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SUMMARY

The aldolase genes represent an ancient gene family with tissue-
specific isozymic forms expressed only in vertebrates. The chromo-
somal locations of the aldolase genes provide insight into their tissue-
specific and developmentally regulated expression and evolution.
DNA probes for the human aldolase-A and -C genes and for an aldol-
ase pseudogene were used to quantify and map the aldolase loci in the
haploid human genome. Genomic hybridization of restriction frag-
ments determined that all the aldolase genes exist in single copy in the
haploid human genome. Spot-blot analysis of sorted chromosomes
mapped human aldolase A to chromosome 16, aldolase C to chromo-
some 17, the pseudogene to chromosome 10; it previously had
mapped the aldolase-B gene to chromosome 9. All loci are unlinked
and located on to two pairs of morphologically similar chromosomes,
a situation consistent with tetraploidization during isozymic and ver-
tebrate evolution. Sequence comparisons of expressed and flanking
regions support this conclusion. These locations on similar chromo-
some pairs correctly predicted that the aldolase pseudogene arose
when sequences from the aldolase-A gene were inserted into the ho-
mologous aldolase location on chromosome 10.

INTRODUCTION

Fructose-1,6-diphosphate aldolase (E.C.4.1.2.13) is a ubiquitous glycolytic en-
zyme that catalyzes the reversible aldol cleavage of fructose-1,6-diphosphate to
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glyceraldehyde-3-phosphate and dihydroxyacetone phosphate. The class I al-
dolases of animals and higher plants all consist of four 40,000-dalton subunits
(Penhoet et al. 1967) with highly conserved amino acid and nucleotide se-
quences, indicating that all arose from a common ancestral gene. Three tissue-
specific forms exist in higher vertebrates (Penhoet et al. 1966): aldolase A
(muscle and red blood cells), aldolase B (liver, kidney, and intestine), and
aldolase C (nervous tissue). A fourth electrophoretically separable isozyme has
been reported in advanced fish (Lebherz and Rutter 1969).

The coordinate expression of these isozymes has been reported during on-
togeny and carcinogenesis (Rutter et al. 1963). One class of hereditary non-
spherocytic hemolytic anemic disorders is caused by aldolase A deficiency. In
one patient with an unstable enzyme (Beutler et al. 1973), normal nucleated
cells replace aldolase A at a sufficient rate, but aldolase-A activity becomes
depleted in enucleated erythrocytes in which transcriptional and translational
activity decreases as cells age. Consequently, energy production is impaired
and membrane stability decreases with declining ion-transport activity. In addi-
tion, a deficiency of the related liver aldolase-B isozyme results in fructose
intolerance (Chambers and Pratt 1956). To further understand the structure and
expression of these ‘‘housekeeping’’ genes, the complete structures of aldolase
mRNA transcripts and genes have been determined from a variety of organisms
(Rottmann et al. 1984; Tolan et al. 1984; Burgess and Penhoet 1985; Tsutsumi et
al. 1985). Previously we cloned the human aldolase-B gene and mapped it to
chromosome 9 (Lebo et al. 1985). In the present paper we describe (1) the
isolation, sequence determination, and mapping of both the human aldolase-A
c¢DNA and of an aldolase pseudogene, (2) the mapping of the human aldolase-C
gene, and (3) comparison of the aldolase-A, -B, and -C genes and aldolase
pseudogene.

