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A Simple Method for Testing Two-Locus Models of Inheritance

DAVID A. GREENBERGI

SUMMARY

A graphic method for testing simple two-locus models of inheritance is
developed. The model assumes two alleles at each locus where both loci
exhibit dominant, both exhibit recessive, or one locus exhibits dominant
and one locus exhibits recessive inheritance. Examples of applying the
graphs using published data on three diseases are given.

INTRODUCTION

The number of models of the mode of inheritance that can easily be tested by
mathematical and clinical investigators is limited. Oligo- and polygenic and multi-
factorial models are often beyond the capability of all but the computerwise and are
often not excludable with the amount of data (e.g., number of pedigrees) available.
It is also not uncommon to see the concept of reduced penetrance invoked as an
explanation for the failure of a segregation ratio calculation to yield a segregation
ratio on the order of .25 or .5. While the concept of reduced penetrance (i.e., where
individuals possessing the disease genotype may not exhibit the trait or disease) is a
useful one and the description is of a real phenomenon, it is probably too often used
to cloak our ignorance of the genetics of a disease rather than to display our
knowledge.

Recently, there have been reports of human disease that are possibly the result of
the interaction oftwo loci, either linked or unlinked [1, 2]. (The mathematics oftwo
linked loci have also been examined recently [3].) In what is apparently a little-
known paper, Defrise-Gussenhoven [4] in 1962 proposed using graphs of Snyder's
ratio and population prevalence as a way of testing whether such data were
consistent with two-locus models of inheritance. (Snyder's ratio is the segregation
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ratio conditioned on parental phenotype.) However, data from the literature sel-
dom include parental phenotype, data which are necessary for the calculation of
Snyder's ratio. Here, graphs similar to those published by Defrise-Gussenhoven are
presented, but with the approach of using the population segregation ratio instead
of Snyder's ratio. The population segregation ratio can be viewed as Snyder's ratio
averaged over all parental phenotypes. While there are 50 possible phenograms that
can be produced by two loci with two alleles at each locus [5], only three are
considered here. Using the population segregation ratio graphs and prevalence
graphs, simple two-locus models of inheritance can easily be tested using data from
the literature. Also, several examples of applying the graphs are included to illus-
trate their utility in discriminating among several models. Two-locus models that
are not excluded by this method can then be more specifically tested by using the
method described in [4] or by segregation analysis [5].

Here, the graphs presented allow testing of three different two-locus models with
two alleles at each locus, one allele "normal" and one trait- (or disease-) producing.
The three models are: (1) both loci require a "double dose" of the trait alleles
(recessive-recessive or R-R model); (2) one requires only one trait allele and the
other requires two (dominant-recessive or D-R model); and (3) the dominant-dom-
inant- or D-D model.

METHODS

Three assumptions went into producing the graphs: (1) Hardy-Weinberg equilibrium and
random mating prevail; (2) linkage equilibrium between the loci; and (3) penetrance of the
trait is close to unity, as reflected by the monozygotic (MZ) twin concordance rate. Pene-
trance is generally computed by comparing the observed segregation ratio with that predicted
by a model, usually simple Mendelian dominant or recessive. Since the present analysis
assumes that a second locus is responsible for the "reduced penetrance," it would obviously
defeat our purpose to infer reduced penetrance from the failure of a segregation ratio
computation to yield .25 or .5. The graphs assume the trait under investigation is either
completely genetically determined or, as in the case of coeliac disease (see below), has an
environmental component that is ubiquitous.
The population prevalence was taken as the frequency of the appropriate susceptible

genotype(s). Table 1 shows the Hardy-Weinberg frequencies for each of the nine possible
genotypes, as well as indicating which genotypes are affected under the different models.
The population segregation ratio was calculated according to the formula [6]:

