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Summary

Statistical models have been developed to delineate the major-gene and non-major-gene factors accounting
for the familial aggregation of complex diseases. The mixed model assumes an underlying liability to the
disease, to which a major gene, a multifactorial component, and random environment contribute indepen-
dently. Affection is defined by a threshold on the liability scale. The regressive logistic models assume that
the logarithm of the odds of being affected is a linear function of major genotype, phenotypes of antecedents
and other covariates. An equivalence between these two approaches cannot be derived analytically. I propose
a formulation of the regressive logistic models on the supposition of an underlying liability model of disease.
Relatives are assumed to have correlated liabilities to the disease; affected persons have liabilities exceeding
an estimable threshold. Under the assumption that the correlation structure of the relatives' liabilities follows
a regressive model, the regression coefficients on antecedents are expressed in terms of the relevant familial
correlations. A parsimonious parameterization is a consequence of the assumed liability model, and a one-to-
one correspondence with the parameters of the mixed model can be established. The logits, derived under
the class A regressive model and under the class D regressive model, can be extended to include a large variety
of patterns of family dependence, as well as gene-environment interactions.

Introduction

Statistical models have been developed to delineate the
major-gene and non-major-gene factors accounting
for the observed familial transmission of complex dis-
eases. The classical mixed model assumes an underly-
ing variable, the liability to the disease, to which a
major gene, a polygenic component, and random envi-
ronment contribute independently (Morton and Mac-
Lean 1974; Lalouel and Morton 1981; Lalouel et al.
1983). This model explains familial aggregation es-
sentially in terms of genetic causation, although vari-
ants of this model allow for environmental causes of
dependence. Affection is defined by a threshold on this
liability scale. Variation of the morbid risk according
to various epidemiological factors is treated by a shift
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of this threshold on the liability scale. Specific liability
classes are assigned to the family members on the basis
of environmental and demographic factors, and the
corresponding morbid risk is computed prior to segre-
gation analysis and is held fixed.
On the other hand, the regressive models recently

introduced by Bonney (1984, 1986) are constructed
by conditioning each individual's observation on those
of his antecedents, using logistic regression for binary
traits. The log of the odds of being affected is assumed
to be a linear function of major genotype, the pheno-
types of antecedents, and other covariates. These
models merge the goals of epidemiology and genetics
by allowing simultaneous estimation of major-gene
factors, residual covariation of unspecified origin, and
measured environmental factors influencing the trait.
The parameters of the regressive logistic models can
be constrained or not to satisfy the observed morbid
risk(s) in the population.

In the case of continuous traits, the mixed and re-
gressive models have been compared theoretically and
numerically, through computer simulations, in nu-
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clear families (Demenais and Bonney 1989). A one-
to-one correspondence between the parameters of the
two models has been established. However, for binary
traits, there is no exact equivalence between the
threshold-mixed models and the regressive logistic
models. In the present paper, I propose a formulation
of the regressive logistic models on the supposition
of an underlying liability threshold model of disease.
Relatives are assumed to have correlated liabilities
to the disease, with a correlation structure following
the regressive-model patterns of dependence. Affected
persons have liabilities exceeding an estimable thresh-
old. The probability that a person is affected, given the
affection status of his or her antecedents, is a logistic
regression function in which the regression coefficients
are expressed in terms of the relevant familial correla-
tions among liabilities. A correspondence with the pa-
rameters of the mixed model can thus be established.
I will first summarize the main features of the mixed
and regressive logistic models as originally described
but with another coding scheme I define below. I will
then present the liability formulation of the regressive
logistic models and will compare these different ap-
proaches. For convenience, the original and liability
formulations of the regressive logistic models will be
denoted formulations I and II, respectively.

Likelihood of a Nuclear Family

Let Y = (YF, YM, YC1, YC2, YCi, . . . Ycn) be the
vector of disease status (affected/unaffected) of father
(F), mother (M), and a set of n children in a nuclear
family. The joint likelihood of the observed pheno-
types can be written, in general, as

P(YFYMY1,..,Yn) = P(YF)P(YMIYF)
(1)

If it is assumed that an unobservable discrete factor,
g (g= 1,2... k), affects the variability in the trait, the
likelihood becomes P(Y) = 1P(g)P(Ylg), where P(g)
is the probability of the vector of discrete factors (g)
and the sum is over all possible g vectors. In segrega-
tion analysis, which is aimed at detecting major-gene
effects, this discrete factor is a major genotype or,
more generally, ousiotpe, and Mendelian transmis-
sion can be tested against discrete but non-Mendelian
transmission (for a discussion, see Bonney 1986).
Each model makes it possible to write the joint likeli-
hood of the observed phenotypes (see eq. [1 ]) by speci-

fying some type of dependence among the observa-
tions, as presented in the following sections.

Mixed Models

The mixed model, developed for discrete traits
(Morton and MacLean 1974), assumes an underlying
variable, the liability to the disease (1), resulting from
the independent and additive contributions of a dial-
lelic (A/a) major-gene component g, a polygenic or
multifactorial transmissible component c, and ran-
dom environment e, so that 1 = g + c + e. Affection is
defined by being above a threshold (T) on this liability
scale, determined from the morbid risk to affection.
The major gene is characterized by the frequency of
allele A in the population and by the three genotype-
specific means, 9AA, IAa, and ilaa (the overall mean, A,
is zero). Conditionally on the vector of major geno-
types, multivariate normality of the liability is as-
sumed. The original model assumes that the residual
correlations among relatives' liabilities are due to addi-
tive polygenic inheritance. Therefore, the spouses'
liabilities are uncorrelated, and the residual parent-
offspring and sib-sib correlations are each equal to one-
half the residual polygenic heritability (proportion of
residual variance due to additive genetic variation). To
allow the sib-sib correlation to differ from the parent-
offspring correlation for any reason, different multi-
factorial transmissible components in adults (CA with
variance COA) and children (CK with variance UWK) have
been introduced by Lalouel and Morton (1981). The
likelihood of a nuclear family is written by integrating
over all possible values of the multifactorial compo-
nents of the father (CF) and of the mother (CM):

co 00

L(YFYMYl,... ,yn) = | f(CF)f(CM)

