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Detecting Linkage for Genetically Heterogeneous
Diseases and Detecting Heterogeneity with Linkage Data

L. L. CAVALLI-SFORZA1 AND MARY-CLAIRE KING2

SUMMARY

Interest in searching for genetic linkage between diseases and marker
loci has been greatly increased by the recent introduction of DNA
polymorphisms. However, even for the most well-behaved Mendelian
disorders, those with clear-cut mode of inheritance, complete pene-
trance, and no phenocopies, genetic heterogeneity may exist; that is,
in the population there may be more than one locus that can determine
the disease, and these loci may not be linked. In such cases, two
questions arise: (1) What sample size is necessary to detect linkage for
a genetically heterogeneous disease? (2) What sample size is neces-
sary to detect heterogeneity given linkage between a disease and a
marker locus?
We have answered these questions for the most important types of

matings under specified conditions: linkage phase known or unknown,
number of alleles involved in the cross at the marker locus, and differ-
ent numbers of affected and unaffected children. In general, the pres-
ence of heterogeneity increases the recombination value at which lod
scores peak, by an amount that increases with the degree of heteroge-
neity. There is a corresponding increase in the number of families
necessary to establish linkage.
For the specific case of backcrosses between disease and marker

loci with two alleles, linkage can be detected at recombination frac-
tions up to 20% with reasonable numbers of families, even if only half
the families carry the disease locus linked to the marker. The task is
easier if more than two informative children are available or if phase is
known. For recessive diseases, highly polymorphic markers with four
different alleles in the parents greatly reduce the number of families
required.
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It is possible to detect heterogeneity by comparing the maximum
likelihood value obtained as a function of both recombination and
heterogeneity with the likelihood value obtained on the assumption of
no heterogeneity. The numbers of families necessary to establish
heterogeneity are minimal near 50% heterogeneity. For recessive dis-
eases with phase unknown, backcrosses for the disease and marker
loci do not allow separate estimation of linkage and heterogeneity and,
therefore, preclude testing heterogeneity, unless the number of af-
fected children per family is at least four, an inevitably rare situation.
This impasse is overcome if phase is known (a rare event for rare
recessive diseases) or if a highly polymorphic marker is available,
yielding A1A2 x A3A4 parental genotypes. For rare dominant dis-
eases, for which most matings are backcrosses involving only one
informative parent, heterogeneity can be detected only if phase is
known or if at least four children per family are available. Linkage can
be tested in the presence of undetected heterogeneity, but if
heterogeneity exists, the estimated recombination value for linkage
will be too high.

INTRODUCTION

The availability of many genetic markers that are highly polymorphic at the
DNA level has revolutionized genetic analysis, so that it is now possible, in
principle, to map the genes responsible for any genetic disease. However, most
genetically influenced common diseases have complications, including genetic
heterogeneity, incomplete penetrance, variable age of onset, and occurrence of
nongenetic cases (phenocopies), that make genetic analysis more difficult. The
problem of genetic heterogeneity is especially crucial to address whenever
linkage between a disease and a marker is detected and used for genetic coun-
seling. The most direct way to prove genetic heterogeneity would be to map all
genes that independently determine a given disease. One approach is to sample
a few very large pedigrees, each sufficiently informative to show linkage inde-
pendently. Different linkages in different pedigrees would establish heterogene-
ity in this case. However, for many diseases, enough large families may not be
available to detect in this way heterogeneity of practical importance. To dem-
onstrate heterogeneity directly with smaller families would be possible if all
disease genes have closely linked markers, but the mapping techniques are so
demanding that this will take a long time. Meanwhile, it is of interest to test
statistically for heterogeneity and anticipate the number of families necessary
to detect linkage when heterogeneity is present and the information comes from
a sample of small families.

In this analysis, we address the problem presented to linkage studies by
genetic heterogeneity-the existence of two or more unlinked loci that deter-
mine disease susceptibility. The problem was originally addressed by Morton
[1] and Smith [2]. Ott reformulated the Smith approach as a likelihood ratio test
[3] and compared the Smith and Morton approaches [4]. These methods were
used to test for genetic heterogeneity of bipolar-related affective illness [5] and
insulin-dependent diabetes [6].
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For fully penetrant diseases, without phenocopies, we are interested in two
questions: (1) What sample size is necessary to detect linkage for a genetically
heterogeneous disease? and (2) What sample size is necessary to detect hetero-
geneity given linkage between a disease allele and a marker locus? For simplic-
ity, we confine our attention to the most frequent and most informative mat-
ings. Let

