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Summary

Although a number of methods have been developed for linkage analysis of quantitative traits, power is
relatively poor unless there is a single major locus of very large effect. Here it is demonstrated that the use

of selected samples (i.e., ascertainment of a proband with an extreme score on the quantitative measure) can

dramatically increase power, especially when proband selection is performed on the tail of a distribution
with an infrequent recessive gene. Depending on gene action and allele frequency, selected samples permit
detection of a major locus that accounts for as little as 10%-20% of the phenotypic variation. The judicious
use of selected samples can make an appreciable difference in the feasibility of linkage studies for quantitative
traits.

Introduction

Many traits of importance to human and medical ge-
netics are quantitative. Plasma glucose and cholesterol
are two clear medical examples, but virtually any mea-
sure of enzyme activity or receptor binding is indexed
on a continuous scale. Linkage methods have been
developed for continuous traits, most of which are
samples from the general population (Haseman and
Elston 1972; Smith 1975; Lange et al. 1976; Black-
welder and Elston 1982; Cockerham and Weir 1983;
Amos and Elston 1989; Amos et al. 1989; Nance and
Neale 1989; Goldgar 1990). Power calculations sug-
gest that linkage may be detected when there is a locus
of very large effect, e.g., one responsible for 50% or
more of the variation. With a more modest major-
locus effect, the required number of pairs in a sib-pair
linkage analysis exceeds 1,000, making the establish-
ment of cell lines and marker typing both expensive
and time consuming.
Samples selected through a proband with an ex-

treme score on a quantitative trait may sometimes in-
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crease statistical power relative to that for random
samples (Jayakar et al. 1984; DeFries and Fulker
1988; Rao et al. 1988; Boehnke and Moll 1989; De-
menais and Amos 1989; R. C. Elston, personal com-
munication). In its extreme form, a selected sample
for a quantitative trait would ascertain affected rela-
tive pairs by, say, requiring that each member of a sib
pair have a score exceeding a certain threshold value.
In its less extreme form, only one relative would be
ascertained. Hence, it is worthwhile exploring the ex-
tent to which selection might increase the power to
detect linkage. Here we demonstrate that selection can
dramatically increase power, in some cases by an order
of magnitude. Moreover, the selected-sample method
can have sufficient power to detect major-locus effects
responsible for as little as 10%-20% of phenotypic
variance. We illustrate these principles by using the
sib-pair method.

Material and Methods

A Model of Linkage in Sib Pairs

To examine the utility of selected samples, models
are required for sibling similarity both in random sam-
ples of sibs and in selected samples. Furthermore, the
method used in selected samples must be analogous to
that used in unselected samples. Otherwise, differ-
ences in random versus selected samples may be due
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to the method of analysis rather than to actual power
differences between the two sampling strategies. While
there are appropriate methods developed for random
samples and for selected samples, we know of no

methods that are analogous. Here, we develop analo-
gous methods. Specifically, we propose the use of lin-
ear models to test for differences in the slope and inter-
cept of the regression lines between one sib's score and
a second sib's score, as a function of identity by descent
(ibd) at a marker. We acknowledge that, when there
is a major locus of large effect, the regression of one

sib's score on the other sib's score is nonlinear. Never-
theless, we demonstrate in the Appendix that the co-

efficients of a linear model provide a valid and robust
test for linkage. Because the focus here is on selection,
we simplify exposition by assuming that marker ibd
can be unequivocally determined.