EP(gF)P(YFlgFCF)EP(gM)P(YM gM CM)HUP(gigFgM)

P(Yi giCFCM)dCFdcM. (2)

The summations are over the unobserved g's. The
P(g)'s are genotypic frequencies, and the P(gijgF,gM)'s
are transition probabilities expressed as functions of
three transmission probabilities (as defined by Elston
and Stewart [1971]). The f(.)'s are normal density
functions, and the P(Ylg,c)'s are penetrances com-
puted from cumulative normal distributions (Lalouel
and Morton 1981).
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Regressive Models with Underlying Liability

The likelihood is a function of the major-gene pa-
rameters expressed in terms of the gene frequency q,
the displacement t (t = I1AA - Aiaa), the degree of domi-
nance d [d = (gAa - !Aaa)/(AAA - gaa)] and, generally,
the three transmission probabilities plus the residual
polygenic variances, UtA and UrK-

Regressive Logistic Models (Formulation I)

The regressive logistic models proposed by Bonney
(1986) specify a regression relationship between the
probability for a person being affected and a set of
explanatory variables including major genotype, phe-
notypes of older relatives, and other covariates. Sev-
eral classes of models have been described according
to the patterns ofdependence among sibs. I will discuss
here the class A and class D models, which have com-
mon features with the mixed model (Demenais and
Bonney 1989); they both assume (in different senses)
equal sib-sib correlations or dependencies. We assume
that spouses are independent and that father-child and
mother-child dependencies are equal, as in the mixed
model, but these assumptions can be readily relaxed.
The class D model assumes that, given the parental

outcomes and all genotypes, the outcomes of offspring
are equally predictive and uses a likelihood based on
the following decomposition:

L = YP(gF)P(YF gF)EP(gM)P(YM gM)

P(gl |gF,gM)P(Yl Ig1 ,gF,gM,YFYM) ...

EP(gnJgFM)P(Yng..F .-)n)YF. . .Yn-1 ) . (3 )

To reduce the number of parameters in the regression
for binary traits, Bonney (1986) assumed that the ma-
jor genotype of a relative affects the trait value of an
individual only through that individual's own major
genotype. Thus, the likelihood becomes

L = EP(gF)P(YFIgF)YP(gM)P(YMIgM)H

ER9gi1gF,gM)P(yi lgiyFY~~,-m * * ,Yi_)y- ) . (4)

The penetrances P(Ylg) and P(Ylg,YF...Yi 1) are lo-
gistic functions. The logistic function is defined as

exp(OY)/[1 + exp(O)], where a person's phenotype Y
is coded 1 for affected and 0 for unaffected and where
0 is the logit = ln[Pr(Y = 1 )/Pr(Y = 0)]. In logistic re-

gression, discrete explanatory variables can be coded
in different ways, each coding scheme having its own
interpretation. Since the phenotypes of a person's an-

tecedents, YA, can belong to either one of the three
categories-i.e., affected, unaffected, or missing-I
propose to use two dummy variables, ZAl and ZA2,
to code the antecedents' phenotypes. These variables,
ZA, and ZA2, are elements of a column vector ZA, SO
that, when primes are used to denote transposes,

ZA = (1 O)' ifA is affected

ZA = (O 1)' ifA is unaffected

ZA = (O 0)' ifA is missing,

and the corresponding vector of regression coefficients
is IA7 = (YA1,YA2), where A = F, M, or C represents
father, mother, or child, respectively.

Thus, the logits for the parents, first child, and ith
child are

OF = Om = ag (g = AA,Aaaa)
01 Ig,1 YFYM = agl +FPZF +JPZM (OFF= EM= rp)

OiJg9,YFYMYl. .Yi-1 = agi + FPZF + Fp'ZM + r7cZii

The summation with respect to j is over the older sibs
of i, and the F vectors are FP = (YP1,YP2) and rcI =

(YC1,YC2). The parameters are interpreted as follows:
ag is the genotype-specific baseline risk of the disease
(on the logit scale); if the person's father is affected,
the risk of the disease is modified by yp1; if the father
is unaffected, it is modified by YP2; and if the father is
unknown, the risk remains unchanged. The other y
parameters are defined in a similar manner. Usually,
a person's risk is expected to increase or decrease,
according to whether his or her antecedent is affected
or unaffected, respectively, but negative phenotypic
correlations are possible. Ifthe ith child has an affected
father, an unaffected mother, and three preceding sibs,
two affected and one unaffected, then the logit is

Oig9,YFYMY1 ,Y2,Y3 = agi + YP1 + YP2 + 2ycl + (YC22.

The parameters of the class D model are the major
gene parameters: q (allele A frequency); the three
genotype-specific baseline parameters, aAA, aAa aaa
(and generally the three transmission probabilities);
plus the four y's, which are used to express the residual
dependency on parents (Y01,YP2) and on previous sibs
('YCI ,YC2).
Bonney (1986) used the transformation Z = 2Y - 1

to code the phenotypes of antecedents, so that Z =
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+ 1 if the antecedent is affected, Z = - 1 if the ante-
cedent is unaffected, and Z = 0 if the antecedent is
missing. This can be obtained here by settingYP2 =
- ypi and YC2 = - Yci. The coding scheme proposed
by Bonney (1986) implies symmetry on the logit scale:
the risk of the disease is increased or decreased by
the same quantity (y), whether a person's relative is
affected or unaffected, respectively. It may lead to de-
tection of a spurious major gene, as shown in simula-
tion studies (Demenais et al. 1990b), since a person's
risk may be modified differently according to the rela-
tive's disease status. For example, among relatives of
affected persons, polygenic inheritance leads to a risk
increase that is higher than the decrease of risk among
relatives of unaffected persons, except when the fre-
quency of the disease in the population is >.50 (when
the frequency equals .50, the increase and decrease
of risks are equal with opposite sign). Note that
other coding schemes have been discussed by Bonney
(1987).