A,, A2 . . . = alleles at marker locus A;
D = disease locus linked to marker locus A;f, is the frequency of

the allele responsible for disease at this locus. Disease al-
leles at other loci, not linked to A or D, have frequencies f2,
f3.... When necessary to specify, for a recessive disease,
affected individuals will be dd, and, for a dominant disease,
dd will be normal.

a = true proportion of cases in the population due to disease
locus D. If the disease alleles are all recessive, then approxi-
mately a = (fI2)I(Xf). If the disease alleles are all dominant,
then again, approximately a = (fi)1(Xf1).

a = estimated proportion of cases in the population due to D;
depends on r;

p = proportion of affected sib pairs discordant for genotypes at
the marker locus A;

0 = true probability of recombination between D and marker
locus A;

r = estimated 0 from sample of families, depends on a;
N = number of families required to detect linkage or heteroge-

neity between D and A;
n = number of children to be considered in each family (for a

dominant disease, n = all children; for a recessive disease, n
= number of affected children);

i = number of children per family with recombinant genotypes
forA and D when linkage phase ofA and D is known, or one
of two parental marker types if phase is unknown;

= phase for marker loci with two alleles (4 = 1 if phase is
known, + = 1/2 if phase is unknown); and

= phase for marker loci with many alleles ( I= 1 if phase is
known, and 4 = 0 if phase is unknown).

NUMBERS OF FAMILIES NECESSARY TO DETECT LINKAGE

Marker Locus with Two Alleles
The number of families N necessary to detect linkage between D andA at 0 is

calculated as the lod score associated with linkage (say 3.0) divided by the
expected lod score for one family. Consider families that are backcrosses at the
marker locus-that is, for a recessive disease, each family has AIA2 x AkAk
parents (k = 1, 2, . . .); for a dominant disease, the affected parent is A1A2
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and the unaffected parent AkAk. Following the approach of Morton [1], if the
linkage phase of the marker locus and the disease locus is known, then for a
family with disease allele at locus D, i children with recombinant genotypes
and (n - i) children with nonrecombinant genotypes, the lod score for linkage
of D and A at recombination fraction r is

o - g1n ( ir
1091

If the linkage phase of the marker locus and the disease locus is unknown, then
the lod score at r for a family, with disease linked to A, with i children of one
phase and (n - i) children of the opposite phase, is

-( 1 - r)n - ir' + I O1 _ rirn- i
log10 2 1 1 (1)

For a family with disease due to a locus not linked to A, the lod score is

(I)nlog10

A general formula, for known or unknown phase, for the lod score at any a and
r for a family with i children of one phase (recombinant if phase known) at the A
and D loci and (n - i) children of the alternate phase (nonrecombinant if phase
known) at the A and D loci is

4*a(l - r)n -ir + (1 - *4)a(1 - r)irni + (1 - a) 2
lod(i) = log0o (n

The expected lod score for a family with n children depends on both lod (i)
and the expected proportion P(i) of families with i recombinant and (n - i)
nonrecombinant children. The distribution of family types, depends on the true
ax and 0 for linkage of D to A. For families with disease due to D or d, the
proportion of families with i recombinant and (n - i) nonrecombinant children
is

nO- O)n-ioi
iS~~~~~~~~~~~~~

For families with disease at an unlinked locus, the proportion of families with i
recombinant and (n - i) nonrecombinant children is

n(
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For proportion a of families with disease linked to A, and (1 - a) families with
unlicked disease loci,

P(i) = ( t)[a(1 - 0)n + (1 - )(+) . (2)

The expected lod score for a family of n children of A1A2 x AkAk parents is
therefore

n

E(L) = E P(i)lod(i) (3)
i=O

Figure 1 illustrates how E(L) varies as a function of r and a for 0 = .1, at = .5,
with n = 3 and phase unknown, and with n = 4 and phase known. As we shall
also discuss further, with n = 2 or 3 and phase unknown, the peak lod score is
independent of a (fig. 1), and therefore one cannot estimate a separately from 0
using maximum likelihood.
The expected lod score for N families is equal to N E(L) with a maximum

value ofN Lmax over all 0 and a. Therefore, to obtain a total lod score of three,
the number of families required, on average, is N = 3/Lmax. Table 1 indicates
the number of families with n = 2, n = 3, and n = 4 children necessary to
obtain a lod score of 3.0 for various recombination fractions, in the presence of
genetic heterogeneity for phase unknown. As table 1 indicates, N is larger for

A. .08 - n =3 a = 1.0
.07 -/a =0.9

0.t .2~~~~~~~~~.30.4

rested recombination fraction

.06 ~~~~~~~~~~a-=0.7

0 0=.2 .3 . A .

