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Summary
A unique method of partitioning human quantitative genetic variation into effects due to specific chro-
mosomal regions is presented. This method is based on estimating the proportion of genetic material, R,
shared identical by descent (IBD) by sibling pairs in a specified chromosomal region, on the basis of their
marker genotypes at a set of marker loci spanning the region. The mean and variance of the distribution
of R conditional on IBD status and recombination pattern between two marker loci are derived as a func-
tion of the distance between the two loci. The distribution of the estimates of R is exemplified using data
on 22 loci on chromosome 7. A method of using the estimated R values and observed values of a quan-

titative trait in a set of sibships to estimate the proportion of total genetic variance explained by loci in the
region of interest is presented. Monte Carlo simulation techniques are used to show that this method is

more powerful than existing methods of quantitative linkage analysis based on sib pairs. It is also shown
through simulation studies that the proposed method is sensitive to genetic variation arising from both a

single locus of large effect as well as from several loosely linked loci of moderate phenotypic effect.

Introduction

Through its GENOME initiative, the U.S. Government
has allocated significant scientific and budgetary re-
sources to both genetic and physical mapping, with the
ambitious goal of eventually sequencing the human ge-
nome. It is anticipated that in the near future this effort
will yield dense genetic maps of every chromosome,
which will make it possible to map -and eventually
sequence- genes responsible for a large number of hu-
man genetic diseases. It is also likely that the identifica-
tion ofmajor genes influencing complex disease pheno-
types will proceed as well, albeit more slowly. The focus
of the present paper is on perhaps the most difficult
task, i.e., identifying chromosomal regions containing
specific genes or gene clusters responsible for significant
polygenic variation of a quantitative trait.
Most methods developed thus far for locating genes

influencing quantitative traits have been dependent on
selection experiments or on making special crosses, and

Received March 15, 1990; final revision received August 15, 1990.
Address for correspondence and reprints: David E. Goldgar, Ph.D.,

Genetic Epidemiology, University of Utah, 420 Chipeta Way, Suite
180, Salt Lake City, UT 84108.
X 1990 by The American Society of Human Genetics. All rights reserved.
0002-9297/90/4706-0012$02.00

therefore they are not, in general, applicable to human
genetic research. For example, Harrison and Mather
(1950) and Gibson and Thoday (1962), by selection
experiments, were able to locate on a particular chro-
mosome the polygenes affecting bristle number in Dro-
sophila. Lander and Botstein (1989) devised a unique
method of searching for quantitative-trait loci having
a significant phenotypic effect in lower organisms, given
a large number of offspring from specific crosses of in-
bred strains and a complete RFLP map of the genome
in question. Although not applicable to human quan-
titative traits, this multipoint approach was successfully
applied to several quantitative traits (fruit mass, con-
centration of soluble solids, and fruit pH) in the domes-
tic tomato, Lycopersicon esculentum, by Paterson et al.
(1988); a number of significant quantitative-trait loci
were detected for each quantitative trait examined, and
each was mapped to a specific chromosomal region.

In humans, on the other hand, most previous efforts
at linkage of quantitative traits have used sib-pair or
sibship methods for pairwise analyses of a hypothe-
sized trait locus and a single marker locus. The first
person to address the problem of linkage with a quan-
titative trait in humans was Penrose (1983), who devel-
oped a method which used the interaction between the
marker genotype and the quantitative phenotype in sib
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pairs from particular parental matings as a test for link-
age. Hill (1975) used a nested analysis-of-variance de-
sign for detecting and estimating linkage between a
quantitative trait and a marker locus. Haseman and
Elston (1972) utilized the concept of identity by de-
scent (IBD) to devise a method for linkage of quantita-
tive traits by using sib pairs. At any given genetic locus,
two siblings can share either zero, one, or two genes
IBD. Haseman and Elston derived the joint distribu-
tion of the number of genes IBD at a marker locus and
the number of genes IBD at an hypothesized locus by
determining a quantitative trait in terms of the recom-
bination fraction between the two loci. They used these
results to develop a method based on the regression of
the squared sib-pair difference for the trait on the sibs'
estimated genetic correlation at the marker locus.
The strategy adopted here is, in a sense, an extension