If we assume that, given the outcomes of the par-
ents, the outcomes of sibs are independent, then the
logit for the ith child is simply

Oig,,YF,YM = agi + rPZF + rJPiZM,

and the likelihood of a nuclear family reduces to

L = EP(gF)P(YFIgF) Y2P (gM)P(YM 1gM) L

YP(gi~gF,gM)P(Yi~gi,YF,YM) *(5)

This is the class A regressive model. The parameters
are only the major-gene parameters and the two y's
for the residual dependency on parents (YPIYP2).
A correspondence between the parameters of the

mixed model and those of the regressive logistic model
can be established analytically only for the major-gene
component, by equating the penetrances. The major-
gene component is expressed in terms of gene fre-
quency and genotype-specific means of the liability for
the mixed model and in terms of gene frequency and
genotype-specific baseline parameters for the regres-
sive models. If we let F be the standard cumulative
normal distribution, then the probabilities to be
affected, given the major genotype, are

P(Y=1g) = kg = F[(pg-T)/a] under the mixed
model; g = AA, Aa, aa, and a2 = 1 - [EP(g)&], where
the P(g)'s are population genotypic frequencies and
where the sum is over the major genotypes;

kg = exp (ag)/ [1 + exp(ag)] under the regressive models,
so that ag = ln(F[(g- T)/ua]/ [1 -F[(g-T)/a]3) .

The residual familial correlations are expressed dif-
ferently in the two models: under the mixed model
they are expressed by multifactorial transmissible
components, specifying the correlations among the
parent-offspring and sib-sib's liabilities (ppopss), and
under the regressive models they are expressed in
terms of regression coefficients on the phenotypes of
parents (YP1 ,YP2) and preceding sibs (YcI ,YC2). A corre-
spondence between these parameters cannot be de-
rived analytically. Comparisons can only be made nu-
merically through computations of recurrence risks
predicted by each model in various familial situations.

Regressive Logistic Models Based on an
Underlying Liability Model (Formulation 11)

This formulation assumes that an underlying liabil-
ity to the disease is correlated among relatives. The
correlation structure of liabilities follows the regres-
sive model patterns of dependence. Affected persons
have liabilities exceeding a threshold. A person's liabil-
ity, given the affection status of antecedents, has mean
and variance computed from regression theory applied
to truncated distributions (Pearson 1903; Aitken
1934). Thus, the probability for that person to be
affected is expressed in terms ofcorrelation coefficients
among relatives' liabilities. This approach was used
by Mendell and Elston (1974) to compute recurrence
risks under the polygenic model. The cumulative nor-
mal distribution is replaced here by the logistic func-
tion, so that the effects of measured environmental
covariates can be more easily included in the pene-
trance function and estimated together with the other
familial factors causing the disease.
To briefly summarize, in the general population a

threshold T partitions the standardized normal distri-
bution of liability, 1, into two truncated distributions:
affected (above the threshold) and unaffected (below
the threshold). The probability for an individual (p)
from the population to be affected is computed from
the cumulative normal distribution:

-T

P(lp>T) = F(-T) = (1/S) X exp(-u2/2)du.
co

Depending on his affection status, p will belong to
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either one of the two truncated distributions of liabil-
ity with the following means and variances:

Affected: E(lIlp>T) = d, and

V(lllp>T) = 1-d(d-T) = 1-k

Unaffected: E(lIlp<T) = 4,' and

V(l lp<T) = 1-d'(d'-T)= 1-k '

where d and d' are as defined by Falconer (1965): d =
f(T)/F( - T), and d' = -f(T)/F(T), withf(T) being
the standard normal density function at T. We let k,
= d(d - T) and k' = d'(d'- T) be the coefficients of
variance reduction in the selected populations. Note
that Falconer (1965) assumed no reduction of the vari-
ance in the selected populations, whereas Mendell and
Elston (1971, 1974) and Reich et al. (1972) relaxed
that assumption, using Pearson's (1903) original re-
sults.
A relative, r, of individual p has a liability to the

disease with mean and variance given by (see eqq. [A3]
and [A4] in the Appendix):

E(lrIlp>T) = Pprd, and

V(lrIlp>T) = 1 - P2rk if p is affected

E(Irlp< T) = Pprd' and

V(lrllp<T) = 1 - Pprk' if p is unaffected,

where Ppr is the correlation between the liabilities of p
and r. The probability that r is affected, given the
affection status of p, is approximated from the cumu-
lative normal distribution by using the adjusted
threshold.

I replace the standard cumulative normal distribu-
tion by the logistic function exp(0)/[1 + exp(0)], 0 be-
ing the logit. This logistic function is the cumulative
distribution of the logistic density with variance n2/3.
Therefore,

x

F(x) = (1 /.f2f) J exp, U212)du

is approximated by

defined on the logit scale. The threshold is replaced by
the baseline parameter a t - (nt/..I3)T. The means d
and d' in the truncated distributions are replaced by 8

(n /.I3)d and 8' (/ll3)d' = - exp(a)8, since d' =

- [F( - T)/F(T)]d. The quantities k and k' become K
= (3/72)8(8 + a) and K' = (3/ 2)8I(8I + a). Although
K and K' are equal to k and k', respectively, Greek
letters will be used on the logit scale, since these quan-
tities are now specified by a and 8. The logit for a
random affected individual from the population is 0
= a. I use the coding scheme proposed above, replac-
ing the observed phenotype Yp by the vector Zp, in the
regression

Zp = (1 0)' if p is affected

Zp = (0 1)' if p is unaffected

Zp = (0 0)' if pis unknown .