Tested recombination fraction

FIG. 1.-Expected lod score as a function of recombination fraction at various levels of genetic
heterogeneity for matings DdA,A2 x ddAkAk (dominant disease) or DdA,A2 x DdAkAk (recessive
disease). True a = .50, 0 = .10. A, Phase unknown, three informative children per family (all
children for a dominant disease; affected children for a recessive disease). B, Phase known, four
informative children per family.
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TABLE 1

No. FAMILIES REQUIRED TO DETECT LINKAGE AT 3.0, GIVEN A1A2 x AkAk PARENTS,
PHASE UNKNOWN

0

a .001 .05 .10 .15 .20

n =2

1.0 ...... 10 18 31 55 104
.9 ...... 14 23 39 69 129
.8 ...... 19 30 50 88 164
.7 ...... 26 40 66 115 215
.6 ...... 36 56 91 157 294
.5 ...... 53 82 133 228 424
.4 ...... 85 129 208 357 664
.3 ...... 152 232 372 637 1,182
.2 ...... 346 524 841 1,436 2,662
I ...... 1,390 2,103 3,370 5,752 > 10,000

n =3

1.0 ...... 5.1 8.4 14 23 41
.9 ...... 6.7 10 17 28 51
.8 ...... 8.7 13 21 35 63
.7 1...... 1 17 27 45 82
.6 ...... 16 23 37 61 110
.5 ...... 22 33 52 86 156
.4 ...... 34 51 80 133 240
.3 ...... 59 88 138 231 420
.2 ...... 129 192 302 508 928
.I ...... 492 737 1,169 1,978 3,635

n =4

1.0 ...... 3.4 5.3 8.3 13 24
.9 ...... 4.3 6.6 10 16 29
.8 ...... 5.5 8.2 13 20 36
.7 ...... 7.0 11 16 26 46
.6 ...... 9.3 14 21 35 61
.5 ...... 13 19 30 48 86
.4 ...... 19 28 44 73 130
.3 ...... 32 48 75 124 223
.2 ...... 65 99 158 265 481
.1 ...... 234 361 583 996 1,837

lower values of a. These figures are appropriate for estimating necessary sam-
ple sizes for diseases like cystic fibrosis or neurofibromatosis, given various
levels of genetic heterogeneity and unknown phase.
Family sizes are based on all children for dominant diseases, but only af-

fected children for recessive diseases, because unaffected children add little to
the lod score for a recessive disease. Suppose parents carrying the recessive
disease allele are A1A2 x AkAk and that the disease allele is linked to A2 at
distance 0. Then, among unaffected children, the proportion Al will be (2 - 0)/
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3 and the proportion A2 will be (1 + 0)/3. The probability that the number ofAI
unaffected children in a family is j and the number of A2 unaffected children is
(m - j) is

=m)(2 - 0)mJ1 + 0)(4P
J )()= (4)

The lod score contributed by the unaffected children in such a mating of car-
riers is

lod(j) = logl0

ba(2 r)m( + r) + (1 - 4)a(1 + r)m ( 2 - r) + ( -

(+)m~~~~~~~~~~~5

and
m

E(Lu) = E P(j)lod(j) . (6)
j=0

Figure 2 is a numerical example showing that the lod score increase is small
when unaffected children are added. For example, adding four unaffected chil-
dren to a family in which two parents and two affected children were tested
increases the expected lod score by only about 13%, despite doubling the
number of subjects. When a recessive disease is common enough that it is
possible to choose only families with at least two living affected children, it is
more efficient to limit analysis to these multiply-affected families, regardless of
the number of unaffected children in each. It does not generally appear worth-
while to search specifically for families with many unaffected children.

If the linkage phase ofD and A is known, then fewer families are required to
detect linkage. In practice, this usually means the disease will be a dominant,
with grandparents available. Because in this case affected and unaffected chil-
dren are equally informative, families of n = 4 or more children may be avail-
able and useful. Table 2 indicates required sample sizes for families with an
A1A2 affected parent and an AkAk unaffected parent, known phase, and two,
three, or four children per family. Clearly, larger families are more informative,
and detecting linkage requires more families for smaller a. Knowing linkage
phase, however, considerably increases the amount of information per family.
For example, at 0 = .1 and a = .7, detecting linkage requires 20 families of
n = 2 children if phase is known and 66 families if phase is unknown.