Let the two members of a sib pair be termed the X
and Y sib, with respective phenotypic scores of x and
y and correlation coefficient p. We assume that x and
y, conditional on the major genotypes of sib X and sib
Y, are distributed as a bivariate normal with mean

vector (,u + gx, g + gy)t, where gx and gy are deviations
for the major genotypes of sib X and Y, respectively.
The covariance matrix may be written as

with, respectively, zero, one, and two alleles ibd at the
marker. Let 6x be the product of sib X's phenotypic
score and the pair's delta value, and let yx be the prod-
uct ofx and the pair's y value. Let bi denote a regression
coefficient, and let u denote a residual. Then the linear
equation we propose is y = bi + b28 + b3y +
b4x + b56x + b6Yx + u. In matrix notation, let y denote
the vector of y scores, Xn denote the design matrix,
b denote the vector of regression coefficients, and u

denote the vector of residuals. The model may now be
written as y = Xnb + u, so the least-squares solution
for b will be b = (XX,) -1Xy. As the sample size
grows large, the random entries in the 6 x 6 matrix
(1 /n)XnXn converge to constant values. For any fixed
sample size, n, these elements are equal to the expecta-
tions of the corresponding elements in (1 /n)XXnn, or

(
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which we denote by M. Similarly, the entries in the
vector c = E [(1 / n)Xty] are

/1 @ \

\0 1

Let 6 denote a variable with values of - 1 /2, 0, and

1/2 for sib pairs who share zero, one, and two alleles
ibd at a marker, respectively. Let y denote a second
variable with values of 1 /4, - 1 /4, and 1 /4 for pairs

ugOOE(xy),[E(xylibdm = 2)- E(xylibdm = 0)]/
8,[E(xyibdm=0) + E(xylibdm =2) -

2E(xy IibdM = 1)] /16]'.

Tedious algebra may be used to invert M, postmulti-
ply by c, and obtain the values of b. They are presented
in the second column of table 1.

Table I

Asymptotic Expectations of Coefficients for Linear Model of Sib-Pair Linkage
for Quantitative Trait

b Expressed
in Terms of

Quantity Form of b from Solving b = M-1c Genetic Parameters

b, ......... A( - p) 0( - p)
b2 ..........--[cov(xyI bdm = 2)-cOv(xyIibdm = 0]/02 - rH
b3 ..... - [cov(x,yl ibdm = 0) + cov(x,y I bdm = 2)- 2cov(x,yI ibdm = 1)] Ic2 - 2D
b4 .......... p p
b5 ..... [cOv(x,yIibdm = 2)-cov(x,yIibdm - O)]/02 rH
b6 .......... [cov(x,ylibdm = 0) + cov(x,yIibdm = 2) - 2cov(x,y I bdm = 1)]/&2 r2d

NOTE. - = population mean; p = correlation coefficient; o = phenotypic SD; ibdm = number of
alleles identical by descent at a marker; r = correlation in ibd bedtween marker and quantitative locus;
H = broad-sense heritability; D = proportion of phenotypic variance due to dominance variance.
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We may now apply genetic theory to express the
elements ofb in terms of genetic parameters. Write the
phenotype as a linear combination of the population
mean (j), a deviation due to genotype at the major
locus (g), and a deviation within major-locus genotype
(w). Thus, x = g +gx+wx andy = g +gy+wy. We
assume that mating is random with respect to the trait
and that deviation scores within major genotypes are
uncorrelated with genotypic values. Then, phenotypic
variance and sibling covariance become ar2 = f +
2rd+ o,2 and cov(xy) = a+ +Td+ = p 2,
where Oa2 is additive genetic variance at the major lo-
cus, ad is dominance variance, aq2 is variance within
the major locus, co is the intraclass correlation for
"background" factors (i.e., deviations within a major
genotype), and p is the sibling intraclass correlation
coefficient for the phenotypic scores. Note that co will
be a function of both background genetic factors (i.e.,
loci other than the quantitative-trait locus [QTL]) and
environmental factors.

Conditioning the sibling covariance on ibd at the
QTL (ibdq) gives cov(x,ylibdq =0) = WO2,, COV(X,y
ibdq 1) = u +/2C½2, and cov(x,yIibdq=2) =
(I)0 + Or3 + Th2b+o2. covariances conditional on ibd at a
marker (ibdm) are

2

cov(xylibdm = i) = Z prob(ibdq =jlibdm = i)
J.=O

cov(x,yl ibdq =j).