Thus, the logit for r, given the affection status of Yp
of p, is

OrlYp = (a + PprA'Zp)/(1 - p2rK'Zp)1/2,

with

A = (8,8') and K' = (K,K') .

Following the formulas given in the Appendix for the
adjusted thresholds, under the class A regressive
model and under the class D regressive model, the
logits for each member of a nuclear family, conditional
on antecedents, will be presented. Familial correla-
tions will first be considered without a major-gene
component, and then they will be considered together
with a major-gene component.

Familial Correlations without a Major Gene

The class D model is characterized by equal sib-sib
correlations of liabilities, and the likelihood of the
observed phenotypes in a nuclear family is

L = P(YF)P(YM)P(Y1IYFYM)...

P(Yn |YF,YMYl, ... Ynf-1) (6)

G(x) = exp(xn / ) / [1 + exp(xn / l)].

It has been shown that for - 5<x<5, the difference
between F(x) and G(x) does not exceed .022 (Johnson
and Kotz 1970). All previous quantities will be now

where all Ps are logistic functions. For parents, the
logits are simply OF = OM = a, the baseline risk. The
logit of the first child, given the observed phenotypes
YF and YM, is regressed on the means of the parents'
liabilities specified by their affection status; to be stan-
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dardized, it is divided by the residual SD. Replacing
d and d' by the vector A' = (8,8'), k and k' by the
vector K' = (1,K'), and the residual variance v.J by w1(i)
in equations (A3) and (A4) of the Appendix, we find

01 IYF,YM = (a + PPOAFZF + PPOAMZM)/wi(2),
and

w1(l) = 1 -pjoKFZF -P*oKZMM (6a)

with 0 4 p poKFZF + ppoKItZM<l , where ppo is the
parent-offspring correlation of liabilities (the father-
child and mother-child correlations are assumed to be
equal: PFO = PMO = Ppo). Note that A, = A' = A'
and K' = Kk4 = K'. Also, note that wl(1) denotes the
variance of the first child, given the phenotypes of
antecedents to the first child (i.e., the parents). The
logit of the ith child, given the disease status of ante-
cedents, is similarly obtained by regressing recursively
on the means of the liabilities of the parents and of
each preceding sib. It is also standardized by dividing
by the corresponding residual SD. We let Aj, Kj, wj(,),
wi(i) (j<i), and uij denote quantities which are condi-
tional on the phenotypes of the respective antecedents,
then we have, from equations (A6) and (A7) of the
Appendix,

OiIYFYMYl ...Yi-l = (a+PPOAFZF
+ PPOAk4ZM + ZW1()/,]AJZ)/W,1)2 b

where the summation with respect toj is over the older
sibs of i, and

Wi(=)= (1 -piOKFZF -pOKk4ZM)

(1 - uz2KjZj), (6c)

where the product is overj older sibs of i. The variance
wj(j) in equation (6b) is the variance of the ith child,
given the phenotypes of antecedents to the jth child;
it is similar to wi(,), with the product being over the
older sibs of j. Note that wj(i) = w,), if the variances
of the liability in all family members are equal, as

assumed here. The vectors Aj = (6j,j) and Kj = (Kj,Kj)
are completely specified by the logit Oj, as A and K
depend on a. The partial correlations, oijn's, between
the liabilities of i andj, given the phenotypes of ante-
cedents, are computed recursively (see eqq. [A5],
[A8], and [A9] in the Appendix). For example, for j
= 1, i = 2,...,n,

Dil = (Pss -PioKF1ZF -POKk4ZM)/
(1 -POKZF-PPOK4ZM); (6d)

and forj= 2,i= 3,...,n,

Ui2 = Ui(l-oiK1'Z1)/(1 - u K1'Z), (6e)

where Pss is the sib-sib correlation of liabilities. Each
uij, whenj>2, is obtained similarly. Thus, the parame-
ters of the class D model with no major gene are the
baseline parameter a, the parent-offspring correlation
ppo, and the sib-sib correlation Pss.

If we assume that, given the parental affection sta-
tus, the childen's liabilities are independent, then all
partial correlations uij's = 0. The regression on pre-
ceding sibs reduces to the regression on parents only,
so that, from equation (6a),

OiIYF,YM = (a + PPOAFZF + PPOAkZM)/wi(J)

and

Wl(,) = wl().-

This is the class A regressive model. The likelihood
function takes the simpler form:

L = P(YF)P(YM) UP(Yi|YF,YM). (7)

The parameters of the class A regressive model with
no major gene are only a and ppo. The sib-sib corre-
lation Pss is constrained to be equal to p2oK'ZF +
ppoKk4ZM. Note that, in the case of continuous traits
(Bonney 1984; Demenais and Bonney 1989), Pss was
equal to 2pio. It can be pointed out that the correlation
pattern specified by the classA model has the following
meaning: sibs are correlated only because they have
common parents with certain characteristics, mea-
sured by the phenotype, the underlying mechanisms
(genetic and/or environmental) causing this correla-
tion being unknown. The sib-sib correlation changes
according to the parental affection status, because of
the truncation of the liability distribution.

Major-Gene Component and Residual Familial Correlations
For an autosomal diallelic major locus, the overall

liability is a mixture of three distributions, each char-
acterized by its own mean !g and residual variance
a2 which is assumed to be equal in each genotypic
distribution. Each distribution itself can be parti-
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tioned into two truncated distributions (affected/un-
affected) by its specific threshold: Tg = (T- Lg)/a.
Tg will correspond to the genotype-specific baseline
parameter ag on the logit scale (ag c - (x / 3)Tg).
Under the class D model, the likelihood of the ob-

served phenotypes is

L = EP(gF)P(YF gF)EP(gM)P(YM 1gM)
2P(g1 1gFgM)P(Y1 Ig1 ,gF9gMYFYM)...