=.1 S. Hi 9 1, when Hi > 0

Y. Sinai 0, when Hi = °

Here pi,is the proportion of affected offspring for mating type i and Si is the frequency of the
mating type. This population segregation ratio is the average percentage of affected offspring
(from mating types capable of producing affected offspring) weighted by the frequency of
those mating types.
The requirements for the data being used to test the two-locus models are stringent. In

addition to an MZ twin rate of unity, estimates of the population segregation ratio need to be
corrected for ascertainment bias. Obviously, if ascertainment is not corrected, the segrega-
tion ratio derived from the data will be higher than in reality. The method described here
makes no assumptions about the type of ascertainment bias correction used on the data.
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TWO-LOCUS MODELS OF INHERITANCE

TABLE 1

GENOTYPES AND POPULATION FREQUENCIES FOR THE Two-Locus MODEL

PHENOTYPE
HARDY-WEINBERG

GENOTYPE FORMULA D-D D-R R-R

AABB .. r2q2 + + +
AABb .. 2r2q(1 -q) + +
AAbb .. r2(1 -q)2
aABB .. 2(1 -r)rq2 + +
aABb...2(1 -r)r2(l -q)q................ +
aAbb .. 2(1 -r)r(1 -q)2
aaBB .. (1 -r)2q2
aaBb ...(.1 -r)2 * 2(1 -q)q
aabb .. (1 -r)2(1 -q)2

NOTE: *A = trait allele at locus 1 frequency r; a = all other alleles at Iocus I, frequency (1 - r); B = trait allele at
locus 2, frequency q; b = all other locus 2, frequency ( I - q); + = expresses trait; - = does not express trait.

The assumption is also made that the trait or disease being tested is genetically homogene-
ous. The classification of several distinct diseases as being the same will lead to incorrectly
high population prevalences and meaningless segregation ratios. Diseases that have an
environmental component will be disqualified from analysis by this method since the
penetrance by the MZ twin rate will probably not be one. A disease such as coeliac disease
that has a ubiquitous environmental component is not inappropriate to analyze in this way
(see below).
A grid was constructed, each point of which had as coordinates the gene frequencies of the

trait-producing alleles at the two loci. The assigned value of each such point was then either
the population prevalence (figs. 1-3) or segregation ratio (figs. 4-6) defined by the gene
frequencies at the point. Lines connecting equal values of the population prevalence (isoprev)
or segregation ratio (isoseg) were drawn.

RESULTS

Figures 1 through 6 show the resulting graphs. Figures 4-6 represent the "con-
tour maps" of the segregation ratio for the D-D, D-R, and R-R models, respective-
ly, as a function of the frequency of the trait-producing alleles at each of the two loci.
Figures 1-3 show similar graphs for the population prevalence.
To use the graphs, note the area on the segregation ratio map defined by the

segregation ratio calculated from the data, plus and minus 1 SD. This region is
called the allowed area. Then use a similar procedure with the population preva-
lence graphs, choosing as the limits the best estimates of population prevalence. If
the allowed areas of the population prevalence map and the segregation ratio map
do not overlap, then the model is rejected, since the gene frequencies corresponding
to the population prevalence are inconsistent with those for the segregation ratio. If
the allowed areas do overlap, the model is not rejected.
Note that the simple Mendelian dominant and recessive models are special cases

of the more general two-locus models. As the allele frequency at one of the loci
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FIG. 1.-Population prevalence contour graph for the D-D model

approaches unity, the segregation ratio will reduce to the simple Mendelian case. If
one assumes, for example, the data for Tay-Sachs disease (population prevalence
about 1:4,000 in the Jewish population and a segregation ratio of .25) and examines
the R-R maps (figs. 3 and 6), one sees that the appropriate isoprev and isoseg lines
intersect at a second allele frequency of 1.
The population prevalence, as might be expected, is extremely sensitive to gene

frequency, whereas the segregation ratio is much less so. The segregation ratio also
has limits for each of the three models below which it is impossible to go, no matter
how low the gene frequency. This is not surprising if one remembers that once a gene

is segregating in a family, the population frequency becomes irrelevant for the
family. Such is not the case with the population prevalence, which can go continu-
ously to zero. As can be seen from figures 1-3, when the gene frequency at one of the
loci is high, say, greater than .5, the population prevalence is particularly sensitive to
the frequency of the other gene, especially when the frequency of the other gene is
relatively low (say, less than .1).