of the Haseman and Elston approach to multiple mark-
ers and multiple siblings. The basic approach is to esti-
mate the expected proportion of genetic material on
a particular chromosome (or arm) shared IBD for each
pair of siblings in a given sibship, on the basis of their
genotypes at a series of marker loci on that chromo-
some. These estimates will be used to statistically par-
tition the genetic variance of a quantitative trait into
effects of loci on specific chromosomes or chromosomal
regions. Risch and Lange (1979) and Suarez et al. (1979)
showed that, for the entire genome, the variance of sib-
pair genetic identity is quite small. In previous work
(Goldgar and Kimberling 1980; Goldgar 1981) my col-
leagues and I showed that, when any one chromosome
arm is considered, this variance is relatively high and
that sib pairs who are nearly identical or (nonidenti-
cal) are frequent. In the present paper I will demon-
strate that the data contained in available family panels
such as the Centre d'Etude du Polymorphisme Humain
(CEPH) resource or the collection of disease families
oriented toward specific chromosomes are useful to relia-
bly estimate chromosome-specific sib-pair identity and
that these data provide sufficient power for detecting
chromosome-specific polygenic variation under a wide
variety of underlying models. The proposed method
will thus be able to detect three types of genetic varia-
tion: (1) variation due to a single major locus; (2) varia-
tion due to several loci located in the same region or
chromosome; and (3) variation due to several unlinked
loci, each having a moderate influence on the quantita-
tive trait. Existing methodology is largely aimed at the
first of these situations. In addition, no other method
uses multiple marker loci simultaneously to obtain more
precise information regarding the number of crossovers

occurring on a particular chromosomal segment. I be-
gin with the derivation of the distribution of the propor-
tion of genetic material shared IBD by a sibling pair,
conditional on their genotypes at a set of syntenic
marker loci.

Methods

Derivation of Sib-Pair Identity Conditional on
Marker Information

In the present paper I will assume the Haldane (1919)
model of recombination which assumes no interference
and that the number of crossover events follows a Pois-
son distribution, although the results can be general-
ized to other recombination models. Specifically I make
the following assumptions: (1) the number of crossover
events occurring in a distance of X Morgans follows
a Poisson distribution with parameter X; (2) for any
given number of crossovers in an interval, the locations
of these crossover events are uniformly distributed across
the genetic map of the region (this follows from assump-
tion 1; e.g., see Feller [1968]); and (3) the number of
crossovers occurring during gametogenesis for each sib-
ling is independent.

I initially consider two informative loci located on
a particular chromosome that are separated by genetic
distance X Morgans. If the location of every crossover
event occurring during meiosis for each sib could be
observed, then the proportion of genetic material
shared IBD, R, could be determined (at least in theory)
exactly. Observation of the marker genotypes flanking
the region of interest allows me to make certain infer-
ences about R, given the assumptions stated above.
Specifically, it can be shown that the probability den-
sity function of R, conditional on identity and recom-
bination status, is given by a mixture of beta distribu-
tions, with the mixture proportions and parameters of
each beta density corresponding to each possible num-
ber of crossover events compatible with the marker types
(see the Appendix). For a given sib pair, I can derive
the mean and variance of R, as a function of X and
the pattern ofrecombination and identity at the marker
loci. Seven cases can be distinguished: (1) the pair are
IBD at both loci, and neither sib is recombinant be-
tween the two loci; (2) the pair are different at both
loci, and neither sib is recombinant; (3) the pair are
IBD at both loci, and both sibs are recombinant; (4)
the pair are different at both loci, and both sibs are
recombinant; (5) the pair are IBD at one of the two
loci and are different at the other; (6) the pair are IBD
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Table I

E(R) and V(R) Shared IBD by Two Siblings (SI and S2), Conditional on IBD and Recombination Patterns at Two Marker Loci (Ml and M2)

IBD RECOMBINATION
STATUS' STATUSa

Ml M2 Si S2 E (R) V (R)

I I NR NR ....... 2(1 0)2X+ 0(1 - 0) + X(1 - 20)

4(1 - 0)2k

N N NR NR ....... 2(1 0)2k 0(1 - 0) - X(l - 20)
4(1 - 0)2k

I I R R ........ 202X+ 0(1 - 0) -X(1 - 20)

402X

N N R R ........ 202X 0(1 - 0) + X(1 - 20)

402X
I N 1/2
N I

pI U) +0(1 -0)
IU I J _....
rN U X-0(1 -0)

2X

20(1 - 0)3X + 2(1 - 0)2x2(1 - 20) - 20(1 - 0)(1 - 20)X - 02(1 - 0)2-(1 -20)2X2
1 6(1 - 0)4X2

20(1 - 0)3X + 2(1 - 0)2X2(1 - 20) - 20(1 - 0)(1 - 20)X - 02(1 - 0)2-(1 -20)2X2
1 6(1 - 0)4X2

203(1 -0)X - 202X2(1 - 20) + 20(1 - 0)(1 - 20)X 02(1 - 0)2 - (1 - 20)2X2
1 604X2

203(1 -0)X - 202X2(1 - 20) + 20(1 - 0)(1 - 20)X 02(1 - 0)2 - (1 - 20)2X2
1 604X2

02X+ (1 0)2 0(1 - 0)