YP(gn9gF5gM)P(Ynj9gF ....gnYF ....Y, - 1), (8)

which, under the class A model, simplifies to

L = EP(gF)P(YF gF)EP(gM)P(YM gM)

U -P(gi:gFgM)P(YJig,,gFgMYFYM) (9)

The penetrances depend now on both phenotypes and
genotypes of antecedents. For parents, the logits are
OgF = OgM = ag, the genotype-specific baseline parame-
ters. The logit of the first child under class D (or of the
ith child under class A), is

01 Igi ,gFgMYFYM

= (GgI + PPOAgFZF + PPoAgMZM)/Wi(?) ,

ual parent-offspring (ppo) and sib-sib (Pss) correla-
tions. Under the class A model, these parameters re-
duce to the major-gene parameters and to ppo.
As can be seen from the above formula (eq. [10]) of

the logit Oi, where all quantities depend on the geno-
types of antecedents (parents and preceding sibs), the
Elston-Stewart algorithm (Elston and Stewart 1971),
which replaces the sum of products by products of
sums, cannot be applied to compute the likelihood
(eq. [8]) under the class D model. Computation of this
likelihood becomes extremely time consuming as the
number of sibs increases. The performance of different
approximations to allow use of the Elston-Stewart al-
gorithm has been recently explored in the case of con-
tinuous traits through simulations (Demenais et al.
1990a). Approximation 6 was found to work appro-
priately in terms of estimation of parameters and hy-
pothesis testing and will be used here. The genotype-
specific mean for each preceding sib in the regression
was replaced by a weighted mean, the weights being
the probabilities of the possible genotypes, given the
parental gentoypes and the sib's own phenotype.
Thus, the genotype-specific vectors A and Kg will be
replaced, respectively, by a vector of weighted means,
Aj', and a vector of weighted-coefficients-of-variance
reduction, Kj:

and

Wl(l) = Wl(j) = 1 - PPOKgFZF - PPOKgMZM with

with 0 < p2OKgFZF + P2OK'MZM < 1; the variance con-
ditional on major genotype (a2) cancels out, as shown
in the Appendix. The logits of subsequent children
become

OIgF .giYF. .Yi1 = (agi + PPOAFZF

+ PPOAgMZM + EW],7 uAgZZ)/w1), (10)

where the summation with respect toj is over the older
sibs of i. The variances wj(i) and wi(i) and the partial
correlations uij are similar to those shown above (eqq.
[6c-6e]) but depend now on the genotypes and pheno-
types of antecedents. Again, the vectors A' and Kg for
parents depend on ag, and A', and Kg, for jth child are

specified by the logit Ogi.
Therefore, the parameters of the class D model are

the major-gene parameters- the gene frequency q and
the three baselines UAA, aAa, and aaa (and, generally,
the three transmission probabilities)-plus the resid-

Pg, = P(gjjgF,gM,Yj)

and

Pg, = [P(g|gFgM)exp(cagYj)/

[1 + exp(ag)] /

[FP(gjgF,gM)exp(agYj)/ [1 + exp(ag)]]

Yj = 1 or 0, depending on whetherj is affected or not.
Similarly,

Kj' = (IKj,I(') = (Y-PgiKgi, lPjg4).

The logit becomes

OiI|gF. ..gi9YF, ...Yi - 1 = (agi + PPOAgFZF + PPoAgMZM
+ EW1//w21 (/
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with K, replacing Kg, in the formulas for wi(,), wj(i), and
uij. The likelihood, under the class D model, can there-
fore be written as

L = EP(gF)P(YF gF)YP(gM)P(YM gM) U1
lP(giYgFgM)P(Yij|gigFgM 5gl)...

gi- 1 YFyMqyl ..* Yi- 1 ), (11)

by using the Elston-Stewart algorithm.
A correspondence between the parameters of the

mixed model and this liability formulation can now

be established. For the major-gene component, the
two models are comparable in terms of the gene fre-
quency and penetrances, as shown above with the
original formulation I of the regressive logistic models.
For the residual familial correlations, there is a one-

to-one correspondence between the heritabilities, HA
and HK, of the mixed model and the residual correla-
tions, pro and pss, of this liability formulation, as in
the case of continuous traits (Demenais and Bonney
1989). The pure polygenic model (UA& = U& = i =

Hai with the total variance oi- = 1 and with H being
the usual heritability) and the class D model are equiv-
alent if, in the class D model, we set Pro = pss = HI
2, with no major-gene component, and set Pro = Pss

= H/2u2, with a major-gene component; a2 is the
variance conditional on major genotype, as defined
above. Ifwe consider two different multifactorial com-
ponents in adults and children (with respective herita-
bilities HA and HK), we have pro = J-JHK/2 and
pss = HK/2, with no major gene, and have pro =
VIHfL-/2U2 and Pss = HK/2a2, with a major gene.

The polygenic and class A regressive models are equiv-
alent in the parent-offspring correlation (pro). Note
that, in the polygenic model, pro is interpreted as one-

half of the heritability. The two models differ in terms
of the sib-sib correlation, the difference being the por-
tion of pss not explained by common parentage. The
correspondence between the parameters of the differ-
ent models is presented in table 1.