A Particular Problem ofRecessive Disease, n = 2 or 3
For a recessive disease like cystic fibrosis, linkage phase is usually unknown.

Families with one affected child have very little information for linkage, but
families with two, and occasionally three, affected children may be available.
We have already seen that additional unaffected children add proportionately
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FIG. 2.-Effect on lod score of including unaffected children in linkage analysis of recessive
disease, given two affected children per family, true 0 = .10, and phase unknown. Expected lod
scores per family if no unaffected children are tested (lower curve of each pair) and if four
unaffected children are also tested in each family (upper curve of each pair). Comparisons are
given for true a = .7 and 1.0, when lod scores are calculated at the true heterogeneity using
equations (3) and (4).

much less information. Therefore, the most common informative families of
type A IA2Dd X AkAkDd for recessive diseases have two affected children. In
such families, phase is almost always unknown. These families can be distin-
guished into two types: concordant sib pairs (i.e., both affected children are AI
or both are A2) and discordant sib pairs.
The proportion of discordant sib pairs, p, can be used for testing linkage. The

probability that a pair of affected children will be concordant at the marker
locus A is (1 - 0)2 + 02, and the probability the affected pair will be discordant
A is 20(1 - 0). For families with disease caused by other loci, the probability
that the affected pair of children will be concordant at A is ½/2 and the probability
of discordance is ½/2.

Therefore:

po~c = 2a0(1 - 0) + 2(7)

for families with two affected children. If the disease and marker loci are
unlinked, then 0 = 1/2, so p = 1/2 for all a; for complete linkage, p = 0.
A given value of p corresponds to an infinite family of 0, ax values, and

therefore estimation of linkage from p cannot separate ao from 0. With only
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TABLE 2

No. FAMILIES REQUIRED TO DETECT LINKAGE AT 3.0, GIVEN AIA2 X AkAk PARENTS
AND PHASE KNOWN

607

0

a . .....001 .05 .10 .15 .20

n =2

1.0 ........ 5.0 7.0 9.4 13 18
.9 ........ 6.7 8.9 12 16 22
.8 ........ 8.7 11 15 20 28
.7 ........ 12 15 20 26 37
.6 ........ 16 20 26 36 50
.5 ........ 22 28 37 51 71
.4 ........ 34 44 58 78 110
.3 ........ 59 76 101 137 193
.2 ........ 129 166 221 302 427
.1....... 493 638 854 1,173 1,672

n=3

1.0 ........ 3.4 4.7 6.3 8.5 12
.9 ........ 4.3 5.8 7.8 11 15
.8 ........ 5.5 7.3 10 13 19
.7 ........ 7.0 9.4 13 17 24
.6 ........ 9.3 13 17 23 32
.5 ........ 13 17 23 32 45
.4 ........ 19 25 34 48 69
.3 ........ 31 42 58 82 119
.2 ........ 65 88 123 175 257
.1 ........ 233 321 453 654 975

n =4

1.0 ........ 2.6 3.5 4.7 6.4 10
.9 ........ 3.2 4.4 5.9 7.9 11
.8 ........ 3.9 5.4 7.2 10 14
.7 ........ 4.9 6.8 9.2 13 18
.6 ........ 6.4 8.8 12 17 24
.5 ........ 8.6 12 16 23 33
.4 ........ 12 17 24 33 49
.3 ........ 20 28 39 56 83
.2 ........ 38 55 79 116 175
.1 ........ 128 186 275 415 643

families with two affected children, AIA2 x AkAk parents, and phase unknown,
it is not possible to estimate 0 and a separately. Figure 3A shows the curves of
0, a pairs corresponding to linkage for a set of chosen p values for n = 2.
For recessive disease families with three affected children of A1A2 x AkAk

parents carrying a disease allele linked to A, with phase unknown, the probabil-
ity of concordance atA of all three children is (1 - 0)3 + 03, and the probability
of discordance, 1 - [(1 - 0)3 + 03]. For families with three children affected
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a 0.11/00=2AIo~~~~~~~ 2
.1 .2 .3 .4

°L-M^"?j;;5~~ 3o;

o r .1 .2 .3 .4

e

FIG. 3.-Range of values of heterogeneity and recombination fraction consistent with linkage,
given observed proportion p of affected sib-pairs discordant at the marker locus, for DdAIA2
x DdAkAk matings. Top, n = 2, a = (l/2 - p)/['/2 - 20 -00. Bottom, n = 3, a = (3/40-0p)/[3/4
- 30(1 - 0)].