The chromosomal location of the human aldolase-A, -B, and -C genes and of
aldolase pseudogenes are significant in the context of isozyme evolution, poly-
ploidization, human chromosome morphology, and vertebrate evolution. Theo-
ries of vertebrate evolution postulate that vertebrates arose from primitive
chordates via an initial tetraploidization and that a second tetraploidization
event occurred in ancestral crossopterigian fish before vertebrates left the sea
to live on land (Ohno 1970, 1973; Ohno et al. 1986). These theories were based
upon the DNA content of chordates, fish, other vertebrates (Ohno 1970, 1973;
Ohno et al. 1986), and chromosome morphology (Comings 1972). This is further
supported by recent karyotype analyses (Sawyer and Hozier 1986) and the
conservation of linkage groups between species (Seuanez 1979; Morizot 1983;
O’Brien et al. 1986). The first polyploid organisms would have been selected
through increased vigor and stabilization of more-fit intermediate genotypes
(Stebbins 1966). Simultaneously, tetraploidization would have generated the
additional gene loci from which isozymes evolved, as well as duplicating the
chromosome complement to produce morphologically duplicate pairs of ho-
mologous chromosome pairs. Subsequent rearrangements or *‘diploidization’’
(Ohno 1970) would generate similar but different chromosomes carrying ap-
proximately twice as much DNA, while individual genes simultaneously di-
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verged into tissue-specific isozymes. Duplicated human chromosomes would
continue to look similar provided subsequent chromosome rearrangements
were not too extensive. With this kept in mind, the banded human karyotype
has been divided into morphologically similar pairs of pairs as follows: 1 and 2,
4and 5,7 and 8,9and 10, 11 and 12, 14 and 15, 16 and 17, 19 and 20, and 21 and
22. The remaining chromosomes have been paired, with minimal rear-
rangements (Comings 1972). This theory of vertebrate evolution can be tested
by rigorous comparison of aldolase gene sequences and their chromosome map
positions, since aldolase isozymes are found in all vertebrates.

MATERIAL AND METHODS
Isolation of Aldolase-A cDNA Clones

Two libraries constructed in pUC9 with poly A* RNA from human umbilical
cord endothelial cells and human lung fibroblasts by means of the linker-
adapter method (Coleclough and Erlitz 1985) were screened (Grunstein and
Hogness 1975), first with a 580-bp Kpnl-Pstl fragment of pRM223, a rabbit
aldolase-A cDNA clone (Tolan et al. 1984), and, second, with a 260-bp PstI
fragment of the human aldolase-A clone, pHA404, isolated from the endothelial
cell library. Positive clones were purified via three rounds of screenings. DNA
probes were excised by restriction-endonuclease digestion, gel electrophoresed
twice (Maniatis et al. 1982), and nick-translated (Lebo et al. 1985).

Preparation and Characterization of Human Aldolase Clones

Aldolase-pseudogene clones were isolated and characterized from a partial
Haelll/Alul library constructed in Charon 4A (Lawn et al. 1978; Tolan and
Penhoet 1986). Genomic clones were isolated and subcloned into pUC vectors
(Vieira and Messing 1982). Purified plasmid subclones and cDNA (Davis et al.
1980) were used for restriction-enzyme analysis.

DNA Sequencing and Computer Analysis

The insert fragments of cDNA and subclones were excised, isolated, and
subcloned into M13-derivative vectors (Norrander et al. 1983) for subsequent
sequence analysis (Sanger et al. 1977). The analogue, 7-deaza-2'-deoxyguano-
sine-5'-triphosphate was substituted for dGTP to eliminate G/C compression
(Barr et al. 1986). The DNA sequence was analyzed for translation, restriction
maps, and homologies on a VAX/UNIX system with programs developed by
Hugo Martinez of the University of California, San Francisco. Optimal align-
ments between two sequences were generated using a program (MALIGN) that
aligned segments of =3 bp that were in common. The program scored the
alignment based upon the number of bases in common, with a penalty of 2.0 for
each insertion or deletion and of 0.05 for each base in the insertion or deletion.
The penalty values were determined empirically by aligning the homologous 3'-
untranslated regions of human (Tolan and Penhoet 1986) and rabbit (Amsden
1985) aldolase-B genes, which possess several different-size insertions and
deletions. With the same values, the programs further analyzed the optimal
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alignments by randomizing the repeat elements and realigning them. Repeated
randomizations generated a binomial distribution from which the statistical
significance of the optimal alignment was calculated.