EXAMPLES

To illustrate the use of the graphs, data on three diseases will be examined-coeli-
ac disease, polydactyly, and hemochromatosis. The coeliac disease data will be seen

to fit only the R-R model and polydactyly will fit the D-D two-locus model. The
data on hemochromatosis represent a more ambiguous situation, with only the R-R
model being excludable.
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TWO-LOCUS MODELS OF INHERITANCE

Coeliac Disease

The data for coeliac disease are as follows: Population prevalence is between
1.6 X 10-4 and 6 X 10-4. The segregation ratio is .08 ± .023 (the data for coeliac
disease are discussed more thoroughly in [6]).

The D-D Model. The D-D model is eliminated because the segregation ratio
allowed by the model does not go below .25. In addition, a population prevalence of
less than 1: 1,000 leaves almost no allowed area on the population prevalence map.

The D-R Model. While there is some allowed area on the population prevalence
map in the D-R model, the segregation ratio map again excludes this model from
consideration. The lowest allowed segregation ratio in the D-R model is . 125, while
the upper standard error (SE) limit of the observed segregation ratio is only .109.

The R-R Model. The segregation ratio map gives an allowed area in the entire
lower left corner of the map, up to about the 0.1 isoseg line. The isoprev lines of
.0001 and .0005 bracket the range found for the prevalence of coeliac disease.
Combining the two graphs has the effect of "cutting off the tails" of the symmetric
allowed area for the population prevalence. Therefore, the R-R model for coeliac
disease is not rejected (see fig. 7).

Postaxial Polydactyly (Type B)

Postaxial polydactyly type B is the presence of an extra digit, usually poorly
formed. The trait is about 10 times more common in blacks than in Caucasians [7].
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FIG. 2.-Population prevalence contour graph for the D-R model
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FIG. 3.-Population prevalence contour graph for the R-R model

Walker [8] suggested that the presence of two dominant genes would best explain
the pedigree he studied. Scott-Emuakpor and Madeuke [9] found a population
prevalence of between about 18 and 27 per 1,000 in Nigeria. The rates differed for
males and females, with the female rate being the lower of the two.* These authors
also reported a segregation ratio of about .32 with a SE of .02.

The D-D Model. Looking at the population prevalence map (fig. 1), the .01 and
.04 isoprev contours bracket the population prevalence estimates. On the segrega-
tion ratio map (fig. 4), the bottom left corner from the .3 to the .34 isoseg line is
acceptable. Therefore, the overlap or allowed area is mostly limited by the allowed
population prevalence area, with the segregation ratio area cutting off the tails and
part of the bottom of the symmetric population prevalence area. Therefore, the D-D
model is not rejected. The allowed frequencies are from 0 to .25 for each of the loci,
with not all combinations being allowed.
D-R Model. Looking at the segregation ratio map, the limits of .32 ± .02 lead to

a wide strip of allowed area. However, the overlap area of that strip with the limits
of population prevalence leads to an allowed area that is extremely small at the
lower end of the segregation ratio limit and at a gene frequency for the dominant
gene of almost 1. It is clearly only a very marginal fit and much worse than the D-D
model. Therefore, the D-R model is rejected.
R-R Model. The R-R model leads to no allowed area and is rejected.
* There is some ambiguity in the ascertainment bias correction in this study. However, for the purpose

of illustrating how to use the graphs, it suffices to use the data as reported. Also, the MZ twin
concordance rate is not discussed, so it is assumed to be 1.
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Hemochromatosis