with disease due to a locus unlinked to A, the probability of concordance is 1/4
and the probability of discordance is 3/4. Therefore,

Pe,a = -4Il (1 O)3 03] + (1 ot)(+)
3

(8)

If the disease and marker loci are unlinked, then 0 = 1/2 and p = 3/4. Figure 3B
indicates pairs of 0,a values corresponding to observed proportions of discor-
dant sibs for n = 3. As before, separate estimation of a and 0 is impossible.
The number of families necessary to detect linkage using discordant sibs can

be estimated from equations (7) and (8). The appropriate x2 test (1 degree of
freedom) for linkage based on observed PO,a is

2 (NP0,a-NPO=.5)2 + [N(1 - POa)N(1 _ PO 5)]2
x NPO=.5 NO -PO=.5)

The number of families with two affected children necessary to reach a given
significant x2 is N2 - *2/16a2[0(1 - 0) _ 1/4]2. For families with three affected
children N3 = *2/48cx2[0(1 - 0) 1/4]2. Thus, N2 = 3N3, and three times as
many two-children families as three-children families are required for a speci-
fied value of x2.
The x2 test for linkage is based on computations of probabilities from tails of

distributions and will therefore generate significance levels that are inevitably
somewhat different from those based on the likelihood-ratio approach de-
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scribed above. For practical purposes, there is sufficient agreement between
results of the x2 and the likelihood-ratio approaches, as can be seen by compar-
ing the required numbers of families indicated in table 1 with those calculated
from the x2 formulas above.

Marker Locus with Many Alleles
Marker loci with many alleles are more informative than two-allele markers,

and fewer families will be required on average to detect linkage. Suppose for a
recessive disease, A1A2 x A3A4 parents have n = il + i2 + i3 + i4 affected
children as follows: il children are A1A3, i2 children are AIA4, i3 children are
A2A3, and i4 children are A2A4. If proportion a of the families have disease due
to a recessive allele linked to AI and A3, and proportion (1 - a) of the families
have disease due to recessive loci not linked to A, then the proportion of
families with il, i2, i3, and i4 children is

P(i,.i2,i3,4) = !a (1 - o)2i+i2+i30i2+i3+2i4 +1 -
2n

P~lll2,3,l) = il !i2!i3!i4! (+( -1t2y
The corresponding formula for the lod score for A1A2 x A3A4 family is
lod(i1,i2,i3,4) =

log101 (1 +434)a [(1 - r)2ih +i2+i3r22+i3+2i4]

+ (1 - )a [(1 - r)il + 2i3 +i4rl + 2i2 +i4 + (1 - r)" + 22 + i4ri + 2i + 4
4

+ (1- r)22+i3+224r22i+2+i3] + (1- a) (2

(2)~~~~~~~~
lo10 (12n

where qi = 1 if phase is known and qi = 0 if phase is unknown.
The expected score per family is

E(L) = >1>1 KP(il, i2, i3, i4) lod(i1, i2, i3, 4)
i3 i2 'l

As before, N = 3/E(L). Tables 3 and 4 indicate the number of A1A2 x A3A4
families with n = 2, n = 3, and n = 4 affected children required to detect
linkage for various values of 0 and a, phase unknown and known. The increase
in amount of information using multiallelic vs. biallelic markers is apparent by
comparing tables 1 and 2 with tables 3 and 4.

NUMBER OF FAMILIES NECESSARY TO DETECT HETEROGENEITY

In order to test whether more than one unlinked disease locus is present in a
sample of families, we test whether the maximum lod score over all 0 and a
(Lmax) is significantly greater than the maximum lod score assuming no
heterogeneity and varying 0 (La.= 1).
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TABLE 3