Analysis of Genomic and Sorted Chromosomal DNA

DNA purified from lymphoblast cell lines or peripheral blood lymphocytes
(Blin and Stafford 1976) was digested with 50 units of EcoRI, phenol extracted,
ethanol precipitated, electrophoresed, transferred to nitrocellulose paper
(Southern 1975), hybridized, and washed (Lebo et al. 1985). Spot-blot panels
were sorted, denatured, baked, and prehybridized (Lebo et al. 1985). Previ-
ously hybridized panels or blots were denatured by incubation at 65 C for 30
min in 50% (v/v) deionized formamide, 50 mM Na-Hepes (pH 7.0), 3 x SSC (1
x SSC = 0.15 M NaCl, 0.015 M sodium citrate, pH 7.0), 200 pg denatured
salmon-sperm DNA/ml, 150 pg yeast RNA/ml, and 1 X Denhardt’s solution (20
mg polyvinyl-pyrrolidone-360/mi, 20 mg Ficoll 400/ml, 20 mg bovine serum
albumin [Sigma A-4378]/ml). The prehybridization solution was removed, and
the filters were then hybridized for 1 day in prehybridization solution plus 10%
dextran sulfate and 3 x 10° cpm human aldolase probe/ml. The filters were
washed three times for 10 min each in 2 X SSC, 0.1% sodium dodecyl sulfate at
20 C; then for 1.5 h in 0.1 x SSC, 0.1% SDS with gentle shaking and one
solution change at a higher temperature; then twice briefly in 0.1 x SSC at 25
C, dried, and radioautographed.

RESULTS
Human Aldolase-A and Pseudogene Clones

The largest recombinant plasmid of eight that were isolated from 50,000
transformants, pHA404, was characterized, and the insert was used to probe a
human lung-fibroblast cDNA library. One of the 202 isolated clones, pHL-1,
was larger than pHA404. The relationship of the two clones to each other was
determined by the sequencing strategy illustrated in figure 1, panel A. The
derived amino acid sequence (fig. 2, panel A) was identical to the published
partial sequence of the human aldolase-A protein (Freemont et al. 1984). The
881-bp nucleotide sequence starts at the codon for lysine-138 and contains the
sequence coding for the last 226 amino acids and the entire 3'-noncoding re-
gion. The protein-coding region shares 92.2% nucleotide and 98.7% amino acid
homology with the respective region of the rabbit aldolase A (Tolan et al. 1984).

Several overlapping genomic clones encoding an aldolase-related pseudo-
gene were isolated, and two separate subclones were constructed. These were
subcloned further, and the DNA sequence was determined. Figure 1B depicts
the restriction map and sequencing strategy. The sequence is shown in figure
2B. This sequence has been aligned with the known amino acid sequence of
aldolase A. Amino acid substitutions are shown as blanks in the amino acid
sequence. The 2,082-bp sequence shares 80% amino acid homology and 90%
nucleotide homology with the above-cited aldolase-A cDNA. This pseudogene
lacks the introns known to exist in the human aldolase-B (Tolan and Penhoet
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1986) and -C genes (Rottmann et al. 1987) and in the rat aldolase-A gene (Joh
et al. 1986). Indications that this gene does not produce a functional aldolase
are as follows: (1) codons 178 and 330 have been mutated to stop codons;
(2) the active site lysine-229 has been changed to an asparagine (AAC); and
(3) there are three deletions and a single base insertion, some of which cause
frameshifts that introduce stop codons in the reading frame. The sequence ho-
mology with aldolase-A mRNA decreased before the ends of the mRNA and
contained no poly(A). This pseudogene lacks any direct repeats in the 5'- and
3'-flanking regions, repeats that are commonly found in many ‘‘processed’’
pseudogenes (Vanin 1985). Either this gene was not derived from mRNA inser-
tion, or it has been inserted into this location via a mechanism other than ret-
rotransposition.

Aldolase Gene Number and Location

The number of aldolase genes and the specific hybridization conditions for
each were determined before gene mapping by spot-blot analysis. Figure 3
depicts the restriction-enzyme fragments detected when aldolase isozyme
probes were hybridized to EcoRI-digested human genomic DNA. Six frag-
ments hybridized to an aldolase-B cDNA probe (Rottmann et al. 1984) at lower
stringency (fig. 3, lane 1). Blots done at higher stringency revealed only the 9.6-
and 5.7-kb EcoRI fragments (fig. 3, lane 2), a result consistent with the known
restriction map of the aldolase-B gene (Tolan and Penhoet 1986). The aldolase-
C gene probe, a 1.5-kb Kpnl fragment located immediately 3’ to the coding