160(1 -0)X2

X -202(1 -0)2+0(1 -0)
8X2

X.-202(1 -0)2+0(1 -0)

8x2

NOTE. -Example of derivation is given in the Appendix.
a I = Siblings IBD for marker locus; N = sib pair not IBD for marker locus; U = sib pair uninformative with respect to IBD status at marker locus;

R = sib recombinant between Ml and M2; NR = sib nonrecombinant between Ml and M2.
b 0 = Recombination fraction between Ml and M2 = I/2(1 - e -2X).

at one of the two loci and are not informative at the
other; and (7) the pair are different at one of the two
loci and are not informative at the other. The latter two
cases correspond to the region from the centromere to
the first marker and from the last marker to the telo-
mere when an entire chromosome arm is examined.
The derivation of the mean and variance of R for the
first case is provided in the Appendix. The other cases
are derived analogously. Table 1 contains these means
and variances as a function of distance X for each of
the seven cases outlined above, while figure 1 exhibits
these relationships graphically as a function of distance
between markers. In practice, the region of interest will
be made up of a number of these segments. The overall
mean and variance of R for a segment containing n
such intervals of total length L are obtained as

n

E(R) = )XiE(Ri)/L
i= 1

and
n

V(R) = E Xi2V (Ri)/L2,
i= 1

n
where L = i.

i = 1

To examine the distributions of estimated propor-
tion shared IBD in human multipoint data, I chose for
analysis a set of loci located on chromosome 7 that
were extracted from the CEPH published data base.
These loci were selected from a total of 63 markers ex-
amined by Barker et al. (1987) in a study of a subset
of 21 of the CEPH families. From these 63 markers,
I selected 22 probe-enzyme combinations reflecting 17
distinct loci from the CEPH data base. Criteria for se-
lection were (1) number of informative meioses, (2) num-
ber of phase-known meioses, and (3) presence of an
unambiguous map position on the published map
(Barker et al. 1987). These loci were bounded by
CRIL1020 and CRIL281, spanning a distance of 225
cM in females and 120 cM in males. A modified ver-
sion of the CRIMAP program (Barker et al. 1987;
Donis-Keller et al. 1987) was used to produce gametic
strings under the most probable phase choice with con-
sistent representation of allele origins (grandmaternal
or grandpaternal) and to calculate the probability of
the most probable phase. Offspring with either no
genotyping or minimal typing were removed from the
analysis. These 21 families yielded a total of 565 sib
pairs. For each of the 565 possible sib pairs contained
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in the 21 families, the procedure described above was
used to obtain the expected value and variance of the
distribution ofR. Separate male and female genetic map
distances were used in this process.

Statistical Methodology for Partitioning Genetic
Variance to a Specific Chromosome
For the moment I will assume that the phenotype

under study is determined by the additive effects of one
or more loci located within the test chromosomal re-
gion (GC), the additive effects of all other loci (GA), and
random environmental effects (E). The trait loci not
on C are assumed to be independent of each other and
of the loci on C. Letting X represent the phenotype un-
der investigation, I represent the model as

X = Gc + GA + E;
E(Gc) = 0, V(Gc) = Vc;
E(GA) = 0, V(GA) = VA;
E ev Normal (0, VE).

For simplicity I will assume that VT = VC + VA +
VE = 1, that VG = VA + Vc is the total genetic vari-
ance, and that VG/VT = h2 is the heritability of X.
Let Rij be the true proportion of chromosome C shared
IBD by sibs i andj. The covariance between the values
for the two siblings is given by

COV(Xi, Xj) = RijVc + VA/2 = [RqjP+(1-P)/2]VG,
(1)

where P is the proportion of genetic variance due to
loci on C. Rij is an unobservable random variable;
however, as shown above, the mean and variance of
Rij can be derived conditional on the identity and
recombination pattern at a set of marker loci on C. For
the moment I will use R* = [E(Rm)+E(Rp)]/2 as my
estimate of R, where Rm and Rp are the maternal and
paternal genetic correlations, respectively.

For a sibship of size s, I have the observed phenotype
vector x with expected value 0 and estimated covari-
ance matrix

A
E = [Sij] = [R*ijP+(l-P)/2]VG i#Aj
sxsXa\

VT .

