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Simulation Studies of Segregation Analysis: Application
to Two-Locus Models

DAVID A. GREENBERG

SUMMARY

We tested the power of a segregation analysis method (first proposed
by Elandt-Johnson) to- distinguish between single-locus and two-locus
models, with and without environmentally caused reduced penetrance.
We also looked at the effect of ascertainment probability on the analysis
and at the proband-conditioned ascertainment correction proposed by
Cannings and Thompson. We found that: (1) the segregation analysis
has sufficient power to distinguish between the fully-penetrant double-
recessive (RR) model and the fully-penetrant single-locus dominant and
recessive models; (2) the method can also distinguish fairly well between
the dominant-recessive (DR) and RR models, even when one does not
take into account the population pi.valence; (3) the method has much
less power to distinguish between the fully-penetrant RR model and the
single-locus models with reduced penetrance; (4) when environmental
penetrance is taken account of in the analysis, the power of the method
to distinguish between the one- and two-locus models improved sub-
stantially; (5) the estimates of ascertainment probability, -r, were robust,
regardless of the model under which the data were generated; and (6)
the Cannings-Thompson approach to ascertainment correction worked
well only when the rr used to generate the data was less than .1.

INTRODUCTION

Segregation analysis has been used in human genetics for some time, and computer
programs, some of them extremely complex, have been written to do the necessary
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calculations. However, the power of the models and statistical tests incorporated
in these programs has seldom been tested because of their complexity and the
enormous quantities of computer time required.
We recently [1] used a segregation analysis technique to investigate the in-

heritance of coeliac disease. This method, originally described by Elandt-Johnson
[2], was developed specifically to test whether the inheritance of a disease was
due to two epistatic loci. We assumed that there were two alleles (a normal and
a disease or trait allele) at each locus and that the inheritance at each locus was
either Mendelian dominant or recessive. In the case of coeliac disease, not only
is there immunologic evidence for the existence of two loci [3, 4], but it also
was possible to eliminate the hypotheses of single-locus dominant and recessive
inheritance with environmentally caused reduced penetrance [1].
We began to wonder, however, what the power was of this segregation analysis

(in the sense of type II statistical error) or, for that matter, any segregation
analysis. Specifically, we wanted to ask the following questions: (1) Can this
segregation analysis method distinguish between a fully-penetrant two-locus model
and single-locus Mendelian models with environmentally caused reduced pen-
etrance? (2) If not, at what point do the fully-penetrant two-locus models and
the single-locus models with reduced penetrance become indistinguishable? (3)
If the reduced-penetrance, single-locus models are indistinguishable from the
fully penetrant two-locus models, will taking account of environmentally caused
reduced penetrance in the two-locus models improve the ability of the method
to distinguish models? (4) How much of a role does the ascertainment probability
play in the segregation analysis?
The segregation analysis method that we used seemed well suited to answer

these questions for two important reasons: it maximizes the likelihood of the
data with respect to only two parameters, and it assumes a mode of inheritance
more complex than single-locus Mendelian but one which needs less parameter-
ization than the more complex segregation analysis programs. Also, the biological
importance of two-locus models has become widely recognized recently [5].
There is good evidence that coeliac disease is the result of two recessive loci [1,
4, 6, 7]. In addition, hyperlipoproteinemia is the result of two loci [8], and
Graves disease [9] and insulin-dependent diabetes mellitus [10-12] have both
been suggested as candidates for a two-locus mode of inheritance. It has also
been suggested that other HLA-related diseases, especially autoimmune diseases,
may be the result of a locus within the HLA system and a second, non-HLA-
linked locus [13].

METHODS

Throughout what follows, we will distinguish between the generating model (used to
generate the data) and the assumed model (used to analyze the data). The simulation and
analysis take enormous amounts of computer time. For that reason, we examined only
the double-recessive (RR) model as the assumed model in this report. In this model, one

must have a double dose of the disease alleles at both loci in order to be affected.
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Simulation

Family data were simulated according to the following scheme:
(1) Choose at random a mating type capable of producing affected children, weighted

by the frequency of the mating type in the population (which is a function of the gene
frequencies of the disease alleles).