12345
kb

30 »
CcC 20
A 13.39

B 9.6% §
YA 8.1

B 5.7%

A oM oAAs

Fic. 3.—Hybridization of specific aldolase gene probes to genomic DNA. Genomic blots used
DNA (10 pg) digested with EcoRI. Lane 1 represents a different blot than lanes 2-5. The blots were
hybridized to a 1.1-kb HinfT fragment of the human aldolase-B cDNA, pHL413 (Rottmann et al.
1984), at 42 C and washed at 45 C in 0.2 x SSC (lane 1) or hybridized at 57 C and washed at 64 C
(lane 2). Lane 3 is the same blot as in lane 2 but hybridized with an aldolase-C probe (a 1.5-kb Kpnl
fragment excised from pKK503; Rottmann et al. 1987) at 42 C and washed at 55 C. Lane 4 is the
same blot hybridized with the human aldolase-A cDNA probe (a PstI-Ddel fragment excised from
pHL-1) at 50 C and washed at 53 C. Lane 5 is the same blot as in lane 4 but hybridized with the
human aldolase-A-pseudogene probe (a PstI-Xbal fragment excised from pEE416). Radioauto-
graphs were exposed for 12-18 h. The arrows denote the sizes of the hybridizing fragments, as
calculated using HindIII-digested lambda-phage DNA as standards.
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sequence (Rottmann et al. 1987), hybridized to the 20-kb EcoRI restriction
fragment (fig. 3, lane 3). The aldolase-A and -pseudogene probes were from the
relatively unconserved 3’ ends of the genes, both starting at a PstI site at amino
acid 306 (fig. 1). The relatively divergent PstI-Ddel restriction fragment in the
aldolase-A cDNA 3' region hybridized primarily to the 13.3-kb EcoRI fragment
(fig. 3, lane 4). The pseudogene probe, a Pstl-Xbal fragment from pEE416,
hybridized primarily to the 8.1-kb fragment (fig. 3, lane 5). Even at relatively
high stringency, these probes cross-hybridized slightly both with each other
and with a 30-kb fragment. Since the restriction map of the human aldolase-A
gene is not known, this large fragment may reflect two EcoRI fragments hy-
bridizing to the aldolase-A gene probe. Alternatively, we cannot exclude the
possibility that this fragment may correspond to another aldolase A-related
pseudogene, since it hybridized to both the aldolase-A cDNA and pseudogene
probes but not to the aldolase-B or -C probes. All of the EcoRI genomic
fragments can be accounted for using the four specific gene probes. This dem-
onstrated that only one copy of each of the aldolase genes—A, B, C, and one
(or perhaps two) aldolase A-related pseudogene(s)—account for all aldolase
sequences in the haploid human genome.

Each aldolase probe was hybridized to chromosome-specific DNA on spot-
blot filter panels according to the hybridization conditions specific for each
gene. In the first experiment the aldolase-A gene probe hybridized only to the
chromosome-16 spot on two entire spot-blot filter panels. This result was re-
peated with another complete panel and a single filter containing just chromo-
somes 16 and 17 (fig. 4A). In the second experiment the aldolase-C gene probe
revealed a positive chromosome-17 signal on two complete filter panels (fig.
4B). In the third experiment, the aldolase-pseudogene probe hybridized to the
chromosome 10/11 spot in an entire filter panel with DIPI-chromomycin stained
chromosomes that separated 10/11 from 9/12 (fig. 4C) (Lebo and Bruce 1987).
This result was repeated twice on individual filters containing these chromo-
somal DNAs. Subsequently, the pseudogene was mapped to the long arm
of chromosome 10 by testing derivative chromosomes (fig. 5). Different-size
chromosomes derived from a reciprocal translocation between the normal
chromosomes 10 and 7 were sorted from their normal homologues. The probe
hybridized to a spot containing derivative chromosome-7 (der7) and chromo-
some-1 DNA and did not hybridize to chromosome 1, chromosome 7, the
der10, or a chromosome 11 with an interstitial short-arm deletion. Thus,
specific hybridization was to the part of the der7 derived from the long arm of
chromosome 10. The pseudogene was further excluded from chromosome 11
by means of restriction-enzyme analysis of somatic-cell hybrids carrying all of
chromosome 11 and a multiple set of chromosome-11 deletions (not shown).