For the purpose of this analysis I consider the total
genetic variance VG (or, alternatively, h2) and the to-
tal phenotypic variance VT to be known constants, al-
though they could be estimated from the same data set.
The likelihood of observing the sibship phenotypic
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Figure I Graphs of (A) expected value and (B) variance of R,
derived from a single parent, that is shared IBD by two sibs, as a
function of genetic distance between two marker loci. I I - NR (-)
represents the case where both sibs are identical by descent at both
marker loci and neither sib shows observable recombination; I I -
R (- -) represents the analogous case where both sibs are recombinant;
and I U (- - - -) represents the case where the sibs are identical at
one locus and are not informative at the other. The functions depicted
in the graph are given in table 1.

values under the above model is given by the multivari-
ate normal density

27t-n21EII-1/2 exp [-1/2 x' L-1 x) .

For n such families the likelihood is the product of n
such multivariate normal densities. Note that there is
no requirement that the sibship size be the same in all
families. When numerical optimization techniques are
used, the maximum likelihood estimate of P can be ob-
tained, and the null hypothesis of P = 0 can be tested
using the generalized likelihood-ratio principle.

Effects of dominance at the trait loci, common sib-
ling environment, and separate maternal and paternal
effects present no theoretical difficulty and can easily
be incorporated into the covariance structure.
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SIMULATED CHROMOSOME
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Genetic Distance in Centimorgans

Figure 2 Estimated genetic correlations, i.e., E(R), for human
multipoint data from chromosome 7. Data consist of 22 loci typed
in 21 CEPH families and span a distance of 120 cM in males and
225 cM in females. A total of 565 sib pairs were analyzed. A, Esti-
mated genetic correlation on maternally derived chromosome. B, Es-
timated genetic correlation on paternally derived chromosome. C,
Combined maternal and paternal estimated genetic correlations.

Simulation Method

To demonstrate the overall utility of the method, a

Monte Carlo simulation study was performed. Three
combinations of marker density and chromosome
length were examined in the simulation study: (1) a 100-
cM length with a distance of S0 cM between markers
(Model I); (2) a 100-cM arm with markers every 25
cM (Model II); and (3) a 200-cM length with 50 cM
between markers (Model III). For each of these models
ofmarker density and chromosome length, two models
of the effect of loci on the test chromosome were exam-

ined: a single trait locus located midway between two
markers (Models Ia, Ila, and IlIa) and a model in which
five trait loci are scattered along the length of the test
chromosome whose total effect is equal to that of the
major locus (Models Ib, HIb, and TIub). These six basic
marker/trait-locus configurations are shown in detail
in figure 2.

In all cases 10 additional loci were simulated indepen-
dently both of each other and of the trait loci on the
test chromosome C. Each trait locus is assumed to have
two equally frequent alleles T and t, with genotypic
effects given by 2a, 0, and -2a for genotypes TT, Tt,

and tt, respectively. The values of the trait-locus effects,
a, are chosen so that the trait locus(loci) on C and the
other trait loci reflect simulated values of P and h2. All
marker loci were chosen to be fully informative. Given
the increasing numbers of VNTRs and other highly
informative systems, and given the low density of the
map required, this is not a restrictive assumption. Rather
than estimate sample size for fixed power, I examined
power for various values of P and h2 by assuming a
fixed sample of 40 families with eight offspring each.
This number was chosen to represent large data sets,
such as the CEPH or Venezuelan pedigrees, on which
a large number of markers have already been typed.
In accordance with this I have also assumed in the simu-
lation that the marker loci are phase known. The simu-
lation procedure is as follows:

1. Haplotypes at the marker and trait loci are simu-
lated for the two parents, with the restriction that
the marker loci are always informative.

2. Each offspring is generated by selecting at random
either the grandmaternal or grandpaternal chromo-
some. Then recombination is simulated according
to the recombination fraction between each succes-
sive pair of loci. The recombination fractions are con-
verted from genetic distance by using Haldane's func-
tion. This process is repeated independently for each
parent for each offspring.

3. Parental genotypes at the 10 additional trait loci are
generated, and one allele is transmitted at random
to each offspring from each parent.

4. A normal random deviate with mean 0 and variance
(1-h2) is obtained using a normal random-number
generator. The trait value x is computed for each
offspring by adding both the appropriate genotypic
effect at each trait locus and the individual-specific
normal environmental component.

5. The simulated marker data are used to estimate the
mean and variance of the proportion of the test chro-
mosome shared IBD for each sib pair. The log likeli-
hood for the sibship is calculated using equation (3).

This procedure is repeated for 40 such families. The
likelihood is calculated at a grid of values of P, and the
maximum likelihood estimate of P is obtained using
quadratic interpolation of the likelihood (Ott 1985).
The hypothesis of P = 0 is tested using the x2 approx-
imation to the generalized likelihood ratio test with a
nominal significance level of .05.