(2) Choose a family size according to a distribution. The distribution of family sizes
in the population (a fitted negative binomial) was that described in [14]. While Ewens
[15] and Morton [16] showed that family-size distribution should not affect the segregation
analysis, the distribution of family sizes can affect power calculations because a data set
containing 100 two-child families contains less information than, say, 100 five-child
families. Therefore, we chose to use a realistic distribution of family sizes in the simulation.

(3) For each child, determine whether that child is genetically affected, according to
the segregation ratio for the chosen mating type. If the child is (genetically) affected,
determine whether the child is phenotypically affected (i.e., allowing for reduced penetrance,
if appropriate). If there are no affected children, go back to step (1).

(4) For each phenotypically affected child, determine whether that child is a proband,
according to the predetermined probability of ascertainment, which was an input parameter.
If there are no probands, the family is discarded.

For most analyses, 100 families were simulated per data set. Although 50-family data
sets produced very similar results, there were more frequent terminations of the minimization
routine due to round-off errors and somewhat larger standard deviations for the parameters.
One hundred data sets of 100 families each were simulated in each computer run.

Segregation Analysis
The segregation analysis method used has been described [1]. It is modified from a

method originally proposed by Elandt-Johnson [2] and calculates the likelihood of a nuclear
family [L(t, 7T)]. It has the following form:

L(t, 7j) -~ M, (a, t)a (1 - ai t)bTc (1I c)

1 - IM, (1 - Tra, t)(a+b)

where i indicates the ith mating type, Mi = probability of mating type i, ai = segregation
ratio for mating type i, t = the test parameter such that for the null hypothesis, t = 1,
-rr = ascertainment probability, a = number of affected offspring, b = number of unaffected
offspring, and c = number of probands. The log of L(t, 7r) is summed over the individual
families.

For the unrestricted hypothesis, the log likelihood was maximized with respect to two
parameters: the test parameter (t) and the ascertainment probability (7r). The likelihood
ratio test was used to determine whether a data set supported or rejected the assumed
model. For the null hypothesis, the log likelihood was maximized with respect to Tr alone
and with t set to 1. The log-likelihood ratio multiplied by two (LR) was then computed:
LR = 2{Loge[MAX L(t, 7r)] - Loge[MAX L(1, rr)]}, which is distributed as a chi-
square. Any data set where the LR exceeded 3.84 was treated as not supporting the
assumed model (corresponding to a chi-square significance level of .05). The means and
standard deviations of i and or rT were computed for the 100 data sets.

Input parameters for the simulation (i.e., the generating model) included the allele
frequencies, ir, mode of inheritance, and penetrance. For the assumed model, only the
mode of inheritance and the assumed penetrance were specified.
No attempt was made to estimate the gene frequencies of the disease alleles at the two

disease loci simultaneously with -fr and i. Instead, all combinations of gene frequencies
that led to population prevalences in the range of five-times-greater to five-times-less than
the "observed" (i.e., the prevalence specified in the simulation) were examined.
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All analyses assumed the double-recessive (RR) model. Among the models used to
simulate the data were: RR, dominant-recessive (DR), single-locus recessive, and single-
locus dominant, both with and without reduced penetrance. "Reduced penetrance" in this
case is assumed to result solely from environmental causes.
When data were generated under the single-locus dominant and recessive models, the

generating gene frequency was chosen to give a population prevalence of about 1: 1,600.
The initial calculations showed that the generating value of IT made little difference in
the final outcome of the segregation analysis. Therefore, the generating model 'a, except
where noted, was set at .5.
The likelihood was maximized using the IMSL program ZXMIN. The maximization was

constrained so that *f could not go below .001 nor above .999. Similarly, i was constrained
to be between .1 and 2.0. [While there is no reason why t could not go above 2.0, a t
greater than about 1.6 invariably led to rejection. The limit was set to reduce computer
time. In addition, with ci > .5, a t greater than 2.0 leads to meaningless likelihoods due
to the (1 - cLi t) term in the likelihood equation. This occurs only in the event of rare
mating types, but these meaningless likelihoods must be trapped.]