Missing Values

The problem of missing values can be handled in a

manner similar to that which Bonney (in press) pro-

posed for the case of continuous traits. If the affection
status of an individual is not observed, the penetrance
function for that individual will be equal to unity.
Under the class D model, children with one unob-
served parent will be regressed on the observed parent

Table I

Correspondence between Parameters of Mixed
Model and Formulations I and 11 of Regressive
Logistic Models

REGRESSIVE
MODEL

PARAMETER MIXED MODEL Ia II

Major gene:
Gene frequency ........ q q q
Penetrance of AAb ..... B AA XAA XAA
Penetrance of Aab ..... AA XAa XAa
Penetrance of aab ...... Xaa xaa Xaa

Residual correlations:
Parent-offspring ......... fi.'HLi-i/202 YP, ,YP2PPo
Sib-sib ................ HK/2C;2 YC1,YC2 PSs
a Note that there is no direct mathematical correspondence be-

tween the y parameters and the residual correlations of the other
models.

b Computed from cumulative normal distributions and logistic
functions under the mixed and regressive models, respectively (see
text).

only. If both parents are missing, the logit for the
first child will be equal to the baseline risk, and the
correlation between the liability of the first child and
that of subsequent sibs (uil in eq. [6d]) will be simply
pss. The logits for the other children will be obtained
by regressing recursively on preceding sibs as above.
For the class A model, when the parents' quantitative
traits are missing, Bonney (in press) uses the class D
likelihood formulation to account for the correlation
among sibs. The regression coefficients on preceding
sibs are specified to satisfy the constraint pss =
2pio. A problem arises here, since under the class A
model, Pss varies according to the parental affection
status. Thus, in nuclear families where both parents
are missing, we propose to use the class D formulation
with the correlation u,1 being set equal to a weighted
average of all possible pss values specified by pro and
the parents' affection status, the weight being the prob-
ability of a given parental mating type. Thus, when
there is no major gene,

Oil = PSS = £E P(YF)P(YM)[p;oKFlZF + PNOKKMZM],
YF YM

and the sum for each parent is over the two possible
types of affection status (unaffected [Y =0] and affected
[Y = 1]). When there is a major gene, a similar formula
will be used for each parental genotypic combination:

780



Regressive Models with Underlying Liability

Uin = Pss

E P(YFJgF)P(YMJgM)[PiOKgFZF + PPOKgMZM] K
YF YM

If only one parent is observed (e.g., the father), Pss in
the formula of uil (eq. [6d] will be replaced by P2O
KFZF + YP(YM)P2oKk4ZM, the sum being over the two
possible types of affection status for the mother. Thus,
after conditioning on the father is completed, the class
D formulation for subsequent children will be applied.
The proposed formulations for missing data will be
evaluated by future simulation studies.

An Example

As an illustration of the proposed liability formula-
tion of the regressive models, we consider the analysis
of a simulated sample of500 six-member nuclear fami-
lies selected at random. Random sampling was chosen
instead of sampling families through at least one

affected, since our aim was to compare models and
not to compare methods of ascertainment correction.
The disease status was generated under a mixed model
including a dominant major gene (q = .05, t = 2,
d = 1) and polygenic variance uo = .32, correspond-
ing to residual familial correlations Ppo = Pss = .25.
A morbid risk of .10 was assumed. The analysis was
done under the general class D model and its different
subhypotheses, including the class A model (table 2).
When there is no major-gene effect, a model specifying
that sib-sib correlations depend only on common par-

entage (class A) is highly rejected vis-a'-vis a model
where the parent-offspring (pro) and sib-sib correla-
tion (Pss) are freely estimated (7 vs. 5; X2 = 31.67,
P < 10-9). A model with equal parent-offspring and

sib-sib correlations, as specified by a pure polygenic
model, fits the data as well as when then they are both
estimated (6 vs. 5; XI = 1.74, P > .10). Equality of
these correlations will be assumed subsequently. Un-
der a model including a major gene and residual famil-
ial correlations, the presence of a major gene is highly
significant (6 vs. 3; XI = 16.07, P< .001). I verified
that, in the presence of a major gene, the hypothesis
Ppo = Pss fitted the data well. The Mendelian transmis-
sion of the dominant major effect (3 vs. 1) is compati-
ble with the data (X2 = 0.51, P> .30), and the absence
of parent-offspring transmission of this effect is re-

jected (2 vs. 1; Xi = 12.03, P< .01). We should also
note that, when a major gene is present, the residual
familial correlations (Ppo and Pss) are not significant
(4 vs. 3; XI = 0.77, P > .30), although the estimates
of these parameters, Ppo = Pss = .22, are close to the
generated values of .25. This may be due to a lack of
power, especially when a discrete trait is considered.
The parameter estimates of the major-gene compo-

nent (model 3) are close to the generated values, q

being estimated at .04 and penetrances XAA ( = XAa) and
Xaa being estimated at .79 and .04, respectively, when
the true values are q = .05, XAA = XAa = .74, and
Xaa = .03. The estimate of the morbid risk in the
population is .1 1, which is also close to the expected
value of .10. Therefore, in this particular example, the
liability formulation of the class D regressive model fits
well the mixed model, as it is confirmed by our current
simulations (Demenais et al. 1990b).

Discussion

In conclusion, the regressive logistic models can be
formulated by assuming a liability threshold model of

Table 2

Segregation Analysis of Sample of 500 Six-Member Nuclear Families Simulated under Mixed Model, Including Dominant
Major Gene (q = .05, t = pAA.. = 2) and Residual Correlations (ppo = Pss = .25)

Model q aAA Caa TAAA tAaA taaA pPo Pss -2lnL + C

1. General transmission of major effect ..........04 1.69 -2.95 1.00 .45 .00 .27 .27 1,825.71
2. No transmission of major effect ............... .14 - 1.14 -2.63 .09 .09 .09 .49 .49 1,837.74
3. Mendelian with ppo = pss...................... .04 1.31 -3.04 (1) (.5) (0) .22 .22 1,826.22
4. Mendelian (ppo = Pss = 0) .................... .05 1.31 -3.28 (1) (.5) (0) (0) (0) 1,826.99
5. Familial correlation (ppo # pss; q = 0) ..... (0) - 2.17 - 2.17 ... ... ... .39 .44 1,840.55
6. Familial correlation (ppo = Pss; q = 0) .... (0) -2.17 -2.17 ... ... ... .39 .39 1,842.29
7. Familial correlation (class A; q = 0) ........ (0) -2.17 -2.17 ... ... ... .41 ... 1,872.22