Three values of heritability (.75, .5, and .25) were
simulated for five values ofP (.0, .25, .5, .75, and 1.0).

MODEL

Ia

Ib

I Ia

lIb

IIIa

IIIb
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For each combination of factors 100 data sets were repli-
cated for each of the six chromosome models. For each,
the mean and variance of the estimates of P and the
number oftimes the hypothesis P = 0 was rejected were
recorded.
A second simulation was performed to directly com-

pare the method proposed here with an existing meth-
od -specifically, the Haseman and Elston (1972) sib-
pair method which was modified to analyze multiple
markers by using a multiple-regression approach as out-
lined below. The model simulated was a quantitative
trait with a heritability of .75. The chromosome model
was two fully informative marker loci separated by a
distance ofD = 30, 50, and 70 cM. A single trait locus
accounting for 75% of the genetic variance (56% of
the phenotypic variance) was located midway between
the two markers. In addition, the case in which there
were no loci affecting the trait in the region was ana-
lyzed to compare the empirical size of the two methods.
Each data set consisted of 400 sib pairs and was ana-
lyzed by both methods. For each marker distance, S00
replications were performed. To implement the Hase-
man and Elston sib-pair procedure a multiple regres-
sion was performed using the IBD status ofeach marker
as the independent variable and by using the squared
sib-pair difference of the simulated quantitative trait
as the dependent variable. The null hypothesis of no
effect of loci between the two markers on the quantita-
tive trait was rejected if either (or both) estimated regres-
sion coefficients was significantly less than zero when
compared with its estimated standard error. The criti-
cal value for the test ofeach marker was chosen to reflect
a one-sided P value of .0253, to achieve a nominal
significance level for the overall test, when both mark-
ers were considered jointly, of .05.
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Figure 3 Descriptions of chromosome models used in simu-
lation study. M = fully informative marker locus; T-trait locus of
large effect; t = trait locus of small effect. The effects of trait loci
on the quantitative phenotype are chosen so that the genetic variance
attributable to five t loci is equal to that of the major locus T.

Results

The distribution of estimated proportions of mater-
nal, paternal, and total identity for the region of chro-
mosome 7 spanned by CRIL1020 to CRIL281 is shown
in figures 3A, 3B, and 3C, respectively. As seen in figure
3A, when 22 polymorphic loci on chromosome 7 are
used, the distribution of the maternal correlations is
fairly narrow, with only 9% of the 565 sib-pair corre-
lations being within the upper and lower quintiles; the
paternal correlations (fig. 3B), as one would expect given
the much shorter map (120 cM vs. 225 cM), showed
a broader distribution, with 25% of the correlations
being within these quintiles. Relative to the estimated
variances, 23%, 41%, and 31% of maternal, paternal,

and total correlations, respectively, were significantly
different from .5.

Table 2 shows the results of the simulation study.
For each of the six chromosome models, the average
value of the estimate of P for 100 independent replica-
tions is given together with the number of these 100
replications in which the null hypothesis of P = 0 was
rejected. The empirical size of the test, computed by
averaging over all replications in which the true value
of P was .0, was .042 (N = 1,800 total trials). This
was not significantly lower than the nominal value- of
.05. Table 2 also shows that, for all models, reasonable
empirical power (EP) is obtained when the proportion

962
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Table 2

Results of Simulations

MODEL I MODEL II MODEL III

a b a b a b

h2 AND P P EPa P EPa P EPa P EPa P EPa P EPa

.75:
.00.

.25.

.50.

.75.
1.00.

.50:
.00.
.25.
.50.
.75.
1.00.

.25:
.00.
.25.
.50.
.75.
1.00.

963

.06 4 .07 1 .05 3 .05 5 .09 4 .07 2

.22 37 .23 38 .26 51 .26 64 .27 35 .25 32

.45 89 .43 83 .50 97 .48 93 .46 73 .43 65

.63 94 .68 99 .75 100 .75 100 .70 94 .69 95

.85 100 .88 100 .96 100 .93 100 .87 100 .85 100

.11 7 .12 6 .09 S .10 3 .11 1 .15 6

.26 20 .26 20 .28 25 .25 18 .29 17 .31 23

.50 SO .52 53 .54 75 .47 56 .55 45 .46 36

.59 70 .63 71 .78 94 .71 87 .68 66 .64 58

.82 90 .83 93 .88 98 .90 98 .81 81 .81 81

.26 7 .22 4 .25 6 .19 4 .25 6 .33 2

.32 14 .29 10 .33 13 .34 13 .42 10 .32 6

.37 12 .46 19 .52 27 .55 27 .46 13 .43 7

.55 26 .67 35 .61 31 .61 35 .62 20 .62 23

.72 47 .70 50 .83 62 .76 53 .65 22 .71 26

NOTE. -Values in table are based on 100 replications. Models are described in the text and shown
in fig. 3. P = average estimate of P from 100 trials.