Preliminary somatic-cell hybrid data from two groups assigned the human
aldolase-A gene to chromosomes 16 and 22, respectively (Human Gene Map-
ping 8 1985). This discrepancy could be explained by a chromosome-16 rear-
rangement that occurred in the series of somatic-cell hybrids used to assign the
gene to chromosome 22. Our gene-specific probe and hybridization conditions
identified a unique signal on sorted chromosome 16. The reliability of the spot-
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FiG. 4.—Human aldolase spot-blot analysis of whole sorted chromosomes. A, Radioautograph of
an entire spot-blot filter panel (Lebo et al. 1985) and a partial panel from lymphocyte cell line
GM 130 hybridized to the human aldolase A cDNA. The positive signal corresponded to a sorted
chromosome-16 DNA spot (indicated by a plus [ +] sign). The nonspecific signals on the chromo-
some-1-and-2 filter are not located over the actual chromosome spots. B, Radioautograph of a
similar spot-blot filter panel hybridized to the aldolase-C-gene probe reveals a positive signal on the
chromosome-17 spot. C, The radioautograph of a spot-blot filter panel and two separate filters
containing DNA from chromosomes 9-12 of the female-derived lymphoctye cell line GM131 hy-
bridized with the aldolase-pseudogene probe. The positive signal corresponds to spots indicated by
a plus (+) sign. All filters have ~30,000 chromosomes of each type in each spot. Differences in spot
intensity vary inversely with the number of previous hybridizations.

blot method has been demonstrated by confirming the location of 13 previously
mapped genes, including the o- and {-globin genes, on chromosome 16. To
date, 18 new gene assignments made by spot-blot analysis have been confirmed
by somatic-cell or in situ hybridization, including our assignment of two
homeo-box genes to chromosome 17 (Joyner et al. 1985; Rabin et al. 1985).
When a single discrepancy occurred with in situ hybridization, the spot-blot
result was confirmed. Thus, we have confidence in the spot-blot assignment of
(1) aldolase A to chromosome 16, (2) aldolase C to chromosome 17, (3) a
pseudogene to chromosome 10, and (4) the aldolase-B gene to chromosome 9
(Lebo et al. 1985).

Aldolase Gene and Chromosome Evolution

These new localizations and our previous assignment of the aldolase-B gene
te chromosome 9 (Lebo et al. 1985) map the aldolase genes to the following four
human chromosomes: 9, 10, 16, and 17. These four genes are found on the
following two pairs of morphologically similar human chromosomes: 9 and 10,
and 16 and 17 (Comings 1972). These homeologous (i.e., of similar origin
[Comings 1972]) chromosome pairs may have arisen from one or two tetra-
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Fi6. 5.—Spot-blot analysis of sorted derived chromosomes. A, Radioautographs from the two
filters on the left are from cell line GM44, which includes a reciprocal translocation, t(7;10)
(p21;q11), as illustrated by the ideograms (c) (National Foundation—-March of Dimes 1972). The
radioautograph on the right was a filter sorted from cell line ML2010, which contains a deletion in
the short arm of chromosome 11. The filters were hybridized to the human aldolase-pseudogene
probe (PstI-Xbal) at 50 C and washed at 53 C. The positive signal is shown consistently over spots
containing sorted DNA from the long arm of chromosome 10.

1

ploidization events. If tetraploidization occurred once, then a reciprocal trans-
location between the ancestral 16/17 chromosome and the ancestral 9/10
chromosome (fig. 6, panel A) would have moved the primordial aldolase gene
to a second chromosome. Subsequently, a single tetraploidization would have
created chromosomes 16 and 17 and chromosomes 9 and 10. Since then, these
chromosomes would have diverged morphologically, along with gene structure
and function. On the other hand, if tetraploidization occurred twice, the
primordial gene would have been duplicated the first time when the ancestral
chromosome 9/10/16/17 was duplicated to form the ancestral chromosomes 9/10
and 16/17 (fig. 6, panel A), with subsequent diploidization. Alternatively, this
topology could have been derived from a nondisjunction leading to duplicate
copies of primordial chromosomes 9/10 and 16/17 that became fixed in off-
spring. Thus nondisjunction would have generated a partial rather than com-
plete genomic duplication. Either scheme predicts that the aldolase-A and -C
sequences will share more homology with each other than either of them will
with the aldolase-B and -pseudogene sequences.

