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Brief Communication

Bias of the Contribution of Single-Locus Effects
to the Variance of a Quantitative Trait

ERIC BOERWINKLEI AND CHARLES F. SING

SUMMARY

Advances in our understanding of the physiology of many quantitative
phenotypes combined with better measurement abilities is providing a
means for pursuing a measured genotype approach to partitioning the
phenotypic variance into the contribution of separate loci. The stan-
dard estimate of the contribution of a single locus to the phenotypic
variance applied recently in the human genetics literature is a biased
statistic. We compare the biased estimates from several published
studies with biased corrected estimates to illustrate the general prob-
lem.

INTRODUCTION

Statistical evidence from commingling and segregation analyses that support
the contribution of an unmeasured single locus to quantitative phenotypic vari-
ability has been obtained for several traits (for examples, [1-4]). Improved
measurement methods, such as two-dimensional gel electrophoresis and re-
striction site polymorphisms, and an improved understanding of the biology of
many phenotypes allow one to pursue an approach that uses measured genetic
variability at a locus physiologically involved in the quantitative phenotype to
define the effect of a single locus [5, 6]. This measured genotype approach
directly assesses the frequencies and effects of genetic variability at loci whose
contribution may not be large enough to be detected by an unmeasured
genotype approach but is large enough to make a major biological contribution
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to the variability in the trait. Information about the frequencies and effects of
alleles at separate loci provide information about the genetic architecture
underlying quantitative phenotypic variability (i.e., the number of loci affecting
the phenotype and the frequency and effects of alleles at these loci). Two
measures of interest used to describe the impact of a single locus on a quantita-
tive phenotype include the contribution by the locus to the variability in the
phenotype and the proportion of the phenotypic variance attributable to vari-
ability at the locus. Estimators of these measures that simply substitute param-
eters of the model with parameter estimates have been recently proposed and
applied in the human genetics literature [4, 7, 8-10]. We discuss here the bias of
these estimators and investigate this bias for a sampling design that allows one
to compute bias-corrected estimates. The effect of this bias on estimates of the
impact of a single locus on variability of a quantitative phenotype for several
published studies is also presented.

MODELING THE QUANTITATIVE PHENOTYPE

The model used here parameterizes the quantitative phenotype of the ith
individual (i = 1 . . . n) with genotype j (Yij) as an additive combination of
effects. Let Yij be written

yij = FLj + Gi + Ei (1)

where tj is the mean of the jth genotype at a locus (j = 1 . . . J) and is
considered a fixed effect. Gi is the polygenic effect of the ith individual and is
assumed to arise from the action of a large number of unlinked genes, each with
small effects, acting additively and independently. E, represents the totality of
ali nongenetic effects specific to the ith individual. G and E are random effects
with expectation 0 and variance OrG2 and 2E, respectively. The three compo-
nents of the model are assumed to be uncorrelated and act additively. We also
let fj be the frequency of the jth genotype in the general population. fj may
be written in terms of allele frequencies if one assumes Hardy-Weinberg equi-
librium. The parameters of the model to be estimated include the genotype
frequencies (or the allele frequencies if one assumes Hardy-Weinberg equi-
librium), the J genotype specific means, the within single-locus genotype poly-
genic variance, and environmental variance.
The total population variance of the random variable y is the sum of the

variances of its independent parts. The contribution of the single locus to the
variance of y is

VG ) _- )2 (2)

where ,u. = lj I fjgj. The total phenotypic variance for the population is then
given by

V(yij) =7 f_( )2 + +O * (3)
j=1
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The proportion of V(yij) attributable to variability at the single locus is defined
as

Efj Aj _ 11.)2
J

1
*(4)

ZfEj(-j )2 + UG2 + UE2

j=1

ESTIMATING THE CONTRIBUTION OF A SINGLE LOCUS

TO THE PHENOTYPIC VARIANCE

Estimation of variance components and their ratios have received consider-
able attention in the statistics literature [11-15]. The simplest design that allows
one to estimate single-locus frequencies and effects is equivalent to a single-
factor design with a sample of unrelated individuals. The classifications are
determined by the single-locus genotypes and the within class variance is o.2 =
CG2 + caE2. For this design, an unbiased estimator of the variance attributable to
the measured locus, is given by