While it is not appropriate here to discuss the intricacies of the hemochromatosis
story, some explanation is necessary. Hemochromatosis is a disease of iron metabo-
lism characterized by hepatomegaly, and often melanoderma, diabetes, and gonadal
insufficiency. Serum iron is elevated, and unsaturated iron-binding capacity is very
low.
Hemochromatosis has recently been shown to be a Mendelian recessive disorder

with partial expression in heterozygotes [10, 11]. There has been some debate in the
past about the mode of inheritance of hemochromatosis due to some complicating
factors. For example, females exhibit both the overload and the disease less fre-
quently than males, presumably because of the loss of iron during menses. A further
complication is that while the disease tends to aggregate horizontally, there is some
vertical aggregation [12]. In addition, the estimates of population prevalence vary
from .0001 to .003 [10, 12].
To adhere to the stipulation that the penetrance of the disease be unity, in the

following analysis, only data from males are considered, since their penetrance is
presumably 1 [12]. Data are taken from Simon et al. [12].
The population segregation ratios are .26 ± .057 when the minor overload is

classified as unaffected and .34 ± .061 when the minor overload is called affected.
Ascertainment was corrected by the proband method assuming single ascer-
tainment.
We will consider the two segregation ratios under the different assumptions of

population prevalence, that is, .0001 and .003.
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FIG. 4.-Population segregation ratio contour graph for the D-D model. Lowest possible value is .25
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D-D Model. If we examine the higher of the two segregation ratios (.34 ± .061),
it can be seen that the lowest population prevalence allowed is about 1:100 at minus
1 SE of the segregation ratio. Therefore, if the minor overload is considered
affected, the two-locus D-D model does not fit.
Looking at the lower segregation ratio (.26 ± .057), the lower left corner of the

segregation ratio map, up to the .3 isoseg, is allowed. Therefore, the limiting factor
becomes the population prevalence. A population prevalence of 1:10,000 would
require that both gene frequencies be less than .01. The population prevalence in
that case becomes very sensitive to the gene frequency. Different gene frequencies
that might vary by several percent in different locales would lead to very different
prevalences. Therefore, while the D-D model is acceptable under the above condi-
tions, it is less attractive if the population prevalence is on the order of 1:10,000
everywhere. There does exist an allowed area if the population prevalence is on the
order of .003, but it is close to the upper end of the observed segregation ratio range.
Therefore, if the segregation ratio proves not to be at the upper end of the range, the
D-D model could be excluded.
D-R Model. The higher segregation ratio (.34 ± .061) immediately excludes the

D-R model from consideration, since predicted population prevalences are too high
if that segregation ratio is correct.
When we examine the lower segregation ratio (.26 ± .057), a very narrow

(probably negligible) strip ofallowed area emerges in the area defined approximate-
ly by a dominant gene frequency of between .5 to 1.0 and a recessive gene frequency
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FIG. 6.-Population segregation ratio contour graph for the R-R model. Lowest possible value is
.063.

of between 0 and .02 (assuming a population prevalence of 1:10,000). If a popula-
tion prevalence between .001 and .003 is assumed, the gene frequencies must be
.5-1.0 and .05-.1, respectively. These limits illustrate that, while some area is
allowed, the frequency of the dominant gene is so high that a simple recessive model
(single locus) may be a more attractive hypothesis. (As the trait allele frequency at
one of the loci approaches unity, the model reduces to the simple Mendelian case.)
If, however, the segregation ratio (still ignoring data from females) is found to be
less than .25, the D-R model must be considered. This would mean that the
dominant allele is fairly common in the population.
R-R Model. The R-R model can be excluded since the allowed area that appears,

assuming the lower segregation ratio, is confined to the areas where the gene
frequency of one of the alleles is almost unity (again arguing in favor of a single-lo-
cus recessive). The higher segregation ratio leads to no allowed area at all.
To summarize the analysis for hemochromatosis: When the minor overload is

classified as affected, all 3 two-locus models can be rejected on the basis of popula-
tion prevalence. If the minor overload is considered to be unaffected, the R-R model
can be excluded, but examination of the R-R graphs tend to support a single-locus
recessive. The D-R model does show some allowed area, but only in a portion of the
graph where the population prevalence changes rapidly as a function of the reces-
sive gene frequency, again supporting a simple recessive model. Also, if the popula-
tion prevalence is 1:10,000, the D-R graphs produce almost no allowed area. What
area is allowed favors a simple recessive because the frequency of the dominant gene
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FIG. 7.-Superposition of the allowed areas for coeliac disease. Stippled area is the allowed region for
the population prevalence; lined region, the allowed area for the segregation ratio; and white area, the
intersection of the two regions.