As predicted by the chromosomal locations (fig. 6, parel A), the coding
sequences of the expressed aldolase-A and -C genes are more homologous to
each other than either of them is to the expressed aldolase-B gene (fig. 6, panel
B) (Paolella et al. 1986; Rottmann et al. 1987). However, the coding region of
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Fic. 6.—Evolutionary trees of aldolase genes. Panel A, Evolutionary tree illustrating proposed
evolution of the chromosomes containing aldolase loci, as predicted on the basis of chromosomal
locations. The arrows point to tetraploidization events as predicted by Ohno (1973). The scale is in
millions of years. Panel B, Tree based on a difference matrix, including correction for multiple
mutations at the same position (Fitch and Margoliash 1967), as derived from the protein sequences.
The numbers are the percentage of relative difference along each limb. Panel C, Tree based upon
alignments that can be made between flanking regions at the aldolase-C, -B, and -pseudogene loci
on chromosomes 17, 9, and 10, respectively. The scale is in percentage difference. The grey limb
for aldolase A is presumed, since no data exist.

the unexpressed pseudogene shares 80% homology with the aldolase-A gene
and only 69% homology with the aldolase-B gene (fig. 6, panel B). We have
reasoned that if the original pseudogene locus was more homologous to aldol-
ase B, then the pseudogene on chromosome 10 may have been changed to its
present condition via recombination, leaving the flanking sequence homolo-
gous to aldolase B. Moreover, an ancestral chromosome-10 sequence homolo-
gous to aldolase B would have promoted recombination at that locus. The
presence of homologous aldolase-B sequences at the chromosome-10 locus
would support this hypothesis.

Indeed, comparison of the pseudogene flanking sequences to those of the
other aldolase genes supports this hypothesis. The flanking sequences of the
pseudogene share some homology with the flanking regions of the human aldol-
ase-B gene but not with those of the aldolase-C gene. Homology between the
pseudogene and mammalian aldolase-A mRNA sequences (Tolan et al. 1984;
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Joh et al. 1986) declines 10 bp upstream from the start of the protein reading
frame and declines again between the pseudogene and the human aldolase-A
mRNA sequence 3 bp before the polyadenylation site (see fig. 2B). Computer-
generated alignment of these gene regions (see Material and Methods) showed
significant homology to similar regions upstream and downstream from the
aldolase-B gene (fig. 6, panel C). Moreover, no such homology was detected
between comparable regions of the aldolase-C gene, between aldolase B and
aldolase C, or between opposite (e.g., 3' compared with 5’) aldolase-B-gene
flanking regions and the pseudogene. The homologies between the pseudogene
and aldolase-B-gene flanking regions were 65% in the 5’-region and 50% in the
3’ region, with a statistical significance of being found by chance of one in 1,000
(0.001) and one in 300 (0.003), respectively. The regions involved in the homol-
ogy are underlined in fig. 2B, with triangles denoting loops or deletions neces-
sary to optimize the alignment. The human aldolase-A-gene flanking sequences
are unavailable for comparison. The described homologies are consistent with
a recombination event at the pseudogene locus with related aldolase-A se-
quences. The conversion of this chromosome-10 locus may have been derived
via a recombination between a relatively recent processed pseudogene, evi-
denced by its high degree of homology to the aldolase-A ¢cDNA and inserted
elsewhere in the genome via retrotransposition, and the nonfunctional homolo-
gous aldolase locus on chromosome 10. Recurrent recombination between
these loci on chromosomes 9 and 10 could have preserved and enhanced the
similarity at these loci, especially in the noncoding region. The question re-
mains as to what happened to the fourth aldolase in early vertebrates. Clearly,
a fourth aldolase isozyme is not expressed in higher vertebrates, although there
is electrophoretic evidence for a fourth aldolase in advanced teleost fish, e.g.,
trout and salmon (Lebherz and Rutter 1969). Taken together, all the data sup-
port the evolution of the four homologous aldolase loci via one or two DNA-
tetraploidization events that generated four aldolase loci on two pairs of mor-
phologically similar chromosomes (fig. 6, panel A).