Ascertainment Correction by Conditioning on Probands

Cannings and Thompson [17] suggested an ascertainment correction that does not require
the simultaneous estimation of 7r. This method conditions the likelihood of the family on
the probands. Specifically, the likelihood of a nuclear family takes the form:

L Mi (c it)( - xi t)bL\tJ) ~ ci

(See above for definitions of the variables.)
We did several calculations varying the value of -r used to generate the data in order to

see how well this ascertainment correction worked.

RESULTS

First, a summary of the results: (1) The segregation analysis has sufficient
power to distinguish between the fully-penetrant RR model and the fully-penetrant
single-locus dominant and recessive models. (2) The method can also distinguish
fairly well between the DR and RR models, even when one does not take into
account the population prevalence. (3) The method has much less power to dis-
tinguish between the fully-penetrant RR model and the single-locus models with
reduced penetrance. (4) The estimates of ascertainment probability, 'a, were
robust, regardless of the model under which the data were generated. (5) The
Cannings-Thompson approach to ascertainment correction worked well only when
the 7n used to generate the data was less than .1.

Table 1 summarizes results when data are both generated and analyzed under
an RR model assuming different values of the generating wr. The actual rejection
rate, or type I error, corresponds closely to the nominal rejection rate of .05.
The mean t for all the runs is very close to 1.0 and the mean of the estimated 'a

is close to that used to generate the data.
Table 2 summarizes the results when data were generated under a single-locus

dominant, single-locus recessive, or DR model. When the penetrance of the
generating model was 1, the analysis rejected almost all combinations of gene

170 GREENBERG



SEGREGATION ANALYSIS

TABLE 1

RESULTS OF ANALYSES OF DATA GENERATED UNDER THE RR MODEL USING DIFFERENT VALUES
OF THE ASCERTAINMENT PROBABILITY AND ANALYZED UNDER THE RR MODEL

% rejected
Generating 7r (type-I error) Mean ± SD Mean * + SD Range of mean f*

.1 .5 0.99 + .23 .09 ± .07 .09-.10

.5 .5 1.01 ± .23 .49 ± .11 .47-.51

.9.6 0.99 ± .26 .89 ± .06 .89-.90

* As a function of gene frequency.

frequencies. For data generated under the single-locus models, the mean t was
about 1.9 (t was constrained to be below 2.0 in the maximization). Note, however,
that the estimates of rr, the ascertainment probability, are quite robust-about
.5 for the recessive model, .43 for the dominant, and .40 for the DR model.
Table 2 also shows the effect of generating data under the simple Mendelian

models with reduced penetrance. Penetrances between .5 and .1 were examined.
Discrimination between these models and the fully penetrant RR model were
considerably worse than when data were generated with fully-penetrant single-
locus models. With reduced penetrance, the power to reject the RR model varied
between about 17% and 96%. However, estimates of aT remained surprisingly
robust, varying between .43 and .57, when the generating ur was .5. (While we
have not tested whether the estimates of ur would be worse if more extreme
generating values of 7r were chosen, results in table 1 indicate that the estimates
of ar would be equally robust.)

Table 3 shows the effect of reducing the penetrance in the assumed model.
Power improved substantially when the penetrance of the assumed model matched
that of the generating model. The power appears to be a function of the ratio of

TABLE 2

RESULTS OF ANALYSES WHERE DATA WERE GENERATED UNDER A SINGLE-LOCUS DOMINANT OR
RECESSIVE OR A DR MODEL AND ANALYZED ASSUMING AN RR MODEL WITH FULL PENETRANCE

GENERATING MODEL ANALYSIS

Model Penetrance Mean i ± SD Mean* ± SD % REJECTED

Dominant 1.0 ........ 1.92 ± .10 .43 ± .05 100
.5 ........ 1.37 ± .19 .43 ± .08 59
.25 ....... 0.91 ± .22 .43 ± .11 17
.1 ........ 0.43 ± .16 .47 ± .21 81