a % of 100 trials in which null hypothesis of P = 0 was rejected.

of phenotypic variance explained by trait loci located
on the test chromosome is greater than about 35%.
As expected, the accuracy of the estimates of P were

much higher for the denser map (L = 100 cM; D =

25 cM), although, even in this case, estimates at the
boundary were significantly biased as a result of the
restriction on the parameter space.

Table 3 shows the results of the comparisons of the
method described in the present paper with the Hase-
man and Elston sib-pair method. EP for the multipoint
approach was, on average, about 50%-80% higher
than that for the Haseman and Elston regression ap-

proach. The relative advantage of the proposed method
over the Haseman and Elston method appeared to in-
crease as a function of distance between the two mark-
ers (and, consequently, as a function of the distance
between the trait major locus and each marker).

Discussion

The present paper outlines a new method for analyz-
ing specific genetic components involved in the deter-

mination of human quantitative multifactorial traits.
Previous methods, for the most part, have utilized sib
pairs and examined only a single marker locus, although
Hill (1975) described an analysis-of-variance approach

Table 3

Results of Simulations Comparing Proposed Method with
Haseman and Elston Sib-Pair Procedure

EP
(%)

Haseman and Elston

D Proposed Method Method

(cM) pa= .75 pa = .0 pa = .75 pa = .0

30 .... 97.4 5.4 71.8 4.8
50 .... 84.8 4.6 51.4 3.8
70 .... 60.8 5.0 33.6 4.4

NOTE.-Data are percentages of 500 replications in which the
null hypothesis was rejected. The model and procedure used are
described in the text.

a Simulated proportion of genetic variance due to major locus lo-
cated midway between the two marker loci.
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based on sibship data. Although interval-mapping ap-
proaches have been described for lower organisms
(Lander and Botstein 1989), their general applicability
to human data has not yet been demonstrated. The
method described in the present paper has specifically
been designed to take advantage of the pedigree struc-
tures and multilocus genotypic data inherent in collec-
tions of reference families used for general construc-
tion of genetic maps. Specifically, parental phase is often
known with certainty for many loci, and, for a given
sibship for multiple linked loci, even when many (or
all) loci are phase unknown, the most probable phase
typically has a high probability relative to alternative
phase choices. Thus chromosome-specific genetic corre-
lations for each sib pair can easily be computed using
the methods provided in the present paper.
The simulation studies showed that adequate power

was achieved for a variety of models of marker density
and effects of the trait locus (loci). It is surprising that
the number of trait loci on the test chromosome (one
vs. five) did not have a great influence on either the power
of the test or the accuracy of the estimates. Compari-
son of the results for the model having a 100-cM chro-
mosomal segment and a marker density of 50 cM with
that for the model having a 200-cM segment of equal
density shows about a 10%-20% reduction in power
for the longer segment versus the shorter segment. It
is also apparent that for a sample of this size it may
not be fruitful to search for linkage of a trait that has
heritability much less than 50O. For a fixed propor-
tion of total phenotypic variance accounted for by trait
loci on the test chromosome, higher power was achieved
when there was less environmental variation relative to
additional genetic variation on other chromosomes. It
should be emphasized that all the simulated quantita-
tive traits analyzed as part of the simulation study were
of an "ideal" nature. That is, each locus contributing
to the trait was assumed to have two equally frequent,
completely additive alleles, there was no epistasis, and
the environmental effects were normally distributed.
Thus, the EP figures shown in table 2 are perhaps some-
what higher than one might achieve for traits likely to
be encountered in practice. Further work is necessary
to examine the method's robustness with regard to
departures from this idealized model.
The explicit comparisons with the Haseman and El-

ston sib-pair method show that the use of a true mul-
tipoint approach -rather than a multiple marker ap-
proach -provides higher power for detecting the effects
that a major locus has on a quantitative phenotype.
This was true even for the case of sib pairs, rather than

the larger sibships for which this method was designed.
The proposed method avoids the statistical problem
of analyzing a sibship as a set of mutually independent
sib pairs, an issue which has not been totally resolved
(Amos et al. 1989; Demenais and Amos 1989). A more
detailed comparison of the proposed method with the
Haseman and Elston procedure and its extensions un-
der a more complete set of models is underway and
will be the subject of a subsequent paper.