NOTE.-Values in parentheses are fixed under a given hypothesis. The T values are transmission probabilities.
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disease. Parsimony is a consequence of the assumed
liability model. If the correlation structure of the rela-
tives' liabilities follows a class D regressive model, the
residual familial aggregation of the disease is expressed
in terms of two correlations among the liabilities of
parent-offspring (pro) and sib-sib (pss). Formulation I
of the regressive logistic models, which considered the
disease status only, used four regression coefficients to
express the dependency on parents (Y0,1yP2) and on

preceding sibs (YC1,YC2). Although these y parameters
are not independent, a general relationship among

them is difficult to derive analytically. However, parsi-
mony could be achieved by specifying some types of
relationships corresponding to particular situations.
When the liability model is used, the probability of
being affected is conditioned on both the phenotypes
and genotypes of antecedents, as required by the multi-
variate normal assumption of the liability model. In
order to keep the parameters at a reasonable number,
formulation I assumed that the major genotype of a

relative affects the trait value of an individual through
that individual's own major genotype (Bonney 1986),
so that conditioning was made on the phenotypes of
antecedents only. However, this assumption can be
relaxed by increasing the number of parameters. We
should also note that, under the class D regressive
model, the likelihood of a nuclear family may differ
according to the ordering of sibs in the sibship, since
the penetrance function will vary depending on the
phenotypes of preceding sibs, affected or unaffected.
Although the likelihood, under the liability model, is
not affected by the order of sibs if computed exactly,
the approximation used here takes into account an

order for the sibs. However, this liability formulation
(formulation II) appears to be numerically less sensi-
tive to a given order than is formulation I. The regres-

sion on preceding sibs, under formulation II, is partly
expressed in terms of the parent-offspring correlation,
which is independent of the sibs' order, whereas the
dependency on sibs, under formulation I, is a function
of the yc parameters. The likelihood of a nuclear fam-
ily with two affected children among four was com-

puted for all possible positions of the affected in the
sibship, under different genetic models. When the fa-
milial correlations are due to a generating polygenic
component (heritablity .7), the relative change in log
likelihood between the two extreme situations - i.e.,
two first sibs affected and two last sibs affected- is 1%
and 0.3% under formulations I and II, respectively.

This relative change is higher (1.7%) when the Yc's are
constrained to be equal to the yp's (i.e., when Yci =
YPi and when YC2 = YP2). When the generating model
includes a major gene and residual correlations, the
relative change is also 1% under formulation I and is
negligible (0.1%) under formulation II.
On the other hand, the liability formulation of the

regressive models makes possible a one-to-one corre-
spondence with the parameters of the mixed model.
Furthermore, spouse correlation and unequal mother-
child and father-child correlations can easily be ac-
commodated in the class A regressive model and in the
class D regressive model (see Appendix). The effects
of measured environmental factors can be simultane-
ously estimated together with both the major-gene
effect and residual familial covariation by adding re-
gression coefficients for covariates in the logits. Other
patterns of dependences, such as that of the class B
model and that of the class C model, can also be speci-
fied (Bonney 1984), as can gene-environment interac-
tions. Furthermore, the problems of variable age at
onset and time-dependent covariates can be handled
in a manner similar to that proposed by Abel and
Bonney (1990).
The different penetrance functions have been de-

rived here for nuclear families. However, the regres-
sive models assume a Markov correlation structure
across generations (Bonney 1984). Thus, given major
genotypes, the liability of a person depends on those
of ancestors only through the liabilities of the parents.
In this case, the penetrance functions are applicable,
without modification, to pedigrees. However, more
complex patterns of dependence among liabilities in a
pedigree could be considered.

In conclusion, the regressive models provide, in a
computationally practical manner, a framework for
understanding how genetic and environmental factors
interact in the determination of complex diseases. The
statistical properties of their different formulations are
currently being assessed through simulation studies.
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Appendix
Calculation of the Adjusted Thresholds
under the Regressive Models

I will first consider a model with no major gene and
let L be a vector of normally distributed liabilities in
parents (P) and a set of n offspring (0):

L = [LO

and

1
0

0
1

PFO PMO

PFO PMO

PFO PFO ... PFO
PMO PMO ... PMO
1 Pss ... Pss

Pss Pss ... 1

If we select the parents on the basis of their affection
status, so that the Lp vector belongs to a subset of
values Clp, we define:

mean gpt=[ip(2x 1)
L4o(n x 1 )_

and variance matrix

V [Vp(2 x 2) Vpo (2 x n)
NVop(nx2) Vo(nxn) J

Without loss of generality, each individual's liability
in the population has mean 0 and variance 1. I consider
that the correlation structure among the liabilities of
relatives follows a class D regressive model which is
characterized by equal sib-sib correlations (pss). I will
also assume that the parents' liabilities are uncorre-

lated (PFM = 0). The father-child and mother-child
correlations are denoted by PFO and PMO, respectively.
Thus,

I.=

0

0

0

o

E(LpILpsg2p) = Ap and Var(LpILps (Qp) = VA.