The quantity prob(ibdq =jlibdm= i), the conditional
probability that a sib pair share j alleles ibd at the
quantitative locus, given that they share i alleles ibd at
the marker, has been previously tabulated (Haseman
and Elston 1972; Bishop and Williamson 1990) under
equal recombination in males and females, an assump-
tion we also make here. Let 0 denote the recombina-
tion fraction between the major locus and marker lo-
cus, and let T = 02 + (1 - 0)2. The conditional sib
covariance, given 0 alleles ibd at the marker, becomes

cov(x,ylibdm = 0) = T2O)ar2 + 2T(1 - T)(cou32 +
½/2r2u) + (1 -T)2((oaw + a2 +,ar) =

coaw + (1 - T)O2 + (1 - T)2ur = coaw + 20(1 _0)u32 +
402(1 _0)2 2 + 1/2=a2

/2(1-20)2(2+2 ) +1/4(1 -20)42 = pr2
½/2ro2 + ¼/4r2o ',

where ,,2 = r2+ad and r = (1- 20)2 = corr(ibdm,
ibdq), or the correlation between ibd at the marker and
ibd at the QTL. When similar algebra is used, the
other two covariances conditional on marker ibd may

be written as cov(x,ylibdm = 1) = (pa2 _ 1/4r2a2) and
cov(x,ylibdm=2) = pa2+ /2ro2 +1/4r2a2). Substitu-
tion of these three covariances into the second column
of table 1 gives the sib b's in terms of the genetic param-
eters. They are listed in the third column of table 1.
As a test for linkage, we propose to compare the

least-squares estimate of b5 against its standard error
(SE). The quantity b5 is a product of the proportion
of phenotypic variance due to the major locus (H, or
the broad-sense heritability) and to the correlational
distance between the major locus and the marker (r),
under the assumption of Hardy-Weinberg equilibrium
and linkage equilibrium. If there is no linkage, then
r = 0 and b5 = 0.
We now develop a similar linear model for selected

samples. It is assumed that one and only one member
of a sib pair, designated here as theX sib, is ascertained
as a proband because of a high trait score and that
only one sibling, denoted as the Y sib, is studied. In
this case, selection is independent of marker type and
ibd values. Hence, the distribution of major genotypes
is the same among ibdq = 0 probands as it is among
ibdq = 1 and ibdq = 2 probands.

Let an asterisk (*) denote a variable or a function
conditional on selection on x. Hence, if 4(x) is the
density function for the X sib in the unselected popula-
tion, then 4(x *) will denote the density function in the
selected population. The linear regression model given
in the unselected population may now be modified to
detect linkage in a selected population: y*: =
b* + b2x*- + b*;8 + b'y + uO. Now we test for a differ-
ence in means as a function of ibd instead of for a
difference in slope.

Let X * denote the n x 4 matrix with the ith row
being (1 ,xi,,i,yi) for the ith sib pair. Let M* denote the
4 x 4 matrix E([1/n]X*1X*). In large samples, the
elements of ([1/n]XVX'-) can be approximated by
M:- =

( 1
4x *

0
0

9lx ",

2 2
ox, + gx*

0
0

0
0

1/8
0

0
0
0

1/16 )'
where g, is the mean quantitative score for the se-
lected probands and a2,. is the variance. Let c" =
E[(1/n)Xnty'] =

{gy,:E(x'-y'),[E(y' libdm = 2)-E(y*libdm =0)]/8
[E(y*I ibdm = 1) + E(y*Iibdm= 2)-

2E(y* ibdm = 0)] / 16}t.
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As sample size grows large (1 /n)X4/ny* converges to
the constant vector c* so that in large samples (1 /
n)X',,y* can be approximated by c*. The values of
vector b* = M* -lc* are given in table 2.
We direct attention to the coefficient b*j in table 2.

This equals the expectation of the Y sib, given two
alleles ibd at the marker, less the expectation of the Y
sib, given zero alleles at the marker. Before expressing
this expectation in terms of genetic parameters, we
digress for a moment to develop notation.