Recessive 1.00 ....... 1.95 ± .11 .49 ± .11 100
.5 ........ 1.24 ± .29 .48 ± .12 23
.25 ........ 0.63 ± .22 .47 ± .18 37
.1 ........ 0.27 ± .13 .46 ± .26 96

DR 1.0 ........ 0.61 ± .10 .40 ± .09 94

NOTE: Generating ir was .5.
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TABLE 3

RESULTS OF ANALYSES WHERE DATA WERE GENERATED UNDER A SINGLE-LOCUS DOMINANT OR
RECESSIVE WITH REDUCED PENETRANCE AND ANALYZED ASSUMING AN RR MODEL WITH REDUCED

PENETRANCE

Generating Assumed
Generating model penetrance penetrance % rejected Mean i ± SD Mean * ± SD

Recessive ...... .5 1.0 23 1.24 + .29 .48 ± .12
.5 .5 76 1.79 ± .30 .42 ± .11
.1 .5 52 0.47 ± .18 .56 ± .21

Dominant ...... .5 1.0 59 1.37 ± .19 .43 ± .08
.5 .5 100 1.96 ± .21 .45 ± .11
.1 .5 14 0.71 ± .24 .51 ± .17

NOTE: Generating wr was .5.

the generating and the assumed penetrances, that is, the power to reject the RR
model is at a maximum when the ratio of the penetrances is unity. *

Table 4 shows the results of the calculations using the proband-conditioning
ascertainment correction. This approach worked quite well as long as the value
of a used to generate the model was less than about .1, a condition approaching
single ascertainment [18].
The Cannings and Thompson approach, then, is biased. This bias has the effect

of lowering the estimated value of f, the test parameter, as the generating value
of F increases. In the extreme, as 7r goes to 1, t goes to zero.

DISCUSSION

One can draw several conclusions from this analysis: (1) The Elandt-Johnson
method can readily distinguish between the fully penetrant RR model and fully
penetrant dominant or recessive inheritance or DR inheritance. (2) As the penetrance
of the generating model goes down, the ability to distinguish between the single-
locus Mendelian modes of inheritance and fully penetrant RR model also diminishes.
It must be emphasized that the reduction in penetrance in this case is that caused
solely by environmental influences. (3) Including reduced penetrance for the
assumed model appears in large part to correct the effects of the reduced penetrance
in the generating model. If there is a reasonable estimate to the environmentally
caused reduced penetrance, then the method can distinguish between the one-
and two-locus models. When the generating model was dominant and the penetrance
was .5, if the analyzing penetrance was also .5, 100% of the data sets rejected
the RR model at gene frequencies leading to compatible population prevalences.
When a penetrance of 1 was used for the analyzing model, only 59% of the data
sets rejected the RR model. Similarly, when the recessive model with 50% pen-
etrance was used to generate the data, assuming a penetrance of 50% for the
analyzing model led to 76% rejection, as opposed to only 23% rejection when a

* We were unable, for these studies, to use an assumed penetrance of less than .5. At penetrances
lower than that, the maximization routine started to fail because of excessive round-off errors, even

though all calculations were done in double precision (56 bits of accuracy).
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fully penetrant RR model was assumed. (4) The estimates of the ascertainment
probability are in reasonable agreement with the "true" values. The estimates
of T are quite robust and appear to be almost independent of the models used to
generate or analyze the data, at least when the generating r equals .5. Since
calculations showed *r to be consistently close to the generating -r, the method
is probably robust over the full range of a. (5) The proband-conditioning ascer-
tainment correction works well if the ascertainment probability is less than about
.1. Above a ar of . 1, substantial bias occurs in t, the test parameter. This ascer-
tainment correction does have the advantage that there is one less parameter in
the maximization.

The power estimates may actually be better than those shown in table 2. For
example, suppose data are generated under a single-locus model with reduced
penetrance. For a given data set, most of the chi-square values for the different
gene frequency combinations might not reject the model. However, if i is con-
sistently different from 1, and the trend of t as a function of the different gene
frequencies is in the direction of, say, a high gene frequency for one of the loci
and a low frequency at the other locus, this might argue against the two-locus
hypothesis, even though significance for any one gene frequency combination is
not reached.