In making comparisons to the sib-pair method I
should point out that my method tests a more general
hypothesis than does either the sib-pair method or the
method discussed by Lander and Botstein (1989). While
other methods frame their hypotheses in terms of link-
age/recombination, my method is designed to detect
the effect of all loci located in a specific chromosomal
region on a quantitative phenotype. This region may
be as large as an entire chromosome or a single 20-cM
interval between marker loci. Thus it would be antici-
pated that, in a case in which loci which influencing
a quantitative trait are spread out along a segment of
chromosome, the method proposed here would suc-
ceed while others most likely would fail to detect this
effect.

Clearly there is a trade-off between the size of the
region studied and the power to detect effects of loci
in that region. In the limiting case, one could analyze
as a separate region each interval between adjacent loci;
however, this presents a multiple-comparisons problem,
since a large number of possibly nonindependent anal-
yses would be performed. At the other extreme, if the
region is too large, then power to detect the effect of
trait loci located in a small subregion would be reduced.
The results of the simulation study indicate that a rea-
sonable choice for regions to be studied would be (a)
individual chromosome arms, for the longer metacen-
tric chromosomes, and (b) entire chromsomes, for
acrocentric and shorter metacentric chromosomes. My
experience with this method indicates that a relatively
small number of highly polymorphic markers spaced
25-50 cM apart are preferable to a more dense map
of less informative markers. In a manner analogous to
a genomic search followed by fine mapping for a Men-
delian disease, when the effects of loci on a quantita-
tive phenotype in a particular region are detected, the
chromosome or arm could be divided into two or more
subregions bounded by marker loci. These subregions
could be analyzed simultaneously to determine the re-
gion producing the largest effect on the trait under study.
I am currently planning studies to directly compare my
approach with existing methods, to test more complex
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models by incorporating common sibling environment
or dominance variation, and to incorporate the vari-
ance as well as expected value of sib-pair identity into
the analysis.
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Appendix
Derivation of Expected Value and Variance of
Proportion of Genetic Material between Two
Marker Loci Shared IBD by Two siblings,
Conditional on IBD Status at Each Locus and on
Recombination Pattern between the Two Loci

I shall assume the Haldane (1919) model of crossing-
over as a Poisson process. This model implies that there
is no interference and that, for a fixed number of cross-
overs in a given interval, the locations of crossover are
uniformally distributed in the interval. I also assume
that the number and locations of crossovers occurring
during meiosis for a given offspring are independent
of those for any other offspring. The following deriva-
tion is for the case in which the sibs are IBD at both
marker loci and in which there is no observable recom-
bination between the two loci. The other cases out-
lined in the text are similarly derived. I begin by show-
ing that, for a fixed number of crossover events between
the markers, the proportion shared IBD in the region
for two sibs is distributed as a beta random variable.

Specifically, let k be the total number of crossovers
occurring during both meioses (either maternal or pater-
nal) for both sibs under consideration. Further, let xi,
i = 1,2, . . . , k be the locations of the k crossovers
within the interval. It is easily demonstrated that the
proportion shared IBD in the interval does not depend
on which of the k occurred in which meiosis; for sim-
plicity I can assume that all crossovers occurred in
the first meiosis and that none occurred in the second.
Assume that the sibs are IBD at the first locus; the deri-
vation for the case in which the sibs are nonidentical
at this locus is similar, with D representing the propor-
tion shared by the sibs and with R = D being substituted
for R = 1-D. Let yi, i = 1,2,. . . , k be the ordered

positions of the [xi]. The proportion D, for which the
sibs are not IBD, is given by

0
k/2

D = Z (y2i - Y2i-1)
i= 1

for k = 0;

for k even;

(k-1)/2
E (y2i - y2i-1) + 1 - Yk for k odd.

i = 1

In the terminology and theorems of Wilks (1962), the
difference between successive-order statistics is called
a "sample block" and the sum of n such sample blocks
is called a "coverage:' When the sampling distribution
of the xi is independent uniform (0,1) then the proba-
bility density function of the coverage is given by a beta
distribution with parameters n and k-n+1. For k odd
we see that D is the sum of (k+l)/2 such blocks, and
for k even D is the sum of k/2 blocks. Thus

D = 0 with probability 1
D ',v Be(k/2, k/2 + 1)
D 'v Be((k+1)/2, (k+1)/2)

for k = 0;
for k = 2, 4, . . .
for k = 1, 3, . . .

