient to use for
log-likelihood comparison is the correlation coeffi-
cient belonging to model II. Since the information on
the additional covariate is present for the evaluation of
both models, the influence of the additional covariate
also has to be excluded from the correlation coefficient
in both models.
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