DISCUSSION

The analysis of the clones for both human aldolase-A cDNA and a pseudo-
gene have completed the description of the relationship and genomic organiza-
tion of this set of isozymes. The single-copy genes A, B, C, and a pseudogene
map to chromosomes 16, 9, 17, and 10, respectively. These loci reflect the
evolution of this ancient enzyme and perhaps the process by which the verte-
brate chromosomes carrying them have evolved.

This set of genes for the functionally divergent aldolase isozymes maps to
two pairs of morphologically similar, homeologous chromosomes. This rela-
tionship between homologous genes adds direct functional evidence for chro-
mosomal evolution via tetraploidization, which has been proposed previously
on the basis of chromosome morphology and total cellular DNA content. In
fact, additional evidence exists for a homeologous relationship between
chromosomes 9, 10, 16, and 17. The mitochondrial and cytosolic forms of
thymidine kinase map to chromosomes 16 and 17, respectively (Boone et al.
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1977; Willecke et al. 1977). Moreover, lysosomal acid lipase B and glutamate
oxaloacetate transaminase-2 map to chromosome 16, and the homologous ly-
sosomal acid lipase A and glutamate oxaloacetate transaminase-1 are on
chromosome 10 (Human Gene Mapping 8 1985). The precise nature of the
homology of these genes is not as well defined as that of the aldolase isozymes,
but clearly these data (plus those for aldolase) strongly indicate a common
origin for these chromosomes. Homeologous chromosomes have been found to
carry other genes with isoforms. For instance, chromosomes 11 and 12 carry
the lactate dehydrogenase A and B genes (McKusick 1985) and the H-ras and
K-ras genes, respectively (Huerre et al. 1983; Popescu et al. 1985). In addition,
the homologous UDP-glucose pyrophosphorylase-1 and -2 genes have been
mapped to homeologous chromosomes 1 and 2 (McKusick 1985). These addi-
tional locations support the occurrence of at least a single tetraploidization in
chromosome evolution. The four aldolase loci require us to consider the occur-
rence of two tetraploidization events consistent with total DNA content.

Persistence of ancient chromosomal locations presupposes that chromo-
somes or parts thereof have been frozen throughout evolution. The plausibility
of this hypothesis could have been obscured by the evidence that chromosomes
have diverged considerably since vertebrates arose (Searle 1976). During this
divergence numerous linkage groups on pairs of morphologically similar
chromosomes would have been separated via translocations, deletions, and
insertions. However, numerous subchromosomal groups of genes have been
conserved between primate (man) and rodent (mouse) chromosomes and even
in such distantly related genera as fish (Seuanez 1979; Morizot 1983). More-
over, the conservation of five linked genes on both human chromosome 11 and
the feline chromosome D1 indicates that this chromosomal linkage group has
been conserved in two additional orders of mammals, Primates and Felidae
(O’Brien et al. 1986). The same group of genes has been dispersed to three
different mouse chromosomes (O’Brien et al. 1986). If the same trend continues
between human and cat chromosomes, the morphology of both human and cat
chromosomes will have changed less than that of mouse chromosomes, consis-
tent with the molecular clock running faster in rodents than in primates (Li and
Tanimura 1987).

Evolution of vertebrates that involves tetraploidization suggests this mecha-
nism as the origin of all enzyme isozymes. The divergence and maintenance of
tissue-specific isozyme genes reflects the usefulness of isozymes for organismal
adaptation and development. The mechanism of gene divergence of duplicate
aldolase genes to tissue-specific aldolase isozyme loci remains to be estab-
lished. Most adaptive evolution at the organismal level has been proposed as
resulting from mutations affecting gene expression (Wilson et al. 1977) rather
than from mutations affecting protein structure. For example, tissue-specific
activation of a gene could result from insertion of previously existing regula-
tory-DNA sequences. This would partially explain the increased fitness of
polyploid organisms. Tetraploidization followed by different regulatory-
sequence insertion into multiple duplicate-gene sites would have generated
more adaptive offspring more rapidly. The highly homologous nature of the
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aldolase isozymes, in contrast to their drastically different tissue-specific ex-
pression, supports this evolutionary scheme.
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