As an example, let us assume that the father is affected
and that the mother is unaffected (0 = [IF>TIM<T},
T being the threshold); we have

+ dF

and

1 -kF -k1

L 0 1 - kM'

with d = E(ll>T) =f(T)/F(- T) and d' = E(lIl<T)
=- f(T)/F( T), wherefand F are the standard normal
density function and cumulative normal distribution,
respectively. k = d(d - T) and k' = d'(d'- T). The
subscripts F and M are simply used to distinguish the
father from the mother.
Then letting Ii.o = E(LolLpefp) and V.o = Var

(LoILp E Dp), Pearson (1903) and Aitken (1934) have
shown that, provided that Lo is normally distributed
in the selected populations,

I.0 = io+VopVp 1(ip, 9p) (Al)

and

V.o = Vo-Vop(VP 1-Vj 'VpVjI)Vpo. (A2)

with

783



Demenais et al.

The rows of the matrix VopVp 1 give the multiple re-
gression coefficients of the offspring's liabilities on the
parents' liabilities (PFO,PMO). The ith-row jth-colunn
element of Vop(V -I V-IVj+Vp-)Vpo is found to be
p2okF + pokkA, which is the same for any pair of sibs
(ij), since the father-child and mother-child correla-
tions are assumed to be the same for all sibs.
From equations (Al) and (A2), the conditional

mean and variance of the ith child's liability, given
lF>T and lM<T, are

I.' = PFodF +PMOdM (A3)

and

V.I = 1 -p2FokF - p2MokM with

0 < p2okF + p2OAM < 1 . (A4)

The conditional covariance of Ii and 1j, given Lp £Q
is

The adjusted threshold becomes T..i = (T - ..i)/
1/2v.1 . Similarly, the subsequent children (i = 3,4,...n)

will have mean and variance of liability adjusted on
parents and on preceding sibs by following equations
(A6) and (A7).
The partial correlations between susbsequent chil-

dren are computed recursively as follows: given the
phenotypes of a set of antecedents, the partial correla-
tions between any pair of subsequent sibs are equal.
The partial correlation between i and j (j>2 and i>j),
given the affection status of parents and of the first
child (lF>T, lM<T, ll>T.1), is

p.j = p.ij(l -p.ijk1) i = 3,4 ...,n;
1 -pj2ki.
j = 2,3 ...,n. (A8)

The partial correlation between i andj (j>3 and i>j),
given the affection status of parents and of two preced-
ing children (IF>T, IM<T, 11>T.1, 12>T..2), is

V.ij = Pss - pokF -pOkA

Therefore, the partial correlation of 1i and Ij, given Lp
& CI is

P)ij = Pss - pfokF- MOM

1 -pF0kF-PMOkM

Class A models imply that p.ij = 0,
PFokF + p2OkA. The adjusted threshold
is simply T., = (T-i.,)/v'' 2 (i = 1,2

For class D models, p.,, # 0. The adji
for the first child, T.,, is the same as th
for the class A model. This thresholh
define a mean di = f(T.1)/F( - T. 1) and
variance reduction ki = di(di - T.,) in t
of affected children (and, alternatively
unaffected children). Given that the
affected, the conditional mean and vari
ties for the remaining sibs, when equa
(A2) are used, are

1 -p2ijk2
j = 3,4,...,n. (A9)

(AS) Major-Gene and Residual Familial Correlations

When a major gene is included in the model, the
threshold in each genotypic distribution is Tg =

so that Pss = (T - Jg)/ a, where Rg is the genotype-specific mean of
for the ith child liability and a2 is the variance conditional on major
,.,n). genotype (assumed equal in each genotypic distribu-

usted threshold tion). From equations (A3) and (A4), the mean and
tat given above variance of the liahility of the ith child, given his par-
d allows us to ents' phenotypes and genotypes and his own genotype
a coefficient of (g), become
-he distribution
y, d' and k, in

first child is
iance of liabili-
tions (Al) and

I., = 9gi + OrPFOdgF + rPMOdgM

and

= a (1 - pfokgF -ptoM) .

Therefore, the adjusted threshold for ith child is

(A6)

and

V..i = v.,(l-pipki)
= (1 -pjokF-PtMokM)(1-P2plk)

v. ,1/2V. i

1

(1- P~~okgF -

Tg PFOdgF PMOdgM]I.

Since Tg corresponds to the baseline parameter ag on
(A7) the logit scale, the residual variance a2 cancels out and

Ji.. = 4.1+ P1(4.l - F1)
= PFOdF + PMOdM + V.iIp.ild,

i = 2,3,...n
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will not be a parameter of the model. The adjusted
logits for subsequent children are computed as above.

Familial Correlations Including a Spouse Correlation

When a spouse correlation (PFM) is included in the
model, the mean and variance of the liability of one
spouse, e.g., the mother, given that the father is
affected, become

4.M = PFMdF

and

V.M = 1-piMkF.

The corresponding adjusted threshold for the mother
is T.M = (T- p.M)/v12. This threshold permits us to
define a mean d'M = -f(T.M)/F(T.M) and a coefficient
of variance reduction k'M = d'M(d'M - T.M) in the dis-
tribution of unaffected mothers (and, alternatively,
d.M and k.M in affected mothers). Given that the father
is affected, the children will have their mean and vari-
ance of liability equal to pFodF and (1 - p2okF), respec-
tively. Thus, given the affection status of both father
and mother, the conditional mean and variance of the
ith child's liability become

= PFOdF + PMO - PFMPFOkFd,
(1-PFMkF)l'2

and

V.i = 1 -P2okF -[(PMO -PFMPFOkF)/
(1 - piMkF)]k.M,

and the partial correlation between the liabilities of
the ith and jth children, given the parents' affection
status, is

P.a =
Pss - poF-[(PMO - PFMPFOkF) /(1 - pimkF)]k'M
1 - PFokF -[(PMO - PFMPFOkF) (1-PFMkF)]k.M

The class A model will imply p.ij = 0, imposing the
corresponding constraint on Pss. Under the class D
model, the same formulas as given above can be used
to compute the regression on preceding siblings.
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