Selection on x will change the frequency of the ith
genotype, fromfi in the general population tof'; in the
selected population, i = (1, 2, 3), corresponding to
genotypes aa, Aa, and AA. Selection will also change
the background mean value for probands with the ith
major genotype, from wi, which equals 0.0 to -w^.
Hence, the proband mean may be written as

9X = g + ft(gi+TW*i)="+= Wx .

Let Ek denote the mean value for siblings with k alleles
ibd at the QTL, and let Sjik denote the probability that
a sibling will have thejth major genotype, given that the
proband has the ith major genotype and given that the
pair share k alleles at the QTL. Then

Ek = EfISik( + 9J + COW j).
J

Let p be the frequency of the decreaser allele, with
q = 1 - p being the frequency of the increaser allele.
Let subscripts 1, 2, and 3 denote genotypes aa, Aa,
and AA, respectively, and recall that w denotes the
intraclass correlation for background factors. Tedious
algebra then gives the expectations for siblings, as a
function of ibd at the QTL, as

Eo = + ow,

Table 2

Asymptotic Expectations for Regression
Coefficients in Selected Sample

b* Form of b* from Solving b* = M -c

b:'- ....pyt - b2g.*
COV(X-,y:)/G2x<-

b3,' ...E(ylibdm= 2)-E(yjlibdm=O)
4 ........ E(y IIBDm=O)+E(y libdm=2) -2E(y :ibd= 1)

NOTE.- Symbols are as defined in table 1.

E1 = g + p(f; +1/2f+½2)g1 + (qf1 + 1/2 +
pfX )g2 + q( 12f½j2 +ft3)g3 + (W.t,

and

E2 = 9 +fx*g1 +JU2 +fX393 + CWX*.

Then the expectation of y-, conditional on marker
ibd, is

2

E(y* jibdm = i) = Z problibdq =jlibdm = i]3Ej,
j=O

giving

E(y'- jibdm=0) = TEo0+2T(1-T)E1+(1-T)2E2;

E(y*libdm=1) = T(1-T)Eo+
[T2- (1- T)2]El + T(1- T)E2 ;

E(y*Iibdm=2) = (1-T)2Eo + 2T(1-T)E1 + T2E2.

Hence, we may write coefficient b*3 as

b* = [(1-T)2-T2](E2-Eo) = (1-2T)(E2-Eo) =
r(fl'gl +1 2g2 +f3g3),

or the product of the correlational distance between
the QTL and the marker and the average proband
genotypic value at the QTL. If r = 0 (which, of course,
implies no linkage) or if there is no major-locus effect,
then b * = 0.

The above expectations are only asymptotically
valid, and presentation of exact asymptotic SEs would
take us into a complicated area beyond the main pur-
pose of the present paper (see Appendix). Hence, we
used Monte Carlo simulation to evaluate the power of
selected versus unselected samples of small size. For
the genetic model, we assume a diallelic major locus
in Hardy-Weinberg equilibrium. We also assume that
the trait scores of the X and Y siblings are bivariate
normal conditional on their major genotypes. The
model for selection assumed that probands had quan-
titative scores greater than a certain value, t, which
was numerically estimated from the parameters of the
genetic model and the percent selected. Two sample
sizes-i.e., 240 pairs and 480 pairs-were used, and
100 replicates were generated for each set of parame-
ter values. Regression was used to estimate the b's or
the bV's and their SEs. The statistics z = b5/SE (b5) in
unselected samples and z = b * /SE (b *) in the selected
case were treated as normally distributed. Power at
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Linkage in Selected Samples

a = .05 was assessed as the proportion of times z
exceeded the one-tailed critical value of 1.645. Natu-
rally, setting a = .05 requires that a positive linkage
result must be replicated in another laboratory.