No. FAMILIES REQUIRED TO DETECT LINKAGE AT 3.0, GIVEN A1A2 x A3A4 PARENTS AND
PHASE UNKNOWN, RECESSIVE DISEASE

0

a .001 .05 .10 .15 .20

n = 2 affected children

1.0 ....... 5.1 9.1 16 28 52
.9 ....... 6.7 12 19 34 65
.8 ....... 8.7 15 25 43 82
.7 ....... 12 19 32 57 107
.6 ....... 16 26 44 77 145
.5 ....... 22 37 62 110 208
.4 ....... 34 57 96 171 324
.3 ....... 59 98 168 300 573
.2 ....... 129 215 370 666 1,278
........ 493 829 1,444 2,620 5,063

n = 3 affected children

1.0 ....... 2.6 4.2 6.8 11 21
.9 ....... 3.2 5.2 8.4 14 25
.8 ....... 3.9 6.4 10 17 31
.7 ....... 4.9 8.1 13 22 40
.6 ....... 6.4 10 17 29 53
.5 ....... 8.6 14 24 41 75
.4 ....... 12 21 35 61 114
.3 ....... 20 33 57 102 196
.2 ....... 39 66 117 215 421
.1 ....... 128 226 415 791 1,594

n = 4 affected children

1.0 ....... 1.7 2.7 4.2 6.8 12
.9 ....... 2.1 3.3 5.1 8.2 14
.8 ....... 2.5 3.9 6.2 10 18
.7 ....... 3.0 4.8 7.7 13 23
.6 ....... 3.8 6.1 10 16 30
.5 ....... 4.9 8.1 13 22 41
.4 ....... 6.8 11 19 33 60
.3 ....... 10 17 30 53 101
.2 ....... 18 32 57 106 208
. ....... 52 96 181 356 742

Marker Locus with Two Alleles
For two-allele markers, we have already shown that it is more difficult to

separate heterogeneity from recombination and, hence, test for the presence of
heterogeneity. For n = 2 or 3 and phase unknown, the maximum likelihood
approach indicates that the expected number of families for detecting heteroge-
neity is infinity.
For A1A2 x AkAk families with linkage phase known, or with four or more
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TABLE 4

No. FAMILIES REQUIRED TO DETECT LINKAGE AT 3.0, GIVEN A 1A2
PHASE KNOWN, RECESSIVE DISEASE

x A3A4 PARENTS AND

0

ax .001 .05 .10 .15 .20

n = 2 affected children

1.0 ........ 2.6 3.5 4.7 6.4 9.0
.9 ........ 3.2 4.4 5.8 8.0 11
.8 ........ 3.9 5.4 7.3 10 14
.7 ........ 4.9 6.8 9.2 12 17
.6 ........ 6.4 8.6 12 16 24
.5 ........ 8.6 12 16 23 33
.4 ........ 12 17 24 34 49
.3 ........ 20 28 39 56 83
.2.. 39 55 79 116 175
.1 ....... 128 186 275 415 643

n = 3 affected children

1.0 ........ 1.7 2.4 3.2 4.3 6.0
.9 ........ 2.1 2.9 3.8 5.2 7.4
.8 ........ 2.5 3.4 4.7 6.5 9.1
.7 ........ 3.0 4.2 5.8 8.1 12
.6 ........ 3.8 5.4 7.5 10 15
.5 ........ 4.9 7.1 10 14 21
.4 ........ 6.7 10 14 20 30
.3 ........ 10 15 22 33 49
.2 ........ 18 28 42 64 99
.1 ........ 52 82 129 207 340

n = 4 affected children

1.0 ........ 1.3 1.8 2.4 3.2 4.5
.9 ........ 1.5 2.1 2.9 3.9 5.5
.8 ........ 1.8 2.5 3.4 4.7 6.8
.7 ........ 2.2 3.1 4.2 5.9 8.5
.6 ........ 2.6 3.8 5.3 7.5 11
.5 ........ 3.4 4.9 7.0 10 15
.4 ........ 4.5 6.7 10 14 21
.3 ........ 6.6 10 15 22 34
.2 ........ 11 17 27 41 65
. ........ 28 47 75 124 210

children, there will be a unique value r' at which the lod score reaches its
maximum (Lmax). It is possible to determine r as a function of 0 and a by
differentiating L with respect to r; that is, from equation (1),

daL = EP(j) -a(1 r)--- r(n-i) + ai(l r)n-iri= 0

a(1 - r)' r' + (1 - a)
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When linkage phase is known, if one sets a = 1 but, in fact, at < 1, the
maximum lod score Lmax occurs at

A = ads + 2a.raO+ 2

This value for r is independent of n. We understand an identical formula ap-
pears in Ott [7] and that a corresponding formula is given there for unknown
phase (J. Ott, personal communication, 1985).
The P value for the test of heterogeneity is P = 10-N(Lmax-L_=). Tables 5

and 6 indicate the number N of A1A2 x AkAk families of n = 2, n = 3, and
n = 4 children required to detect heterogeneity based on a one-tailed test at
.05, or P = .10. Therefore logP = - 1.0, so that

_ 1.0N =
. (9)

Lmax - La(=

Marker Locus with Many Alleles
For A1A2 x A3A4 families with recessive disease, testing heterogeneity is

easier. The test for heterogeneity is analogous to that for marker loci with two
alleles, and the number of families is defined by equation (9). Tables 7 and 8
indicate the number of families with A1A2 x A3,A4 parents, n = 2, n = 3, and
n = 4 children, and phase unknown or known, required to detect
heterogeneity.