is high. The D-D model cannot be excluded with the current data. If the lower
population prevalence is correct, the allowed area is very small and probably
negligible. If the higher population prevalence is a realistic figure, the D-D model is
a reasonable one if qi is greater than .26. More precise definition of the segregation
ratio would enable one to choose between simple recessive, D-R, and D-D models.

DISCUSSION

As the above three examples show, it is fairly easy to distinguish among the D-R,
D-D, R-R, and simple Mendelian single-locus dominant or recessive models using
the population prevalence and segregation ratio graphs. Even in the ambiguous case
of hemochromatosis, testing the data against predictions made by different models
enables us to identify critical parameters that will distinguish among the models. It
must be re-emphasized that these graphs assume a penetrance of 1 for the trait, as
indicated by the MZ twin concordance rate. Given a condition such as coeliac
disease, where the age of onset may be variable, and that some ambiguities in
diagnostic criteria exist, perhaps a concordance rate as low as 70%-80% is still
acceptable. A disease such as insulin-dependent juvenile diabetes, however, which
appears to be heterogeneous [13] and in which the MZ twin concordance rate may
be as low as .2 [14, 15], is inappropriate to analyze in this way without taking
account of the heterogeneity (but see [16]).
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Obviously, the "testing" method described here is not a test of significance or fit
in the statistical sense. It is rather a test of the consistency of the model with
biological parameters, namely, the gene frequencies at the two loci. If the gene
frequencies predicted by the population segregation ratio and trait prevalence are
nonoverlapping, the model(s) is obviously not consistent with the observables.
For recessive gene frequencies above about .5, the population prevalence graphs

for the R-R and D-R models have an ill-conditioned area when the gene frequency
for the second locus is less than about .1. In this region, the population prevalences
vary by at least an order of magnitude for a second-locus gene frequency change of
only .05. Since this section of the graph is so ill-conditioned, one would hesitate to
ascribe a two-locus etiology to a trait or disease if the allowed area fell in this
section. If the segregation ratio data, however, excluded a single-locus model, then a
two-locus model would have to be considered even if the allowed area fell in the
ill-conditioned section. (If the disease were known to have prevalences greatly
different in different locales, then such range ofgene frequencies would be realistic.)
Note that the models assume Hardy-Weinberg equilibrium and the equal viabili-

ty of all genotypes (i.e., no selection). Also, the effect ofnew mutations in the case of
the D-R and D-D models has not been taken into account in this analysis.
The objection will undoubtedly be raised that an analysis such as this, or perhaps

any mathematical analysis, can really tell us little about the genetic mechanisms of a
disease. However, within the rather strict assumptions detailed above, the models
presented here can be helpful in two ways: first, they give an explicit and testable
meaning to what is loosely called "penetrance" (in this case that another locus is
required for disease expression), and second, they indicate what data will eliminate
or support a given two-locus model. It is generally accepted that many diseases
(cystic fibrosis, Huntington disease) are simple Mendelian recessive or dominant on
the basis of the segregation ratio alone.
Examination of the graphs can also give an idea of the effect of even more loci on

trait expression. It is clear, for example, that if many loci are involved, the popula-
tion frequency of some of the trait alleles will probably be high if anything more
than sporadic cases are observed.

In summary, the graphs presented here provide a way of testing three different
two-locus models of inheritance without the use of a computer. The graphs are
relatively easy to use and, in the cases examined, have shown that the criteria of
population prevalence and segregation ratio distinguish fairly well among the
models. Even in ambiguous cases, the method indicates what data will be able to
eliminate some or all the models from consideration.
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