In the unselected population, we set j = 0 and
d = 1. The parameters were varied as follows: fre-
quency of the decreaser allele = p = .2, .4, .6, and
.8; 0 = 0, .05, and.10; to = .2 and .4; H = .05-.50
by .05 increments; and proportion selected = .05,
.10, and 1.0. For each set of these parameter values,
gene action was parameterized by X = 1 (increaser
alleleA dominant to decreaser allele a), X = 0 (additive
gene action), and X = - 1 (decreaser allele a dominant
to increaser allele A). Together, A, p, H, X, and d3
determine the values of gi.

Results

Figures 1-3 present power curves for 240 sib pairs
in which the increaser allele is recessive (fig. 1), addi-
tive (fig. 2), and dominant (fig. 3) under different allele
frequencies for the increaser allele (q). Selection is
done on the upper tail of the distribution, and the
information is expressed in terms of major-locus her-
itability. The same information could be displayed
in terms of deviations between the homozygotes.
Smoothed lines are the logistic curves that best fit the
Monte Carlo-ed data points. The figures were plotted
for the situation in which co (the sib correlation for
background variance) is .20 and 0 is .05 and allele
frequency is expressed as q = (1 - p) = frequency of
the increaser allele.
When sampling is performed from the rare recessive

tail of a distribution (fig. 1; q = .2), there is a dramatic
increase in power when a selected sample strategy is
used. The threshold for selection is also an important
consideration in this case. Selecting the upper 5%
as probands gives a reasonable chance for detecting
linkage for a locus explaining as little as 10% of the
phenotypic variance. As the QTL heritability increases,
the difference between selecting the upper 5% versus the
upper 10% becomes less important. In all cases, the
selected samples increase power relative to random
samples, although, as allele frequency increases, the
difference in power curves diminishes.
Under additive gene action (fig. 2), selected samples

also increase power under all allele frequencies, albeit
not as dramatically as in the case of an infrequent
recessive. Under additive gene action, there is only a
small difference between the 5% and 10% selection
differential.

With dominant gene action for the increaser allele,
the power of selected sibling samples depends critically
on both allele frequency and the tail of the distribution
that is selected. Sampling from the tail of a distribution
with a rare dominant increases power, but sampling
from the tail with a common dominant actually de-
creases power.
Examination of figures 1-3 jointly gives one im-

portant corollary to the use of selected samples. Irre-
spective of the mode of gene action, the power differ-
ential between selected and random samples is greatest
when one samples from the tail with the allele of lesser
frequency. Clearly, if the mode of transmission and/
or allele frequency are not known, then sampling sib
probands from both ends of a continuous distribution
must be considered. It is unclear how much this power
diminution as a function of gene action and allele fre-
quency holds for other linkage designs such as multi-
generational pedigrees.

Table 3 gives the sample sizes required to detect
a locus with 20% broad-sense heritability and 80%
power. The sample sizes are based on the Monte Carlo
results and hence are only approximations. In a ran-
dom sample, it would take 1,400-1,600 sib pairs to
achieve satisfactory power. In general, the selection
strategy requires sample sizes in the hundreds, not the
thousands- and, in some cases, fewer than 100 sib
pairs would permit satisfactory tests for linkage.
There are only two conditions in the selected sample
that would require more pairs: (1) dominant gene ac-
tion and (2) increaser allele frequency .60 or greater.
Once again, this obstacle may be overcome by sam-
pling from both tails of a distribution.

Discussion

Selected samples are an efficient method for de-
tecting linkage with quantitative traits, because, de-
pending on gene action, fewer sib pairs require marker
typing than would be the case in a general population
sample. When the major locus does not account for
an overwhelming proportion of phenotypic variance,
the increase in power from selection can make the
difference between feasibility and infeasibility of a
linkage study. The fact that, in the face of strong back-
ground variation, selected samples can detect major
loci of moderate effect also opens avenues of investiga-
tion of linkage for quantitative traits that are corre-
lated with disease liability.
The disadvantage, of course, is finding extreme pro-

bands in the first place. In many medical applications,
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Table 3

Approximate Number of Sib Pairs, in Selected Samples, Required to Detect
Linkage between Marker of Known ibd and Major Quantitative Locus with
Recombination Fraction .05