DISCUSSION

In the presence of genetic heterogeneity, the general shape of the curve of
lod score vs. recombination fraction 0 remains the same, but is displaced: the

TABLE 5

No. FAMILIES REQUIRED TO DETECT HETEROGENEITY AT ODDS RATIO 10:1, GIVEN A 1A2 X AkAk
PARENTS, PHASE UNKNOWN

0

at .001 .05 .10 .15 .20

n =4

.9 ........ 38 263 1,298 5,665 > 10,000

.8 ........ 30 131 520 2,030 8,444

.7 ........ 30 104 362 1,306 5,180

.6 ........ 34 101 321 1,091 4,159

.5 ........ 41 113 334 1,080 3,990

.4 ........ 55 141 398 1,243 4,475

.3 ........ 84 207 561 1,700 6,001

.2 ........ 164 388 1,022 3,030 > 10,000
........ 561 1,295 3,346 9,783 >10,000

NOTE: Dash indicates more than 104 families required. Heterogeneity cannot be detected for phase unknown
and fewer than four children per family.
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TABLE 6
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No. FAMILIES NECESSARY TO DETECT HETEROGENEITY AT ODDS RATIO 10:1, GIVEN A 1A2 X AkAk
PARENTS, PHASE KNOWN

0

ax . .......001 .05 .10 .15 .20

n =2

.9 ......... 50 142 368 911 2,253

.8 ......... 37 80 172 374 844

.7 ......... 36 68 131 263 559

.6 ......... 39 67 122 233 475

.5 ......... 45 75 131 241 476

.4 ......... 59 95 160 286 551

.3 ......... 89 138 228 399 756

.2 ......... 168 257 420 721 1,349

.1 ......... 562 852 1,370 2,345 4,356

n=3

.9 ......... 18 54 130 306 738

.8 ......... 14 30 64 133 292

.7 ......... 13 25 48 95 197

.6 ......... 13 24 44 84 168

.5 ......... 15 26 47 85 167

.4.20 32 55 99 190

.3 ........ 28 45 76 134 255

.2 ......... 50 80 133 233 442
...... ... 157 247 410 721 1,370

n =4

.9 ......... 10 30 69 156 367

.8 ......... 7.6 17 35 70 151

.7 ......... 7.0 14 26 51 103

.6 ......... 7.2 13 24 45 88

.5 ......... 8.1 14 25 45 88

.4 ......... 10 17 29 52 99

.3 ......... 14 23 39 69 130

.2 ......... 24 38 65 115 219

. ......... 68 110 188 337 651

average lod score per family may decrease and the peak lod score is found at an
r value higher than the true 0, thus imitating looser linkage. Therefore, the
sensitivity of the test for linkage is decreased, and detection of linkage in the
presence of heterogeneity will require more families. We have estimated
the expected number of families required to detect linkage given heterogeneity
compared to the expected number required in the absence of heterogeneity.
The types of matings considered are the common ones: for a dominant disease,
DdA1A2 x ddAkAk, including all children; and for a recessive disease, DdA1A2
x DdAkAk, and DdAjA2 x DdA3A4 including only affected children.
The number of families required to detect linkage increases as the proportion
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TABLE 7

No. FAMILIES REQUIRED TO DETECT HETEROGENEITY AT ODDS RATIO 10:1, GIVEN A A2 x A3A4
PARENTS AND PHASE UNKNOWN, RECESSIVE DISEASE