A

S2= Z m(A _ )2 J1- (5)
i-i nj=1

where A over the parameters denotes their usual unbiased estimators [15]. This
follows because the expectation of the estimate of the variance contribution by
the measured locus that simply substitutes parameters with parameter esti-
mates is

J1 J

E[ZELj(I~j _ ,)21 2E_Yfju>. _>)2 + .o1a (6)

Using equation (5) as the unbiased estimate of the contribution of the single
locus to the phenotypic variance, an estimate of the proportion of the pheno-
typic variance attributable to the locus becomes

J

sfA (> .)2 _ [(j -l)n (2- - [(J - 1)/n] 62
j=1 (7)

1 (^ - j)2+ 2(1 -(J - 1)/n)
j=1

Considering the single-locus effects as random rather than fixed, this estimator
is equivalent to the standard estimator of the intraclass correlation coefficient
[16] and is consistent [13].
The contribution of the measured locus to the variance of the quantitative
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phenotype and the proportion of the variance attributable to variability at the
locus have been estimated by replacing the parameters in equations (2) and (4)
with their usual parameter estimates. The bias of this estimator of the contribu-
tion of the locus to the phenotypic variance is obtained from equation (6) and is
equal to [(J - 1)/n] a2. This estimator of the proportion of the phenotypic
variance attributable to the locus is similar to Elston et al.'s [4] and Lange et
al.'s [7] "percent genetic variance." This estimator will, on the average, over-
estimate the proportion of the phenotypic variance attributable to the measured
locus.

Figure 1 is a graph of the magnitude of the bias as a function of the total
sample size for varying values of a2 and J. The bias is presented as a proportion
of the variance contribution by the single locus which is considered to be 1.0.
For example, with n = 100, J = 6, and the within mode variance equal to 2.0,
that is, twice the variance contribution by the single locus, the bias of the
estimate of the single-locus contribution to the phenotypic variance is 0.10 of
the true single-locus contribution. The size of the bias decreases rapidly as the
sample size increases and is expected to be small as long as the number of
observations is large relative to the number of genotypic classes and the within
mode variance. The bias is larger for a three-allele polymorphic system (J = 6)
than a two-allele polymorphic system (J = 3) and, for a given number of alleles,
is larger for larger values of the within mode variance. The size of the bias in
relation to the single-locus contribution is appreciable if the within single-locus
genotype variance component is large relative to the single-locus effects and
the sample size is not large. In general, the bias is relatively low for each of the
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FIG. 1.-Bias of the estimate of the single-locus contribution to the total phenotypic variance.
The bias is considered for varying values of the within genotype variance (cr2) and the number of
single-locus genotypes (J). The bias is presented as a proportion of the variance contribution by the
single locus, which is considered to be 1.
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cases considered here when the sample size is at least 150 individuals. That
the bias is a problem in fact and not merely in principle is documented by
the studies addressed here and elsewhere that have not obtained this sample
size.
For more complicated models that include the effects of other loci or effects

due to a common environment, the estimate of the contribution to the total
phenotypic variance attributable by a single locus that substitute parameters
with parameter estimates into the definition is also biased. It is unrealistic to
anticipate all of the possible models of interest and attempt to explore the
consequences of using the biased estimator in each case. In the general case,
the bias is a corollary of Jensen's inequality [17]. Unfortunately, Jensen's
inequality does not yield general information about the magnitude of the in-
equality. This must be obtained for each model and for each sampling design
considered.

EXAMPLES

Table 1 compares the biased and unbiased estimates of the measured single-
locus contribution to the total phenotypic variance using published results. The
apolipoprotein (Apo) E-cholesterol studies [9, 18] investigate the effect of the
three-allele Apo E polymorphism on total serum cholesterol. The Gc study [8]
investigates the effect of the common two-allele Gc protein isoelectric focusing
polymorphism on serum Gc concentration. The peptidase A study [19] exam-
ines the effect of the electrophoretic polymorphism in peptidase A on peptidase