Since D is the proportion not shared, I let R = 1 -
D denote the proportion shared IBD by the two sibs.
Since, if X is Be(a,b) then Y = (1-X) is Be(b,a), the
distribution of R, conditional on k, is given by

f(Rik) = 1 with probability 1 for k = 0;
f(Rlk) rv Be((k+2)/2, k/2) for k = 2, 4, . . .

f(Rlk) 'v Be((k+1)/2, (k+1)/2)for k = 1, 3.

For the derivation of the overall mean and variance of
R for all crossover distributions compatible with the
identity and recombination pattern, we will need the
expected value of R and expected value of R2 for a
given k. This is obtained from the properties of the beta
distribution, as

(k+2)/2(k+1)

E(Rjk) =

1/2

for k = 0, 2, 4, . . .

(Al)

for k = 1, 3, 5, ...

and

(k+4)/4(k+1)

E(R2jk) =

(k+3)/4(k+2)

for k = 0, 2, 4, . . .

(A2)

for k = 1, 3, 5, ....

We want the expected value and variance of R, given
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that the sibs are IBD at both markers and show no
recombination between the marker loci (I I - NR).

E(Rlsibs I I - NR) = E E(Rjk crossovers)
k

x Pr(k crossovers JI I - NR) (A3)

and

E(R2lsibs I I - NR) = E E(R2Ik crossovers)
k

x Pr(k crossoverslI I - NR) . (A4)

The fact that the sibs are IBD at both loci implies that
the total number of crossover events for the two sibs
from that parent was even. Moreover, the fact that there
was no observable recombination between the loci for
either sib implies that the number of crossovers occur-
ring for each sib was even. Thus, for a distance of X
Morgans between the two marker loci,

Pr(kIl I - NR) =

Pr(2i crossovers sib 1) Pr(2j
crossovers sib 2)

Pr(No recombination between
markers in two meisoses)

i, j = 0, 1, 2, ... (AS)

X2i e-X/(2i)! X2j e-X/(2j)!
(1-0)2

where k = 2i + 2j and where 0, the recombination
fraction between the two markers, is 1/2 (1-e - 2X). As
shown earlier, E(Rjk) = (k+2)/2(k+1), and, replacing
k by 2i + 2j and substituting the latter into equation
(3), I have

E(Rlsibs I I - NR) =

1 X0 %2ie- X2j e- (2i+2j+2)
(1 0)2 i=o j=o (2i)! (2j)! 2(2i+2j+1)

1 Xc 2(i+i) e-2X [2(i+j)]! (2i+2j+2)
(1_0)2 j=0 j=o {2(i+j)]! (2i)!(2j)! 2(2i+2j+1)

Letting m = i + j, I have

1 c X 2m e-2 / 2m ) (2m+2)
(1_0)2m=O j=0 (2m)! 2] 2(2m+1)

(1_0)2 m 0

(2X)2m e-2k (2m+2) E (2m (1/2)2m
(2m)! 2(2m+1) j=O k2j

The latter summation is equal to 1 for m = 0, and
for m > 0 it is the first m terms of a binomial distribu-
tion with parameters n = 2m and p = 1/2; thus, in
this case, this sum is equal to 1/2. Using this relation
and rewriting (2m+2)/2(2m+1) as [1+1/(2m+1)]/2,
I get

1 0

4(1-0)2 m = O

(2X)2m e-2X + - (2X)2m e-2X + 2e-

(2m)! k=2 (2m+1) (2m)!

The first term in this summation is equal to the proba-
bility of an even number of crossover events in a dis-
tance of 2X, which is equal to 1 - 0(2X) = (1+e-4X)/2.
The second term is 1/2k times the probability of an odd
number of crossovers in a distance of 2X = (1-e-4X)/2.
The conditional expectation I want can now be written
as

E(Rjsibs I I - NR) =

(1 + e-4X)/2 + (1 - e-4X)/4k + 2e-2
4(1- 0)2

After applying a bit of algebra and substituting 9 =
1/2 (1-e-2X) in the numerator, I get the result shown
in table 1, namely,

E(Rlsibs I I - NR) =

2(1-0)2k + 0(1-0) + X(1-20)
4(1- 0)2 X

A similar process substituting E(R2Ik) = (k+4)/4(k+1)
for E(Rjk) allows me to obtain E(R2lsibs I I - NR) as

E(R2lsibs I I - NR) =

(1+e-4X)/2 + 3(1-e-4X)/4k + 4e-2
8(1- 0)2

2(1+0)2k + 30(1-0) + 3X(1-20)
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and from this the variance can be obtained as

V(Rlsibs I I - NR) =
E(R2lsibs I I - NR) - [E(Rlsibs I I - NR)]2
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