0

a .001 .05 .10 .15 .20

n = 2 affected children

.9 ........ 50 335 1,564 6,449 > 10,000

.8 ........ 38 154 605 2,258 9,025

.7 ........ 36 122 410 1,423 5,464

.6 ........ 39 114 354 1,165 4,335

.5 ........ 46 124 359 1,134 4,111

.4 ........ 60 151 419 1,285 4,567

.3 ........ 89 216 579 1,736 6,070

.2 ........ 169 397 1,038 3,062 > 10,000

.1 ........ 566 1,303 3,360 9,799 >10,000

n = 3 affected children

.9 ........ 18 121 511 1,849 6,680

.8 ........ 13 53 184 606 2,095

.7 ........ 12 38 115 356 1,192

.6 ........ 12 33 92 271 884

.5 ........ 13 32 85 243 780

.4 ........ 15 36 91 252 800

.3 ........ 20 46 112 307 973

.2 ........ 33 72 176 479 1,533
........ 90 196 478 1,324 4,334

n = 4 affected children

.9 ........ 7.4 37 137 501 1,913

.8 ........ 5.3 19 58 185 639

.7 ........ 4.8 15 40 117 379

.6 ........ 4.8 13 34 93 288

.5 ........ 5.2 13 32 85 257

.4 ........ 6.1 14 34 88 262.

.3 ........ 7.8 18 42 105 311

.2 ........ 12 27 61 156 465

.1 ........ 28 62 146 384 1,193

a of families with disease linked to the marker decreases. Just to give an
indication of the order of magnitude, the expected number of families required
to detect linkage is three to five times greater if a = .50 than if a = 1.0. This is a
substantial increase, but it may still be possible to detect linkage especially if it
is reasonably tight. There are obviously three ways of improving the chances of
detecting linkage: (1) include families with a larger number of informative chil-
dren (more likely for dominant diseases, since affected and unaffected children
are equally useful); (2) use collateral relatives to establish the phase (also more
likely to be possible for dominant diseases); and (3) for recessive diseases, find
more polymorphism at the marker. Frequently, heterozygosity of a marker can
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TABLE 8
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No. FAMILIES REQUIRED TO DETECT HETEROGENEITY AT ODDS RATIO 10:1, GIVEN A1A2 x A3A4
PARENTS AND PHASE KNOWN, RECESSIVE DISEASE

0

a .001 .05 .10 .15 .20

n = 2 affected children

.9 ........ 10 30 69 156 367

.8 ........ 7.6 17 35 70 151

.7 ........ 7.0 14 26 51 103

.6 ........ 7.2 13 24 45 88

.5 ........ 8.1 14 25 45 88

.4 ........ 10 17 29 52 99

.3 ......... 14 23 39 69 130

.2 ........ 24 38 65 115 219

.1 ........ 68 110 187 336 651

n = 3 affected children

.9 ........ 5.2 14 30 65 148

.8 ........ 3.7 8.2 16 31 64

.7 ........ 3.3 6.7 12 23 45

.6 ........ 3.4 6.3 11 20 39

.5 ........ 3.7 6.6 11 20 38

.4 ........ 4.3 7.6 13 23 42

. .......... 5.7 10 17 29 55

.2 ........ 9.0 15 26 46 88

.1 ........ 23 38 67 123 242

n = 4 affected children

.9 ........ 3.4 8.7 18 37 81

.8 ........ 2.4 5.1 10 18 37

.7 ........ 2.1 4.2 7.4 13 26

.6 ........ 2.1 3.9 6.7 12 22

.5 ........ 2.3 4.0 6.8 12 22

.4 ........ 2.6 4.6 7.7 13 24

.3 ........ 3.3 5.8 10 17 31

.2 ........ 5.0 8.7 15 26 48

. ........ 11 20 35 63 125

be increased by testing with other restriction enzymes. Tables 1-4 give numeri-
cal values for evaluating the advantage to be gained with various strategies.

In general, heterogeneity is most easily detected when ax is about .50. Not
surprisingly, very high and very low heterogeneity are difficult to detect. At
a = .50, the sample size necessary to detect heterogeneity is comparable to
that necessary for detecting linkage, especially if recombination is low. Detect-
ing heterogeneity is very difficult when phase is unknown, for either recessive
or dominant diseases. With two-allele markers and unknown phase,
heterogeneity and linkage can be separately estimated if n -4, but there are not
many families with recessive disease with four or more affected children. The
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situation is better for dominant diseases, since all children are equally informa-
tive. For recessive diseases, four-allele matings AIA2 x A3A4 enable the detec-
tion of heterogeneity even if phase is unknown.

In summary, heterogeneity increases the difficulty of detecting linkage, al-
though both linkage and heterogeneity can be estimated under appropriate
conditions. For dominant, fully penetrant diseases, the task is easier than for
recessives because phase can be ascertained and because unaffected children
are as informative as affected ones. For recessive diseases, the geneticist's best
allies are highly polymorphic markers.
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