TABLE I

COMPARISON OF THE BIASED ESTIMATE OF THE VARIANCE CONTRIBUTION BY THE MEASURED SINGLE
Locus [V(R)] WITH THE UNBIASED ESTIMATE [V(pR')]; THEIR RATIOS TO THE ESTIMATED TOTAL

PHENOTYPIC VARIANCE ARE ALSO INCLUDED

VqL)2 V('L )4

Study No. V(p)' VWVy)3 V(y')

Apo E-cholesterol [9] ..... 102 64.91 .087 31.46 .044
Apo E-cholesterol [18] .... 1,000 26.05 .023 20.53 .018
Gc [8] ................... 89 3.93 .228 3.63 .214
Peptidase A [19] .......... 79 13,428.0 .572 13,174.0 .568
RCAP [20] ............... 275 646.15 .651 639.86 .648
RFLP-apo AII [21] ....... 87 3.34 .115 2.75 .096

J

I. >
'

j(>j _ > )2
j=l

J

2. i'l
J

(>j - PL.)2 + 62

j=1

3. Ifj( _)2 - [(J - )/n
j= 1

4.
I " (j _- A.)2 _ [(J - I)/n] c2
J

j(i^ - 3)2 + &2 [1 -(J - 1)/n]
j=l
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A activity. A red cell acid phosphotase study (RCAP) [20] examines the effect
of a polymorphism in the RCAP protein on the activity of RCAP. Furthermore,
the Apo A-II study [21] investigates the effect of a restriction site polymor-
phism 3' to the Apo A-If structural gene on the levels of serum Apo A-II. The
first two entries into the table give the biased estimates of the variance contri-
bution by the single locus and of the proportion of the total phenotypic variance
attributable to variability in the single locus. The third entry in the table is the
unbiased estimate of the variance contribution of the respective single locus
given in equation (5). The fourth entry is the estimator given in equation (7) of
the proportion of the phenotypic variance attributable to the measured locus.
As expected from examination of the formula, the bias may be substantial if the
within class variability is large relative to the single gene effects and the number
of genotype classes is large relative to the sample size. For the statistics consid-
ered here, the contribution to the phenotypic variability by the measured locus
was reduced by an average of 16% when the bias was accounted for. The
contribution of the Apo E polymorphism to total serum cholesterol variability
was reduced by approximately one-half in the Sing and Davignon study [9]
when the bias was accounted for. The large drop can be attributable to the
relatively small number of individuals (no. = 102) in relation to the number of
genotypic classes at the Apo E locus (J = 6) and the large within mode vari-
ance. This large drop in the contribution to the total phenotypic variance
should not be expected as long as the measured locus effects are at least
moderate with respect to the residual variance component and the measured
genotype locus is a two-allele polymorphic system. Clearly, these biases need
to be accounted for when partitioning the phenotypic variability using mea-
sured genotype information.

DISCUSSION

The question of how best to partition the phenotypic variability into the
contribution of separate loci is yet to be adequately resolved. The statistics
presented here are not the only methods to measure the variance contribution
by a measured locus. For example, Hopper et al. [22] suggest parameterizing
the single-gene effects as a random effect that would yield direct estimates of a
variance component. Gold et al. [23] suggested the use of a minimum percent
misclassification probability. One could also interpret the R2 statistic from the
analysis of variance to be an estimator of this proportion. Daiger et al. [8] used
the parameterization presented by Falconer [24] as an estimator of this propor-
tion. Finally, if the data are collected from a sample of related individuals and
the effects of the single locus and residual polygenic effects are estimated
simultaneously, the reduction in the polygenic variance component when the
measured genotype effect is added to the model will yield an estimate of this
proportion [6]. More work is needed to compare the statistical properties of
these and other estimators and to explore their appropriate use.
Advances in our understanding of the physiology of many quantitative phe-

notypes combined with better measurement abilities such as two-dimensional
gel electrophoresis, restriction site polymorphisms, and monoclonal antibodies
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are providing abundant measured genotype information for many quantitative
phenotypes. Using this information, the loci contributing to quantitative pheno-
type variability can be identified and their effects estimated. As the frequencies
and effects of more loci in a system are estimated, the unmeasured polygenic
random component will get smaller and fundamentally important questions
about the genetic architecture of quantitative phenotypic variability can begin
to be addressed.
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