There are undoubtedly specific generating penetrances with the single-locus
models that would give results that are indistinguishable from the fully-penetrant
RR model. Those penetrance values would appear to be between .25 and .5.
Figures 1 and 2 show graphs of the mean t as a function of the generating penetrance.
The graphs indicate that, for the gene frequencies examined, a "true" penetrance
of about .3 with dominant inheritance would lead to a complete inability of the
method to distinguish between the RR model and the single-locus dominant model.
The corresponding critical penetrance value for the recessive model is about .4.

It would appear from table 3 that taking into account the environmentally
caused penetrance restores the power to distinguish models that was lost when
data were generated under a single-locus model with reduced penetrance. Such
environmental penetrance would be reflected in the monozygotic twin concordance
rate. Unfortunately, reliable monozygotic twin rates are often difficult to obtain.

Figure 3 shows a plot of the mean value of i as a function of the -r used to
generate the data, when analysis was done using the proband-conditioning as-

TABLE 4

RESULTS OF ANALYSES OF DATA GENERATED UNDER THE RR MODEL USING
DIFFERENT VALUES OF THE ASCERTAINMENT PROBABILITY

WITH THE PROBAND-CONDITIONING ASCERTAINMENT CORRECTION
AND ANALYZED UNDER THE RR MODEL

Generating ar % rejected Mean i ± SD

.05 .......... 3 .95 ± .18

.1 ........... 6 .91 ± .19

.3 ........... 38 .72 ± .18

.5 ........... 78 .52 ± .16
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FIG. 1.-The mean estimated test parameter, i, vs. the generating model penetrance, where the
generating model was the single-locus dominant. Dashed line indicates that, since the value of i was
not permitted to go above 2.0, the latter part of the curve is inaccurate. Error bars indicate plus and
minus 1 SD.

certainment correction. The mean of t appears to be a linear function of the 7r
used to generate the data. It should be noted that Cannings and Thompson derived
the ascertainment correction under the assumption of one proband per family.
Therefore, assuming anything other than single ascertainment violates that as-
sumption. We wanted to see to what extent the method was biased at different
generating ascertainment probabilities. (Further work on the Cannings-Thompson
approach will appear in a paper by M. Boenhke and D. A. Greenberg; in prep-
aration.)
The segregation analysis done here is very simple compared to some of the

methods that have been reported. It consists of only two parameters: t, the test
parameter, and 7r, the ascertainment probability. Under circumstances where one
can use the proband-conditioning correction for the ascertainment probability,
the method reduces to only one parameter. Despite its relative simplicity and
restrictiveness, the power of the method to distinguish between genetic models
is limited. Were one to try to estimate other parameters (such as penetrance or
gene frequency), the power of the method to distinguish between competing
models would be even less. This analysis points out the need to do simulation
studies to establish the power of a segregation method. It also points out that a
segregation analysis represents only one possible approach. Other ways of ex-
amining data [1, 5] are essential before one can reasonably expect to determine
mode of inheritance.
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FIG. 2.-Same as in figure 1, but for the single-locus recessive model

One piece of data that was not taken advantage of in the current analysis was
population prevalence. The limits on the population prevalence were deliberately
set wide. All gene frequencies leading to population prevalences between five-
times-greater and five-times-less than the "observed" were examined. In practice,
population prevalences would usually be more restrictive than those limits. In
the case of coeliac disease, where this analysis method was applied to data from
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FIG. 3.-The mean estimated test parameter, i, vs. the generating model aT when the calculations
were performed by conditioning on the probands. The model used to generate and analyze the data
was the RR model.



41 families [1], reported population prevalence did vary by a factor of 5 in each
direction (from about 1:6,000 to 1:300). However, even in that case, the population
prevalence contributed to the argument against the dominant-recessive model.
The studies reported here were extremely time-consuming, both in human time

and in computer time. Yet such studies are an important way of testing the tools
that geneticists use.
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