APPROXIMATE No. OF SIB PAIRS IN

Upper-5% Selected Sample Upper-10% Selected Sample

q R A D R A D

.20 .... 73 261 350 199 328 467

.40 .... 180 358 786 251 559 889

.60 .... 358 643 1,710 445 708 1,843

.80 .... 762 1,010 7,009 1,044 1,032 8,582

NOTE.-Power is set at 80% with a = .05. The example is for a major locus contributing to 20%
of phenotypic variation. In a random sample, approximately 1,500 pairs would be required. q =
frequency of the increaser allele; R = recessive gene action for increaser allele; A = additive gene ac-
tion for increaser allele; D = dominant gene action for increaser allele. Other symbols are as defined
in table 1.

probands with extreme scores on fasting plasma glu-
cose, plasma cholesterol, hypertension, etc. may be
easily ascertained through clinics. Indeed, with traits
correlated with fitness, one would expect to find rare

recessives at the deleterious tail of the distribution.
In other circumstances, the utility of the design must
balance the cost of measuring phenotypes against the
expense of establishing cell lines and/or typing
markers.

In either event, the fact that gene action and allele
frequency moderate the power of selected sibling sam-
ples dictates that other techniques of genetic epidemi-
ology, particularly segregation and commingling anal-
yses, must play a strong preparatory role in the design
of a selected-sample linkage study. The reason why
gene action moderates power is unclear. We suspect
that one major statistic strongly correlated with power
is the displacement of the two homozygotes. For a

trait with a given heritability, this displacement will be
greater for a genetic system in which there is a rare

recessive locus than it is for one in which there is a rare

dominant.
Because the main purpose of the present paper has

been to demonstrate the utility of selected samples, the
methods have been developed to give expectations that
are easily solved using numerical methods. While these
methods are robust in the sense that the parameters of
a major-locus model are not required to detect linkage,
they may be less powerful than other analytical tech-
niques. Also unexplored are other avenues of the
selected-sample strategy, such as (a) varying the selec-
tion threshold as a function of segregation parameters,

to optimize linkage strategies; (b) sampling from both
ends of a distribution; and (c) sampling "concordant"
pairs. It is clear that the method explored by Boehnke
and Moll ( 1989)-i.e., sequential sampling of families
to isolate those for whom there is evidence for major-
locus segregation- should be utilized in future re-
search designs.
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Appendix
For the unselected model consider the equation y =

bi + b26+ b3Y+ b4x+ b56x+ b6yx+ u. Formthe 6 x 6
matrix, M, in the following way. The first row of
M is the row obtained by taking expectations of the
components in the row vector (1,8,y,x,Sx,yx). Next
multiply each component of this row vector by 5 and
again take expectations to obtain the second row of
M. The third, fourth, fifth, and sixth rows of M are
obtained in the same manner: the initial row,
(1 ,6,y,x,Sx, yx), is multiplied in turn by y, x, 8x, and
yx, and, in each row, expectations are taken. Form
the column vector c by setting c = col[E(y),E(Sy),
E(yy),E(8xy),E(yxy)], and let b = col(bi, b2, b3, b4,
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b5, b6). If b satisfies c = Mb, then u will be uncorre-
lated with each of the random variables 6,5y x,x x,
yx, and E(u) = 0.
Next let X, be the n x 6 matrix whose jth row is

the vector of observations (1,j, yjxjyjxj) from thejth
sibling pair in the random sample of size n. If we let
b denote the least-squares estimator of b, then b =
(X'X")1Xny, where y = col(y1,y2, . . . , yn) is the
vector of phenotypic values for the Y siblings in the
sample.
As mentioned in the main text, we are not working

with a linear model, so the standard results concerning
the unbiasedness and consistency of b cannot be in-
voked. However, ni n(X'Xn)-X) = M1 with proba-
bility 1 and I p (1 /n)X y = c with probability 1, so
that we have the following result:

Result I

In the absence of linearity it is still true that pjb =
M - 1c = b with probability 1. We can restate this result
by saying that, as the number of sibling pairs being
sampled grows large, b will converge to b. That is, b
is a consistent estimator of b.
To obtain asymptotic formulas for the SEs of these

least-squares estimators, write jIt E [Vi(b-b)-h(b-b)t]
= 1ij;E [n(XtXn) - 1X(Y- Xnb)(y - Xnb)tXn(XtXn)1 =

njp E9 , where u is the vec-
tor of residuals for the n sibling-pair observations. In
the standard linear model the assumption of homosce-
dasticity permits us to first condition on the values in
the matrix Xn and then move the expectation through
to the matrix uu', obtaining for E(uutlXn) a diagonal
matrix all of whose diagonal matrix elements are the
same. However, in the absence of both the linear form
of the conditional expectation and homoscedasticity,
the form of the asymptotic SEs is more complicated.
Denote by J the 6 x 6 matrix E [(1 / n)XtuutXn). The

entries in J do not depend on n and are, on the main
diagonal, E(u2), E(82U2), E(y2U2), E(X2U2), E(82X2U2),
and E(y2x2u2). All off-diagonal terms can be simplified
in the same manner. Consider, for example, the entry
in the fourth row and second column of J. This entry

n n

is j42 = E [(1 / n)Z Xjuj Z w,]. The independence of
j=l i=1

the different sibling pairs in the sample reduces this
n

entry to]42 = E[(1/ n) Z6xju/2] = E(6xu2). Here, 8j,
j=1

xj, and uj are values for the jth sibling pair. Similarly,
j45 = E(6x2u2), j23 = E(&yu2), .... The formula for
the asymptotic SE is then given as result 2.

Result 2

jip E[6(b - )fi(b-6)t] = M'- iinW E[(1/n)
XtuutXn)M - = M - 1JM - 1. The entries in J are com-
plicated to compute, and full exposition of them
would take us beyond the main purpose of the present
paper. This is why we used simulations. For example,
to compute E(x2u2) it is necessary to condition on the
genotypes at the QTL and on ibd status at the QTL,
multiply by the appropriate probabilities, and then
sum over all ibd and genotype possibilities. Condition-
ing in this way reduces the calculations to the calcula-
tion of the expected value of the square of the product
of two random variables having a bivariate normal
distribution. The formula is E(x2u21 ibd,genotypes) =
2cov(x, u ibd,genotypes)2 + E(x2 genotype)E(u2 Igeno-
type) + 4E (xlgenotype) E (uIgenotype) cov (x,ulibd,
genotypes).

In the selected-sample situation these general for-
mulas remain valid. In the selected-sample model con-
sidered earlier all matrices are either 4 x 4 or n x 4.
The entries in J are more difficult to compute, but their
form remains the same as in the unselected model.
Under the alternative hypothesis, simulations were

used to avoid calculating the SEs for the elements for
b; however, under the null hypothesis, this was not
done; in the latter case, a standard packaged least-
squares statistical program was employed to calculate
SEs. If the three normal distributions that constitute
the phenotypic distribution are not widely separated,
then the phenotypic distribution itself is very nearly
normal. In this case, the least-squares program gives
satisfactory results because of the near homoscedastic-
ity and because of the resulting fact that J is approxi-
mately equal to E(u2) times the matrix M. However,
if the normal components are widely separated, then
the least-squares package produces SE estimates that
are too small. When the least-squares package is em-
ployed in this situation, a practical upper bound on the
variance of the estimator divided by the least-squares
estimate of its SE is about 1.20. This means that defin-
ing the critical region by using 1.645 1.20 = 1.80,
rather than by using 1.645, will produce a type 1 error
probability of at most .05 and, hence, an error on the
side of caution.
While we recommend that investigators take this

cautious approach when working with selected sam-
ples, our results concerning sample sizes and power
are little affected when such an alteration of the critical
region is introduced. Slightly shrinking the size of the
critical regions for both selected and unselected sam-
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ples has very little effect on the sample size and power
of one relative to the other.
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